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Introduction
• Deep neural networks require 

large amounts of annotated 
data

• However, large amounts of 
labeled data do not always 
exist

• It is essential to develop ways 
to tackle the scarcity of fully-
annotated data
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Meta-learning for NLU

• Meta-learning, or learning to learn, tries to tackle the 
problem of fast adaptation on new training data

• In this paper, we adapt several optimization-based meta-
learning algorithms to NLU tasks

• We first adopt language model pre-training techniques to 
learn dense representations of texts, then continue to 
meta-learn robust representations
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Inner loop

MetaUpdate

The meta-learning algorithms used in this paper just differ in the 
MetaUpdate step. !7



MAML
• Model-agnostic Meta Learning (MAML; Finn et al., 

2017)


• Objective function


• The MetaUpdate Step

!8



MAML
• Model-agnostic Meta Learning (MAML; Finn et al., 

2017)


• Objective function


• The MetaUpdate Step

!8

θi
(k)θ inner 

update



MAML
• Model-agnostic Meta Learning (MAML; Finn et al., 

2017)


• Objective function


• The MetaUpdate Step

!8

θi
(k)θ inner 

update
x

Li(fθi
(k)(x) )



MAML
• Model-agnostic Meta Learning (MAML; Finn et al., 

2017)


• Objective function


• The MetaUpdate Step

!8

θi
(k)θ inner 

update
x

Li(fθi
(k)(x) )



MAML
• Model-agnostic Meta Learning (MAML; Finn et al., 

2017)


• Objective function


• The MetaUpdate Step

!8

θi
(k)θ inner 

update
x

Li(fθi
(k)(x) )



MAML
• Model-agnostic Meta Learning (MAML; Finn et al., 

2017)


• Objective function


• The MetaUpdate Step

Involve computing second-order derivatives
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Experiment
• Datasets


• GLUE benchmark (Wang et al., 2019)


• Auxiliary tasks: SST-2, QQP, MNLI, QNLI


• Target Tasks: CoLA, MRPC, STS-B, RTE


• SciTail dataset (Khot et al., 2018)


• Baselines


• BERT (Devlin et al., 2019)


• MT-DNN (Liu et al., 2019)
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Results

• Generally, the meta-learning algorithms achieve better 
performance than the baselines


• Reptile performs better than MAML and FOMAML
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Conclusion
• In this paper, we adapt three optimization-based meta 

learning algorithms to natural language understanding 
tasks

• We show the meta-learned representations can be 
adapted to new tasks more efficiently than other 
baselines

• In the future, we want to take the performance of the 
adapted parameters into consideration during the meta-
learning stage
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