Investigating Meta-Learning Algorithms for Low-Resource Natural Language Understanding Tasks

Zi-Yi Dou, Keyi Yu, Antonios Anastasopoulos Language Technologies Institute, Carnegie Mellon University

 Deep neural networks require large amounts of annotated data

 Deep neural networks require large amounts of annotated data

BLEU Scores with Varying Amounts of Training Data

(Koehn and Knowles, 2017)

- Deep neural networks require large amounts of annotated data
- However, large amounts of labeled data do not always exist

BLEU Scores with Varying Amounts of Training Data

(Koehn and Knowles, 2017)

- Deep neural networks require large amounts of annotated data
- However, large amounts of labeled data do not always exist
- It is essential to develop ways to tackle the scarcity of fullyannotated data

BLEU Scores with Varying Amounts of Training Data

(Koehn and Knowles, 2017)

- Transfer learning
 - Transfer knowledge from a related task
 - McCann et al. (2017), Peters et al. (2018), ...

- Transfer learning
 - Transfer knowledge from a related task
 - McCann et al. (2017), Peters et al. (2018), ...
- Active learning
 - Actively query for labels of representative/informative examples
 - Zhang et al. (2017), Shen et al. (2018), ...

- Transfer learning
 - Transfer knowledge from a related task
 - McCann et al. (2017), Peters et al. (2018), ...
- Active learning
 - Actively query for labels of representative/informative examples
 - Zhang et al. (2017), Shen et al. (2018), ...
- Distant supervision
 - Utilize weakly labeled training data (labeled based on heuristics or rules)
 - Mintz et al. (2009), Luo et al. (2017), ...

- Transfer learning
 - Transfer knowledge from a related task
 - McCann et al. (2017), Peters et al. (2018), ...
- Active learning
 - Actively query for labels of representative/informative examples
 - Zhang et al. (2017), Shen et al. (2018), ...
- Distant supervision
 - Utilize weakly labeled training data (labeled based on heuristics or rules)
 - Mintz et al. (2009), Luo et al. (2017), ...

• ...

 Our goal is to do fast adaptation by learning robust and general text representations

- Our goal is to do fast adaptation by learning robust and general text representations
- Previous work on text representation learning:

- Our goal is to do fast adaptation by learning robust and general text representations
- Previous work on text representation learning:
 - Language model pre-training

- Our goal is to do fast adaptation by learning robust and general text representations
- Previous work on text representation learning:
 - Language model pre-training
 - BERT (Devlin et al., 2019), ...

- Our goal is to do fast adaptation by learning robust and general text representations
- Previous work on text representation learning:
 - Language model pre-training
 - BERT (Devlin et al., 2019), ...
 - Multi-task learning

- Our goal is to do fast adaptation by learning robust and general text representations
- Previous work on text representation learning:
 - Language model pre-training
 - BERT (Devlin et al., 2019), ...
 - Multi-task learning
 - MT-DNN (Liu et al., 2019), ...

 Meta-learning, or learning to learn, tries to tackle the problem of fast adaptation on new training data

- Meta-learning, or learning to learn, tries to tackle the problem of fast adaptation on new training data
- In this paper, we adapt several optimization-based metalearning algorithms to NLU tasks

- Meta-learning, or learning to learn, tries to tackle the problem of fast adaptation on new training data
- In this paper, we adapt several optimization-based metalearning algorithms to NLU tasks
- We first adopt language model pre-training techniques to learn dense representations of texts, then continue to meta-learn robust representations

Our methods can be divided into three stages:

- Our methods can be divided into three stages:
 - 1. Pre-train the model parameters with unlabeled datasets

- Our methods can be divided into three stages:
 - 1. Pre-train the model parameters with unlabeled datasets

- Our methods can be divided into three stages:
 - 1. Pre-train the model parameters with unlabeled datasets

 2. Meta-learn the parameters using MAML (Model-Agnostic Meta Learning) and its variants

- Our methods can be divided into three stages:
 - 1. Pre-train the model parameters with unlabeled datasets

- 2. Meta-learn the parameters using MAML (Model-Agnostic Meta Learning) and its variants
- 3. Finetune the parameters on the target task

- Our methods can be divided into three stages:
 - 1. Pre-train the model parameters with unlabeled datasets

- 2. Meta-learn the parameters using MAML (Model-Agnostic Meta Learning) and its variants
- 3. Finetune the parameters on the target task

```
Sample batch of tasks \{T_i\} \sim p(T) for all T_i do Compute adapted parameters \theta_i^{(k)} with gradient descent. end for
```

Sample batch of tasks $\{T_i\} \sim p(T)$

for all T_i do

Compute adapted parameters $\theta_i^{(k)}$ with gradient descent.

end for

Inner loop

Sample batch of tasks $\{T_i\} \sim p(T)$

for all T_i do

Compute adapted parameters $\theta_i^{(k)}$ with gradient descent.

end for

Update θ with $\theta = \text{MetaUpdate}(\theta; \{\theta_i^{(k)}\}).$

Inner loop

Sample batch of tasks $\{T_i\} \sim p(T)$

for all T_i do

Compute adapted parameters $\theta_i^{(k)}$ with gradient descent.

end for

Update θ with $\theta = \text{MetaUpdate}(\theta; \{\theta_i^{(k)}\})$.

Inner loop

MetaUpdate

for all T_i do

Compute adapted p

Compute adapted parameters $\theta_i^{(k)}$ with gradient descent.

end for

Update θ with $\theta = \text{MetaUpdate}(\theta; \{\theta_i^{(k)}\})$.

Inner loop

MetaUpdate

The meta-learning algorithms used in this paper just differ in the MetaUpdate step.

MAML

- Model-agnostic Meta Learning (MAML; Finn et al., 2017)
 - Objective function

$$\min_{\theta} \sum_{T_i \sim p(T)} L_i(f_{\theta_i^{(k)}})$$

The MetaUpdate Step

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta} L_i(f_{\theta_i^{(k)}})$$

- Model-agnostic Meta Learning (MAML; Finn et al., 2017)
 - Objective function

$$\min_{\theta} \sum_{T_i \sim p(T)} L_i(f_{\theta_i^{(k)}})$$

$$heta = heta - eta \sum_{T_i}
abla_{ heta} L_i(f_{ heta_i^{(k)}})$$

$$\theta \xrightarrow{\text{inner}} \theta_i^{(k)}$$

- Model-agnostic Meta Learning (MAML; Finn et al., 2017)
 - Objective function

$$\min_{\theta} \sum_{T_i \sim p(T)} L_i(f_{\theta_i^{(k)}})$$

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta} L_i(f_{\theta_i^{(k)}})$$

- Model-agnostic Meta Learning (MAML; Finn et al., 2017)
 - Objective function

$$\min_{\theta} \sum_{T_i \sim p(T)} L_i(f_{\theta_i^{(k)}})$$

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta} L_i(f_{\theta_i^{(k)}})$$

- Model-agnostic Meta Learning (MAML; Finn et al., 2017)
 - Objective function

$$\min_{\theta} \sum_{T_i \sim p(T)} L_i(f_{\theta_i^{(k)}})$$

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta} L_i(f_{\theta_i^{(k)}})$$

- Model-agnostic Meta Learning (MAML; Finn et al., 2017)
 - Objective function

$$\min_{\theta} \sum_{T_i \sim p(T)} L_i(f_{\theta_i^{(k)}})$$

The MetaUpdate Step

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta} L_i(f_{\theta_i^{(k)}})$$

Involve computing second-order derivatives

- Computing second-order derivatives can be computationally and memory intensive
- First-order MAML
 - The MetaUpdate Step

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta_i^{(k)}} L_i(f_{\theta_i^{(k)}})$$

Reminder: MAML

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta} i(f_{\theta_i^{(k)}})$$

- Computing second-order derivatives can be computationally and memory intensive
- First-order MAML
 - The MetaUpdate Step

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta_i^{(k)}} L_i(f_{\theta_i^{(k)}})$$

$$\theta = \theta - \beta \sum_{T_i} \nabla \theta_i(f_{\theta_i^{(k)}})$$

- Computing second-order derivatives can be computationally and memory intensive
- First-order MAML
 - The MetaUpdate Step

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta_i^{(k)}} L_i(f_{\theta_i^{(k)}})$$

Reminder: MAML

$$\theta = \theta - \beta \sum_{T_i} \nabla \theta_i(f_{\theta_i^{(k)}})$$

- Computing second-order derivatives can be computationally and memory intensive
- First-order MAML
 - The MetaUpdate Step

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta_i^{(k)}} L_i(f_{\theta_i^{(k)}})$$

$$\theta = \theta - \beta \sum_{T_i} \nabla \theta_i(f_{\theta_i^{(k)}})$$

- Computing second-order derivatives can be computationally and memory intensive
- First-order MAML
 - The MetaUpdate Step

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta_i^{(k)}} L_i(f_{\theta_i^{(k)}})$$

e MetaUpdate Step
$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta_i^{(k)}} L_i(f_{\theta_i^{(k)}}) \qquad \theta \xrightarrow{\text{inner}} \theta_i^{\text{(k)}} \mathbf{X}$$

$$\theta = \theta - \beta \sum_{T_i} \nabla \theta_i(f_{\theta_i^{(k)}})$$

- Computing second-order derivatives can be computationally and memory intensive
- First-order MAML
 - The MetaUpdate Step

$$heta = heta - eta \sum_{T_i}
abla_{ heta_i^{(k)}} L_i(f_{ heta_i^{(k)}})$$

Reminder: MAML

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta} i(f_{\theta_i^{(k)}})$$

- Computing second-order derivatives can be computationally and memory intensive
- First-order MAML
 - The MetaUpdate Step

$$\theta = \theta - \beta \sum_{T_i} \nabla_{\theta_i^{(k)}} L_i(f_{\theta_i^{(k)}})$$

Five aupdate Step $\theta = \theta - \beta \sum_{T_i} \nabla_{\theta_i^{(k)}} L_i(f_{\theta_i^{(k)}}) \qquad \theta \xrightarrow{\text{inner}} \theta_i^{(k)} \chi$

Reminder: MAML

$$heta = heta - eta \sum_{T_i} \nabla_{\theta} I_i(f_{\theta_i^{(k)}})$$

Reptile

- Reptile (Nichol et al., 2018)
 - Another first-order algorithm
 - The MetaUpdate Step

$$\theta = \theta + \beta \frac{1}{|\{T_i\}|} \sum_{T_i} (\theta_i^{(k)} - \theta)$$

Similar to joint training

Reptile

- Reptile (Nichol et al., 2018)
 - Another first-order algorithm
 - The MetaUpdate Step

Similar to joint training

Reptile

- Reptile (Nichol et al., 2018)
 - Another first-order algorithm
 - The MetaUpdate Step

$$\theta = \theta + \beta \frac{1}{|\{T_i\}|} \sum_{T_i} (\theta_i^{(k)} - \theta)$$

Similar to joint training

A review of our training procedure:

- A review of our training procedure:
 - 1. Pre-train the model parameters with unlabeled datasets

- A review of our training procedure:
 - 1. Pre-train the model parameters with unlabeled datasets

 2. Meta-learn the parameters using MAML, First-order MAML or Reptile

- A review of our training procedure:
 - 1. Pre-train the model parameters with unlabeled datasets

- 2. Meta-learn the parameters using MAML, First-order MAML or Reptile
- 3. Finetune the parameters on the target task

Experiment

- Datasets
 - GLUE benchmark (Wang et al., 2019)
 - Auxiliary tasks: SST-2, QQP, MNLI, QNLI
 - Target Tasks: CoLA, MRPC, STS-B, RTE
 - SciTail dataset (Khot et al., 2018)
- Baselines
 - BERT (Devlin et al., 2019)
 - MT-DNN (Liu et al., 2019)

Results

- Generally, the meta-learning algorithms achieve better performance than the baselines
- Reptile performs better than MAML and FOMAML

Fast Adaptation

Fast Adaptation

 When adapted to a completely new task (SciTail), metalearning algorithm (Reptile) outperforms MT-DNN and BERT with same amounts of training data

Fast Adaptation

- When adapted to a completely new task (SciTail), metalearning algorithm (Reptile) outperforms MT-DNN and BERT with same amounts of training data
- The meta-learned representations can be adapted to new tasks more efficiently compared with other baselines

 In this paper, we adapt three optimization-based meta learning algorithms to natural language understanding tasks

- In this paper, we adapt three optimization-based meta learning algorithms to natural language understanding tasks
- We show the meta-learned representations can be adapted to new tasks more efficiently than other baselines

- In this paper, we adapt three optimization-based meta learning algorithms to natural language understanding tasks
- We show the meta-learned representations can be adapted to new tasks more efficiently than other baselines
- In the future, we want to take the performance of the adapted parameters into consideration during the metalearning stage

Thank you!