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Meta-learning for NLU

e Meta-learning, or learning to learn, tries to tackle the
problem of fast adaptation on new training data

* |n this paper, we adapt several optimization-based meta-
learning algorithms to NLU tasks

e We first adopt language model pre-training techniques to
learn dense representations of texts, then continue to
meta-learn robust representations
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The meta-learning algorithms used in this paper just differ in the
MetaUpdate step.
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Experiment

e Datasets
e GLUE benchmark (Wang et al., 2019)
e Auxiliary tasks: SST-2, QQP, MNLI, QNLI
e Target Tasks: CoLA, MRPC, STS-B, RTE
e SciTail dataset (Khot et al., 2018)
* Baselines
e BERT (Devlin et al., 2019)

e MT-DNN (Liu et al., 2019)
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e Generally, the meta-learning algorithms achieve better
performance than the baselines

e Reptile performs better than MAML and FOMAML 13



Fast Adaptation

100-
. 90-
< .8
>, 80-
O
@©
S
S 4
3 70
O
< e=» BERT
60 - MT-DNN
Reptile
50- ' a9 'A) [ ! 9 ! [ ! ! " ! .
103 10°%7° 102 10°L° 10! 10705 1070

Percentage of Training Data

14



Fast Adaptation

Accuracy (%)

e=» BERT
MT-DNN -~
Reptile

50- ' 9 '-) [ ! 9 ' [ ! ' " ! .
103 1025 102 1015 101 10799 1079

Percentage of Training Data

* When adapted to a completely new task (SciTail), meta-
learning algorithm (Reptile) outperforms MT-DNN and
BERT with same amounts of training data

14



Fast Adaptation

100-

O
o
{ @

S
C
IO o

Accuracy (%)

» BERT
MT-DNN -~
Reptile

(@)
o

50— Q‘) '-) " ! 9 ' < ! ' " ! .
103 10727 102 10°L° 101 10799 107"

Percentage of Training Data

* When adapted to a completely new task (SciTail), meta-
learning algorithm (Reptile) outperforms MT-DNN and
BERT with same amounts of training data

* The meta-learned representations can be adapted to
new tasks more efficiently compared with other baselines ”
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Conclusion

e |n this paper, we adapt three optimization-based meta
learning algorithms to natural language understanding
tasks

e \We show the meta-learned representations can be
adapted to new tasks more efficiently than other
baselines

e |n the future, we want to take the performance of the
adapted parameters into consideration during the meta-
learning stage
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