
10-601 Machine Learning, Fall 2011: Homework 5

Machine Learning Department
Carnegie Mellon University

Due: ???????????, 5pm

Instructions There are ???? questions on this assignment. The ?????? question involves coding, so start
early. Please submit your completed homework to Sharon Cavlovich (GHC 8215) by ???????????. Submit
your homework as ????? separate sets of pages, one for each question. Please staple or paperclip all pages
from a single question together, but DO NOT staple pages from different questions together. This will
make it much easier for the TA’s to split up your homework for grading. Include your name and email
address on each set.

1 Hidden Markov Models

1. Assume that we have the Hidden Markov Model (HMM) depicted in the figure above. If each of the
states can take on k different values and a total of m different observations are possible (across all
states), how many parameters are required to fully define this HMM? Justify your answer.

F SOLUTION: There are a total of three probability distributions that define the HMM, the initial
probability distribution, the transition probability distribution, and the emission probability distribution.
There are a total of k states, so k parameters are required to define the initial probability distribution
(we’ll ignore all of the -1s for this problem to make things cleaner). For the transition distribution, we
can transition from any one of k states to any of the k states (including staying in the same state), so k2

parameters are required. Then, we need a total of km parameters for the emission probability distribution,
since each of the k states can emit each of the m observations.
Thus, the total number of parameters required are k+ k2 + km. Note that the number of parameters does
not depend on the length of the HMMs.

2. What conditional independences hold in this HMM? Justify your answer.

S1 S2 S3

O1 O2 O3

1



State P (S1)
A 0.99
B 0.01

(a) Initial probs.

S1 S2 P (S2|S1)
A A 0.99
A B 0.01
B A 0.01
B B 0.99

(b) Transition probs.

S O P (O|S)
A 0 0.8
A 1 0.2
B 0 0.1
B 1 0.9

(c) Emission probs.

F SOLUTION: The past is independent of the future, given the present. More precisely, we have
that S1, ..., St−1, O1, ...Ot−1 ⊥ St+1, ..., Sn, Ot+1, ..., On|St. Note that these independence relations follow
directly from d-separation because a HMM is just a Bayes Net.

Suppose that we have binary states (labeled A and B) and binary observations (labeled 0 and 1) and the
initial, transition, and emission probabilities as in the given table.

3. Using the forward algorithm, compute the probability that we observe the sequence O1 = 0, O2 = 1,
and O3 = 0. Show your work (i.e., show each of your alphas).

F SOLUTION: The values of the different alphas and the probability of the sequence are as follows
(notice that your answers may be slightly different if you kept a different number of decimal places):
αA1 = 0.8× 0.99 = 0.792
αB1 = 0.1× 0.001 = 0.001
αA2 = 0.2(0.792(0.99) + 0.001(0.01)) = 0.156818
αB2 = 0.9(0.792(0.01) + 0.001(0.99)) = 0.008019
αA3 = 0.8(0.156818(0.99) + 0.008019(0.01)) = 0.124264
αB3 = 0.1(0.156818(0.01) + 0.008019(0.99)) = 0.000950699
P ({OT }Tt=1) = 0.1252147

4. Using the backward algorithm, compute the probability that we observe the aforementioned sequence
(O1 = 0, O2 = 1, and O3 = 0). Again, show your work (i.e., show each of your betas).

F SOLUTION: The values of the different betas and the probability of the sequence are as follows
(again, your answers may vary slightly due to rounding):
βA3 = 1
βB3 = 1
βA2 = 0.99(0.8)(1) + 0.01(0.1)(1) = 0.793
βB2 = 0.01(0.08)(1) + 0.99(0.01)(1) = 0.107
βA1 = 0.99(0.02)(0.793) + 0.01(0.9)(0.107) = 0.157977
βB1 = 0.01(0.2)(0.793) + 0.99(0.9)(0.107) = 0.096923
P ({OT }Tt=1) = 0.792(0.157977) + 0.001(0.096923) = 0.1252147

5. Do your results from the forward and backward algorithm agree?

F SOLUTION: Yes, the results from the forward and backward algorithm agree!

6. Using the forward-backward algorithm, compute (and report) the most likely setting for each state.
Hint: you already have the alphas and betas from the above sub-problems.
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F SOLUTION: We already have the alphas and betas from the previous two computations. Note that
the most likely state at time t is state A if αAt β

A
1 > αB1 β

B
1 and state B if the inequality is reversed. We

predict that A is the most likely setting for every state. The relevant values for the computation are:
αA1 β

A
1 = 0.792× 0.157977 = 0.1251178

αB1 β
B
1 = 0.001× 0.096923 = 9.6923× 10−5

αA2 β
A
2 = 0.156818× 0.793 = 0.1243567

αB2 β
B
2 = 0.008019× 0.107 = 0.000858033

αA3 β
A
3 = 0.124264× 1 = 0.124264

αB3 β
B
3 = 0.000950699× 1 = 0.000950699

7. Use the Viterbi algorithm to compute (and report) the most likely sequence of states. Show your work
(i.e., show each of your Vs).

F SOLUTION: The Viterbi algorithm predicts that the most likely sequence of states is A, A, A. The
relevant computations are:
V A1 = 0.99× 0.8 = 0.792
V B1 = 0.01× 0.1 = 0.001
V A2 = 0.2(0.792)(0.99) = 0.156816
V B2 = 0.9(0.792)(0.01) = 0.007128
V A3 = 0.8(0.156816)(0.99) = 0.1241983
V B3 = 0.1(0.007128)(0.99) = 0.000705672

8. Is the most likely sequence of states the same as the sequence comprised of the most likely setting for
each individual state? Does this make sense? Provide a 1-2 sentence justification for your answer.

F SOLUTION: In this case, the two are the same. This is because the probability of changing states
is so low. However, in general, the two need not be the same. In fact, we have seen an example in class
where the two sequences are different.

2 Neural Networks [Mladen Kolar, 20 points]

In this problem, we will consider neural networks constructed using the following two types of activation
functions (instead of sigmoid functions):

• identity
gI(x) = x

• step function

gS(x) =

{
1 if x ≥ 0,
0 otherwise.

For example, the following figure represents a neural network with one input x, a single hidden layer with
K units having step function activations, and a single output with identity activation. The output can be
written as

out(x) = gI(w0 +

K∑
k=1

wkgS(w
(k)
0 + w

(k)
1 x))

Now you will construct some neural networks using these activation functions.
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1. [5 pts] Consider the step function

u(x) =

{
y if x ≥ a,
0 otherwise.

Construct a neural network with one input x and one hidden layer, whose response is u(x). Draw the
structure of the neural network, specify the activation function for each unit (either gI or gs), and
specify the values for all weights (in terms of a and y).

F SOLUTION: One solution can be obtained as follows. Set w0 = 0, w1 = y, w
(1)
0 = −a,w(1)

1 = 1.

2. [5 pts] Now consider the indicator function

1I
[a,b)

(x) =

{
1 if x ∈ [a, b),
0 otherwise.

Construct a neural network with one input x and one hidden layer, whose response is y 1I[a,b)(x), for
given real values y, a and b. Draw the structure of the neural network, specify the activation function
for each unit (either gI or gs), and specify the values for all weights (in terms of a, b and y).

F SOLUTION: One solution can be obtained as follows. Set w0 = 0, w1 = y, w2 = −y, w(1)
0 =

−a,w(1)
1 = 1, w

(2)
0 = −b, w(2)

1 = 1.

3. [10 points] A neural network with a single hidden layer can provide an arbitrarily close approximation
to any 1-dimensional bounded smooth function. This question will guide you through the proof. Let
f(x) be any function whose domain is [C,D), for real values C < D. Suppose that the function is
Lipschitz continuous, that is,

∀x, x′ ∈ [C,D), |f(x′)− f(x)| ≤ L|x′ − x|,

for some constant L ≥ 0. Use the building blocks constructed in the previous part to construct a
neural network with one hidden layer that approximates this function within ε > 0, that is, ∀x ∈
[C,D), |f(x) − out(x)| ≤ ε, where out(x) is the output of your neural network given input x. Your
network should use only the activation functions gI and gS given above. You need to specify the
number K of hidden units, the activation function for each unit, and a formula for calculating each

weight w0, wk, w
(k)
0 , and w

(k)
1 , for each k ∈ {1, 2, . . . ,K}. These weights may be specified in terms of

C, D, L and ε, as well as the values of f(x) evaluated at a finite number of x values of your choosing
(you need to explicitly specify which x values you use). You do not need to explicitly write the out(x)
function. Why does your network attain the given accuracy ε?
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F SOLUTION: Here is one valid solution. The hidden units all use gs activation functions, and the

output unit uses gI . K = b(D − C) L2ε + 1c. For k ∈ {1, . . . ,K}, w(k)
1 = 1, w

(k)
0 = −(C + (k − 1)2ε/L).

For the second layer, we have w0 = 0, w1 = f(C + ε/L), and for k ∈ {2, 3, . . . ,K}, wk = f(C + (2k −
1)ε/L)− f(C + (2k − 3)ε/L).

We only evaluate f(x) at points C + (2k − 1)ε/L, for k ∈ {1, . . . ,K}, which is a finite number of points.

The function value out(x) is exactly f(C + (2k − 1)ε/L) for k ∈ {1, . . . ,K}. Note that for any x ∈
[C + (k − 1)2ε/L,C + k2ε/l), |f(x)− out(x)| ≤ ε.

3 Principle Component Analysis [William Bishop, ??? points]

The fourth slide presented in class on November 10th states that PCA finds principle component vectors
such that the projection onto these vectors yields minimum mean squared reconstruction error. In the case
of a set of sample vectors ~x1 . . . , ~xn and finding only the first principle component, ~v, this amounts to finding
~v which minimizes the objective:

J(~v) =

n∑
i=1

||~xi − (~vT~xt)~v||2

To ensure that this problem has a meaningful solution we require that that ||~v|| = 1, where || · || denotes
the length of the vector.

In class we also learned we can view PCA as maximizing the variance of the data after it has been
projected onto ~v. If we assume the sample vectors ~x1, . . . , ~xn have zero mean, we can write this as:

O(~v) =

n∑
i=1

(~vT~xt)
2 = ~vTXXT~v

where we again require ||~v|| = 1. In the equation on there right, the columns of the matrix X are made
up of the sample vectors, i.e., X = [~x1, . . . , ~xn].

Note that to maximize O(~v) subject to the constraint on ~v we can find the stationary point of the
Lagrangian:

LO(~v, λ) = ~vTXXT~v + λ(1− ~vT~v)

Please show that minimizing J(~v) can be turned into an equivalent maximization problem which has the
same Lagrangian. Note that it is sufficient to show that the two Lagrangians are the same; you do not need
to find the actual stationary point.

Note: LO(~v, λ) can equivalently be expressed as LO(~v, λ) =
(∑n

i=1(~vT~xt)
2
)

+ λ(1 − ~vT~v). If you are more
comfortable using this form so as to not need to deal with matrices, you may do so.

Note: For those who may need a primer on Lagrange Multipliers, appendix E of the Bishop book has
some basic information. All you need to solve this problem can be found in the first few pages of this
appendix.

3.1 Solution:

Answer:
Consider minimizing J(~v). We can write:

5

http://www.cs.cmu.edu/~aarti/Class/10601/slides/Dim_red_contd_11_10_2011.pdf


min
~v:||~v||=1

J (~v) = min
~v:||~v||=1

(
n∑
i=1

||~xi − (~vT~xt)~v||2
)

In the above notation min~v:||~v||=1 J (~v) means that we minimize J (~v) such that the length of ~v is 1.
Continuing our derivation:

min
~v:||~v||=1

J (~v) = min
~v:||~v||=1

(
n∑
i=1

||~xi − (~vT~xi)~v||2
)

= min
~v:||~v||=1

(
n∑
i=1

[~xi − (~vT~xi)~v]T [~xi − (~vT~xi)~v]

)

= min
~v:||~v||=1

(
n∑
i=1

[~xTi − (~vT~xi)~v
T ][~xi − (~vT~xi)~v]

)

= min
~v:||~v||=1

(
n∑
i=1

~xTi ~xi − (~vT~xi)~v
T~xi − ~xTi (~vT~xi)~v + (~vT~xi)~v

T (~vT~xi)~v

)

= min
~v:||~v||=1

(
n∑
i=1

~xTi ~xi − ~vT~xi~xTi ~v − ~vT~xi~xTi ~v + (~vT~xi~x
T
i ~v)~vT~v

)

In the last line we have used the fact that (~vT~xi)~v
T~xi = ~vT~xi~x

T
i ~v, ~xTi (~vT~xi)~v = ~vT~xi~x

T
i ~v and (~vT~xi)~v

T (~vT~xi)~v =
(~vT~xi~x

T
i ~v)~vT~v

We can then write:

min
~v:||~v||=1

J (~v) = min
~v:||~v||=1

(
n∑
i=1

~xTi ~xi − ~vT~xi~xTi ~v − ~vT~xi~xTi ~v + (~vT~xi~x
T
i ~v)~vT~v

)

= min
~v:||~v||=1

(
n∑
i=1

~xTi ~xi + ~vT~xi~x
T
i ~v(−2 + ~vT~v)

)

= min
~v:||~v||=1

(
n∑
i=1

~vT~xi~x
T
i ~v(−2 + ~vT~v)

)

= min
~v:||~v||=1

(
n∑
i=1

~vT~xi~x
T
i ~v(−2 + 1)

)

= min
~v:||~v||=1

(
n∑
i=1

−~vT~xi~xTi ~v

)

= max
~v:||~v||=1

(
n∑
i=1

~vT~xi~x
T
i ~v

)
= max
~v:||~v||=1

(
~vTXXT~v

)
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2. [5 pts] Draw the first two principle components for the following two datasets.

Based on this, comment on a limitation of PCA.
Answer: One of the limitations of PCA is that is can be highly affected by just a few outliers. Another

limitation is that it may fail to capture meaningful components that do not pass through the origin.

7


	Hidden Markov Models
	Neural Networks [Mladen Kolar, 20 points]
	Principle Component Analysis [William Bishop, ??? points]
	Solution:


