
10-601 Machine Learning, Fall 2011: Homework 1

Machine Learning Department
Carnegie Mellon University

Due: September 23, 5pm

Instructions There are 2 questions on this assignment. The second question involves coding, so start
early. Please submit your completed homework to Sharon Cavlovich (GHC 8215) by 5pm friday, Sept 23.
Submit your homework as 2 separate sets of pages, one for each question (so the TA’s can easily split it up
for grading). Include your name and email address on each set.

1 Basic Probability Review [Mladen Kolar, 20 points]

1. This problem reviews basic concepts from probability.

(a) [2 points] A biased die has the following probabilities of landing on each face:
face 1 2 3 4 5 6

P(face) .1 .1 .2 .2 .4 0

I win if the die shows even. What is the probability that I win? Is this better or worse than a
fair die (i.e., a die with equal probabilities for each face)?

(b) [2 points] Suppose P(snow today) = 0.30, P(snow tomorrow) = 0.60, P(snow today and tomorrow)
= 0.25. Given that it snows today, what is the probability it will snow tomorrow?

(c) [2 points] Give a formula for P (G|¬H) in terms of P (G), P (H) and P (G∧H) only. Here H and
G are boolean random variables.

(d) [2 points] Recall that the expected value E[X] for a random variable X is

E[X] =
∑

x∈V alues(X)

P (X = x) x

where Values(X) is the set of values X may take on. Similarly, the expected value of any function
f of random variable X is

E[f(X)] =
∑

x∈V alues(X)

P (X = x) f(x)

Now consider the function below, which we call the ”indicator function”

δ(X = a) :=

{
1 if X = a
0 if X 6= a

Let X be a random variable which takes on the values 3, 8 or 9 with probabilities p3, p8 and p9
respectively. Calculate E[δ(X = 8)].

(e) [2 points] A box contains w white balls and b black balls. A ball is chosen at random. The ball is
then replaced, along with d more balls of the same color (as the chosen ball). Then another ball
is drawn at random from the box. Show that the probability that the second ball is white does
not depend on d.
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2. The remaining questions examine the relationship between entropy, mutual information, and indepen-
dence. Recall the following definitions:

• Entropy: H(X) = −
∑

x∈Values(X) P (X = x) log2 P (X = x) = −E[log2 P (X)]

• Joint entropy: H(X,Y ) = −
∑

x∈Values(X)

∑
y∈Values(Y ) P (X = x, Y = y) log2 P (X = x, Y =

y) = −E[log2 P (X,Y )]

• Conditional entropy: H(Y |X) = −
∑

x∈Values(X)

∑
y∈Values(Y ) P (X = x, Y = y) log2 P (Y =

y|X = x) = −E[log2 P (Y |X)]

• Mutual information: I(X;Y ) =
∑

x∈Values(X)

∑
y∈Values(Y ) P (X = x, Y = y) log2

P (X=x,Y=y)
P (X=x)P (Y=y)

(a) [3 points] Using the definitions of the entropy, joint entropy, and conditional entropy, prove the
following chain rule for the entropy:

H(X,Y ) = H(Y ) +H(X|Y ).

(b) [5 points] Prove the following identities that relate the mutual information and entropy:

i. I(X;Y ) = H(X)−H(X|Y )

ii. I(X;Y ) = H(Y )−H(Y |X)

iii. I(X;Y ) = I(Y ;X)

iv. I(X;X) = H(X).

(c) [2 points] Recall that two random variables X and Y are independent if

for all x ∈ Values(X) and all y ∈ Values(Y ), P (X = x, Y = y) = P (X = x)P (Y = y).

If variables X and Y are independent, is I(X;Y ) = 0? If yes, prove it. If no, give a counter
example.

2 Binary Decision Trees [William Bishop, 40 points]

One very interesting application area of machine learning is in making medical diagnoses. In this problem
you will train and test a binary decision tree to detect breast cancer using real world data. You may use
any programming language you like.

2.1 The Dataset

We will use the Wisconsin Diagnostic Breast Cancer (WDBC) dataset1. The dataset consists of 569 samples
of biopsied tissue. The tissue for each sample is imaged and 10 characteristics of the nuclei of cells present
in each image are characterized. These characteristics are

1. Radius

2. Texture

3. Perimeter

4. Area

5. Smoothness

6. Compactness

7. Concavity

8. Number of concave portions of contour

1Original dataset available at http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).
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9. Symmetry

10. Fractal dimension

Each of the 569 samples used in the dataset consists of a feature vector of length 30. The first 10 entries
in this feature vector are the mean of the characteristics listed above for each image. The second 10 are the
standard deviation and last 10 are the largest value of each of these characteristics present in each image.

Each sample is also associated with a label. A label of value 1 indicates the sample was for malignant
(cancerous) tissue. A label of value 0 indicates the sample was for benign tissue.

This dataset has already been broken up into training, validation and test sets for you and is available
in the compressed archive for this problem on the class website. The names of the files are “trainX.csv”,
“trainY.csv”, “validationX.csv”, “validationY.csv”, “testX.csv” and “testY.csv.” The file names ending in
“X.csv” contain feature vectors and those ending in “Y.csv” contain labels. Each file is in comma separated
value format where each row represents a sample.

2.2 Programming

2.2.1 Learning a Binary Decision Tree [10 Points]

As discussed in class and the reading material, to learn a binary decision tree we must determine which
feature attribute to select as well as the threshold value to use in the split criterion for each non-leaf node
in the tree. This can be done in a recursive manner, where we first find the optimal split for the root node
using all of the training data available to us. We then split the training data according to the criterion
selected for the root node, which will leave us with two subsets of the original training data. We then find
the optimal split for each of these subsets of data, which gives the criterion for splitting on the second level
children nodes. We recursively continue this process until the subsets of training data we are left with at a
set of children nodes are pure (i.e., they contain only training examples of one class) or the feature vectors
associated with a node are all identical (in which case we can not split them) but their labels are different.

In this problem, you will implement an algorithm to learn the structure of a tree. The optimal splits
at each node should be found using the information gain criterion discussed in class. While you are free
to write your algorithm in any language you choose, if you use the provided MATLAB code included in
the compressed archive for this problem on the class website, you only need to complete one function -
computeOptimalSplit.m. This function is currently empty and only contains comments describing how it
should work. Please complete this function so that given any set of training data it finds the optimal split
according to the information gain criterion.

Include a printout of your completed computeOptimalSplit.m along with any other functions
you needed to write with your homework submission. If you choose to not use the provided
MATLAB code, please include a printout of all the code you wrote to train a binary decision
tree according to the description given above.

Note: While there are multiple ways to design a decision tree, in this problem we constrain ourselves to
those which simply pick one feature attribute to split on. Further, we restrict ourselves to performing only
binary splits. In other words, each split should simply determine if the value of a particular attribute in the
feature vector of a sample is less than or equal to a threshold value or greater than the threshold value.

Note: Please note that the feature attributes in the provided dataset are continuously valued. There are
two things to keep in mind with this.

First, this is slightly different than working with feature values which are discrete because it is no longer
possible to try splitting at every possible feature value (since there are an infinite number of possible feature
values). One way of dealing with this is by recognizing that given a set of training data of N points, there
are only N − 1 places we could place splits for the data (if we constrain ourselves to binary splits). Thus,
the approach you should take in this function is to sort the training data by feature value and then test split
values that are the mean of ordered training points. For example, if the points to split between were 1, 2, 3,
you would test two split values - 1.5 and 2.5.
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Second, when working working with feature values that can only take on one of two values, once we split
using one feature attribute, there is no point in trying to split on that feature attribute later. (Can you
think of why this would be?) However, when working with continuously valued data, this is no longer the
case, so your splitting algorithm should consider splitting on all feature attributes at every split.

2.2.2 Pruning a Binary Decision Tree [10 Points]

The method of learning the structure and splitting criterion for a binary decision tree described above
terminates when the training examples associated with a node are all of the same class or there are no more
possible splits. In general, this will lead to overfitting. As discussed in class, pruning is one method of using
validation data to avoid overfitting.

In this problem, you will implement an algorithm to use validation data to greedily prune a binary
decision tree in an iterative manner. Specifically, the algorithm that we will implement will start with a
binary decision tree and perform an exhaustive search for the single node for which removing it (and its
children) produces the largest increase (or smallest decrease) in classification accuracy as measured using
validation data. Once this node is identified, it and its children are removed from the tree, producing a new
tree. This process is repeated, where we iteratively prune one node at a time until we are left with a tree
which consists only of the root node2.

In this problem, you will implement a function which starts with a tree and selects the single best node
to remove to produce the greatest increase (or smallest decrease) in classification accuracy as measured
with validation data. If you are using MATLAB, this means you only need to complete the empty function
pruneSingleGreedyNode.m. Please see the comments in that function for details on what you should im-
plement. Note, we suggest that you make use of the provided MATLAB functiona pruneAllNodes.m which
will return a listing of all possible trees that can be formed by removing a single node from a base tree and
batchClassifyWithDT.m which will classify a set of samples given a decision tree.

Please include your version of pruneSingleGreedyNode.m along with any other functions you
needed to write with your homework. If not using MATLAB, please attach the code for a
function which performs the same function described for pruneSingleGreedyNode.m.

2.3 Data Analysis

2.3.1 Training a Binary Decision Tree [5 Points]

In this section, we will make use of the code that we have written above. We will start by training a basic
decision tree. Please use the training data provided to train a decision tree. (In MATLAB, assuming you
have completed the computeOptimalSplit.m function, the function trainDT.m can do this training for you.)

Please specify the total number of nodes and the total number of leaf nodes in the tree.
(In MATLAB, the function gatherTreeStats.m will be useful). Also, please report the classification
accuracy (percent correct) of the learned decision tree on the provided training and testing
data. (In MATLAB, the function batchClassifyWithDT.m will be useful).

2.3.2 Pruning a Binary Decision Tree [8 Points]

Now we will make use of the pruning code we have written. Please start with the tree that was just trained
in the previous part of the problem and make use of the validation data to iteratively remove nodes in the
greedy manner described in the section above. Please continue iterations until a degenerate tree with only
a single root node remains. For each tree that is produced, please calculate the classification accuracy for
that tree on the training, validation and testing datasets.

After collecting this data, please plot a line graph relating classification accuracy on the test
set to the number of leaf nodes in each tree (so number of leaf nodes should be on the X-axis
and classification accuracy should be on the Y-Axis). Please add to this same figure, similar

2In practice, you can often simply continue the pruning process until the validation error fails to increase by a predefined
amount. However, for illustration purposes, we will continue until there is only one node left in the tree.
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plots for percent accuracy on training and validation data. The number of leaf nodes should
range from 1 (for the degenerate tree) to the the number present in the unpruned tree. The
Y-axis should be scaled between 0 and 1. [5 Points]

Please comment on what you notice and how this illustrates over fitting. Include the pro-
duced figure and any code you needed to write to produce the figure and calculate intermediate
results with your homework submission. [3 Points]

2.3.3 Drawing a Binary Decision Tree [2 Points]

One of the benefits of decision trees is the classification scheme they encode is easily understood by humans.
Please select the binary decision tree from the pruning analysis above that produced the
highest accuracy on the validation dataset and diagram it. (In the even that two trees have
the same accuracy on validation data, select the tree with the smaller number of leaf nodes).
When stating the feature attributes that are used in splits, please use the attribute names
(instead of index) listed in the dataset section of this problem. (If using the provided MATLAB
code, the function trainDT has a section of comments which describes how you can interpret the structure
used to represent a decision tree in the code.)

Hint: The best decision tree as measured on validation data for this problem should not be too compli-
cated, so if drawing this tree seems like a lot of work, then something may be wrong.

2.4 An Alternative Splitting Method [5 Points]

While information gain is one criterion to use when estimating the optimal split, it is by no means the only
one. Consider instead using a criterion where we try to minimize the weighted misclassification rate.

Formally, assume a set of D data samples {< ~x(i), y(i) >}Di=1, where y(i) is the label of sample i and ~x(i)

is the feature vector for sample i. Let x(j)(i) refer to the value of the jth attribute of the feature vector for
data point i.

Now, to pick a split criterion, we pick a feature attribute, a, and a threshold value, t,to use in the split.
Let:

pbelow(a, t) =
1

D

D∑
i=1

I
(
x(a)(i) ≤ t

)
pabove(a, t) =

1

D

D∑
i=1

I
(
x(a)(i) > t

)

and let:

lbelow(a, t) = Mode
(
{yi}i:x(a)(i)≤t

)
labove(a, t) = Mode

(
{yi}i:x(a)(i)>t

)
The split that minimizes the weighted misclassification rate is then the one which minimizes:

O(a, t) = pbelow(a, t)
∑

i:x(a)(i)≤t

I
(
y(i) 6= lbelow(a, t)

)
+ pabove(a, t)

∑
i:x(a)(i)>t

I
(
y(i) 6= labove(a, t)

)
Please modify the code for your computeOptimalSplit.m (or equivalent function if not using

MATLAB) to perform splits according to this criterion. Attach the code of your modified
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function when submitting your homework.

After modifying computeOptimalSplit.m, please retrain a decision tree (without doing any pruning).
In your homework submission, please indicate the total number of nodes and total number
of leaf nodes in this tree. How does this compare with the tree that was trained using the
information gain criterion?
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