
10-601 Machine Learning, Fall 2011: Homework 4

Tom Mitchell and Aarti Singh

Machine Learning Department
Carnegie Mellon University

Due: October 25

Instructions There are 2 questions on this assignment. Please submit your completed homework to Sharon
Cavlovich (GHC 8215) by noon, Tuesday, October 25. Submit your homework as 2 separate sets of pages,
one for each question (so the TA’s can easily split it up for grading). Include your name and email address
on each set.

1 Expectation Maximization [30 points]

Consider the following graphical model, which defines a joint probability distribution over five Boolean
variables. In this question, you will apply EM to train this Bayesian network, given training data in which
the variables F, S,H and N are fully observed, and where the variable A is sometimes unobserved.

1. What are the conditional probability distributions associated with each of the five random variables in
this network?

F SOLUTION: The probability distributions are P (F ), P (A), P (S|A,F ), P (H|S), and P (N |S).
These distributions are associated with the nodes for F, A, S, H, and N, respectively.

2. During the E step of the EM algorithm, we estimate the probability distribution over each unobserved
value of each training example. Given that our only unobserved variable is A, the E step involves
calculating P (A|F, S,H,N). Write an expression for P (A = 1|F, S,H,N) in terms of the conditional
probability distributions available for this Bayesian network. Hint: Start by writing it out based on the
definition of conditional probability.

F SOLUTION: P (A = 1|F, S,H,N) = P (A=1,F,S,H,N)
P (F,S,H,N) =

P (A=1)P (F )P (S|F,A=1)P (H|S)P (N |S)
P (A=0)P (F )P (S|F,A=0)P (H|S)P (N |S)+P (A=1)P (F )P (S|F,A=1)P (H|S)P (N |S)

3. What variables are in the Markov blanket for variable A?
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Example F S H N A P (A = 1|F, S,H,N)
1. 0 1 0 1 1 –
2. 0 0 1 0 1 –
3. 1 0 1 1 0 –
4. 0 0 0 1 ? 0.8
5. 0 1 0 0 ? 0.4

Table 1: Training examples, and E-step results for unobserved values of A

F SOLUTION: F and S are in the Markov blanket for A.

4. Given that all variables in the Markov blanket of A are observed, it should be possible to compute the
distribution over A based on only these variables. Simplify your expression from part (2) so that it
uses only the variables in the Markov blanket of A.

F SOLUTION: P (A = 1|F, S,H,N) = P (A=1)P (F )P (S|F,A=1)
P (A=0)P (F )P (S|F,A=0)+P (A=1)P (F )P (S|F,A=1)

5. During the M step, the parameters of the network are re-calculated using the observed training data
plus the distributions calculated during the E step for the training values that are unobserved. Some
parameters in our network can be estimated based solely on the observed variables F, S,H and N .
Other parameters in our network depend on the inferred distributions over the unobserved variables
calculated during the E step. List the parameters that depend on the E step. To refer to a particular
parameter, simply write down the probability it represents (e.g., P (N = 1|S = 0)).

F SOLUTION: The parameters that are updated correspond to P (A = 1), P (S = 1|F = 0, A = 0),
P (S = 1|F = 0, A = 1), P (S = 1|F = 1, A = 0), and P (S = 1|F = 1, A = 1). It is also equivalent to
think of the parameters as corresponding to P (A = 0), P (S = 0|F = 0, A = 0), P (S = 0|F = 0, A = 1),
P (S = 0|F = 1, A = 0), and P (S = 0|F = 1, A = 1).

6. Consider the above data table, showing the values of observed variables in the training examples, and
showing the inferred distribution over unobserved values from the E step during the 3rd iteration of
the EM algorithm. What estimate will be produced during the M step for the parameter that defines
P (A = 1)? What value will be assigned to the parameter defining P (S = 1|F = 0, A = 1)?

F SOLUTION: P (A = 1) = 1+1+0+0.8+0.4
5 = 3.2

5 = 0.64
P (S = 1|F = 0, A = 1) = 1+0+0+0+0.4

1+1+0+0.8+0.4 = 1.4
3.2 = 0.4375

2 PAC Learning and Overfitting [30 points]

In Homework 3, you considered how the training and test error of a decision tree vary with the complexity
of the tree. In this question, you will use PAC learning theory to examine the same question.

Consider a concept learning task defined over the set of instances X, where each instance x ∈ X is
described by n = 40 Boolean variables. Consider a decision tree learner that uses hypothesis space Hd. Hd

contains only decision trees of full depth d; that is, each leaf node in each decision tree is exactly d edges
away from the tree root. Furthermore, unlike general decision trees which can test different attributes along
different paths from the root of the tree, trees in Hd test the same sequence of attributes along every path
from the root to a leaf. Finally, any combination of labels is allowed on the leaf nodes of the tree. For
example, the tree below, from H2, tests the sequence of attributes X6, X3 along each path from the root to a
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leaf. Notice the number of functionally distinct decision trees in Hd is less than or equal to (n choose d)22
d 1.

Note also that the set of functions represented by Hd+1 includes the entire set of functions represented by
Hd.

Throughout this question, we make the usual assumptions of PAC learning: the function we are attempt-
ing to learn is deterministic, m training examples are drawn at random, i.i.d, from an unknown P (X), then la-
belled by an error-free trainer, and the learner outputs a hypothesis h satisfying h = arg minh∈Hd

errortrain(h).
Throughout this question, let us also assume the target function we are attempting to learn, f : X →

{0, 1}, is perfectly described by some decision tree in H10, though the learning algorithm is unaware of this.
Finally, we assume there are m = 100, 000 training examples, and n = 40 Boolean variables defining each
instance x.

Part A. This part of the question does not require you to use any equations. You should be able to
answer the questions in this part based on informal analysis and common sense.

Which of the following statements must be true in this problem setting? Answer True or False for each,
and give a one sentence explanation.

1. If the learner uses hypothesis space H10 then its learned h will satisfy errortrain(h) = 0.

F SOLUTION: True. The target function is in H10, therefore, the learner will find at least one function
consistent with all the training data.

2. If the learner uses H10 its learned h will satisfy errortrue(h) = 0.

F SOLUTION: False. The target function is in H10, however, since the learner has only finite amount
of data to learn from, it could select a hypothesis consistent with the training data that is different from
the target function.

3. If one learner (we’ll call this learner L10) uses H10 and outputs a depth 10 decision tree h10, and a
second learner (which we will call L5) uses H5 to output h5 based on exactly the same set of m training
examples, then

errortrain(h10) ≤ errortrain(h5)

F SOLUTION: True. errortrain(h10) = 0 and error is always positive.

4. If learner L15 uses H15 and outputs a depth 15 decision tree h15, and learner L10 uses H10 to output
h10 based on exactly the same set of m training examples, then

errortrain(h15) ≤ errortrain(h10)

1There are (n choose d) different ways to choose which d variables to include in the tree, and there are 22
d

ways to label the
2d leaves of the tree.
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F SOLUTION: True. H15 contains all the hypothesis that are in H10.

Based on your analysis above, draw a plot showing training accuracy as a function of d (from d = 1 to
20), for learners using Hd, assuming that the number of training examples m is held constant. Note this
plot is similar to the plot we provided to you in Homework 3, but you should draw it consistent with your
answers to the above questions. For some ranges of d you won’t know the exact training accuracy, so just
draw an approximate curve in those intervals, and indicate on your plot which range of d has accuracies you
are certain of.

Part B. Now let us see what we can say about errortrue(hd) as a function of d. For this part, we will
use the formal PAC results discussed in class.

1. Consider learner L10 which uses H10 and outputs hypothesis h10. Given that each draw of m training
examples will be somewhat different, we cannot predict errortrue(h10) with certainty. However, we can
use the result we proved in class to generate a probabilistic bound on errortrue(h10). Give an upper
bound on errortrue(h10) that will be achieved with 0.9 probability if we train on 100,000 training
examples (where the probability is taken over different draws of training sets of this size). Justify your
answer. Enter this result in your plot, as the first point on a new curve showing a lower bound on true
accuracy. [Hint: if you type the search query ”17 choose 8” to Google, it will give you the answer.]

F SOLUTION:

errortrue(h10) ≤ 1

m
(ln |H10|+ ln(1/δ)) =

1

100000
(ln(22

10

(
40

10

)
) + ln(1/0.1)) = 0.00733

2. Answer the same question as above, this time for a learner that uses H12, and also for a learner that
uses H15. Plot these two additional points on the ”bound on true accuracy” curve.

F SOLUTION:

errortrue(h12) ≤ 1

m
(ln |H12|+ ln(1/δ)) =

1

100000
(ln(22

12

(
40

12

)
) + ln(1/0.1)) = 0.0286387

errortrue(h15) ≤ 1

m
(ln |H15|+ ln(1/δ)) =

1

100000
(ln(22

15

(
40

15

)
) + ln(1/0.1)) = 0.227397

3. Does your bound on errortrue(hd) increase or decrease with d? With m?

F SOLUTION: Bound increases with d (becomes worse) and it decreases with m (becomes better).

4. Now consider the errortrue(hd) when d < 10. Notice in this case, we cannot use the result we proved in
class which assumes the correct target function is in the learner’s hypothesis space H. However, we can
use the agnostic bound on the distance between errortrue(hd) and errortrain(hd); that is, the degree
of overfitting. Calculate a bound on the quantity (errortrue(hd)− errortrain(hd)) that will hold with
probability 0.9, where this probability is taken over different draws of m = 100, 000 training examples.
Calculate your bound for a learner that uses H5, and for a learner that uses H8. Plot both points on
your plot of true accuracy, relative to your estimated training accuracy curve.
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F SOLUTION:

errortrue(hd)− errortrain(hd) ≤
√

ln |Hd|+ ln(1/δ)

2m

errortrue(h5)− errortrain(h5) ≤ 0.01376231

errortrue(h8)− errortrain(h8) ≤ 0.03145682

5. How does your bound on overfitting grow or shrink with d? With m?

F SOLUTION: Bound increases with d (becomes worse) and it decreases with m (becomes better).

6. We can still use the agnostic bound even when d ≥ 10. Use it to give a bound on errortest(h10) for
the learner L10. Is this tighter or weaker than the bound you derived above? Plot it as well.

F SOLUTION: The agnostic bound gives worse results.

7. Optional: Any interesting observations you would like to volunteer?
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