

Adaptive Quality Estimation for Machine Translation

Marco Turchi¹, Antonios Anastasopoulos³, José G.C. de Souza^{1,2}, Matteo Negri¹

(1) FBK – Fondazione Bruno Kessler, Trento, Italy, (2) University of Trento, Italy, (3) National Technical University of Athens, Greece {turchi, desouza,negri}@fbk.eu, anastasopoulos.ant@gmail.com

Task: Machine Translation Quality Estimation (QE)

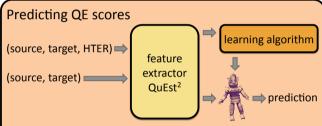
Given a (source, target) pair, predict the quality of the target without reference translations.

(One) application scenario: assess at run time the quality of MT suggestions in a Computer-assisted translation (CAT) environment.

Problem: adaptability

Since:

- o The notion of MT output quality is highly subjective o Each translation job has its own specificities
- ...QE components should be capable to self-adapt to:
- o the behavior of specific users
- o differences between training and test data


Solution: online learning

Idea:

Learn stepwise (either from scratch or by refining an existing model) from user feedback

User = human translator

Feedback = distance between predicted labels and "true labels" ...calculated from MT post editions.

Features: 17 "baseline" QuEst features

Algorithms: SVR³, OnlineSVR⁴, Passive Aggressive Perceptron⁵

² QuEst - http://www.quest.dcs.shef.ac.uk

³ Scikit - http://scikit-learn.org

⁴ OnlineSVR - http://www2.imperial.ac.uk/~gmontana/onlinesvr.htm

⁴ sofia-ml - https://code.google.com/p/sofia-ml

Source, target, QE **prediction** Target, post edition, QE **true label**

Experimental setup

Training/test data with different label distributions

- WMT12 QE shared task EN/ES (artificial data partitions)
- 1,832 training, 422 test sentences
- MateCat data EN/IT (user and user+domain changes)
 - Legal (164 sentences) & Information Technology (280 sentences)
 - · 8 professional translators

Comparison (Mean Absolute Error) between:

- o Adaptive: built on top of an existing model
- o **Empty**: only learns from the test set
- o Batch: only learns from the training set
- O Baseline (μ): label with the mean HTER calculated on training

Results on MateCat data (IT Vs Legal, Rad Vs Cons)

- 1	·								
	Train	Test	Δ	μ	Batch	Adaptive		Empty	
			HTER	MAE	MAE	MAE	Alg	MAE	Alg
	L cons	IT rad	24.5	26.4	27	18.2	OSVR	16.6	OSVR
	IT rad	L cons	24.0	24.9	25.4	19.7	OSVR	12.5	OSVR
	L rad	L cons	20.5	21.4	20.6	14.5	PA	12.5	OSVR
	L cons	L rad	19.4	21.2	21.3	16.1	PA	11.3	OSVR
	IT cons	L cons	13.5	17.3	17.5	15.7	OSVR	12.5	OSVR
	IT cons	IT rad	12.8	19.2	19.8	17.5	OSVR	16.6	OSVR
	L cons	IT cons	12.7	17.6	17.6	15.1	OSVR	15.5	OSVR
	IT rad	IT cons	9.6	16.8	16.6	15.6	PA	15.5	OSVR
	IT cons	L rad	8.3	12.3	13	10.7	OSVR	11.3	OSVR
	L rad	IT rad	6.8	17	16.9	16.2	OSVR	16.6	OSVR
	L rad	IT cons	5.0	15.4	16.2	14.7	OSVR	15.5	OSVR
	IT rad	L rad	2.2	10.6	10.8	10.5	OSVR	11.3	OSVR

Collecting and exploiting user feedback

¹ TERCpp - http://sourceforge.net/projects/tercpp/

Take home messages

- $\circ\,$ Real-world scenarios raise new, interesting challenges for QE
- Training/test data homogeneity, users' individual preferences, etc.
- Adaptability as a crucial capability (not only for CAT!)
- Even in the same domain different user may show high ΔHTER
- Online learning from user corrections as a way to overcome the limitations of batch strategies
- Use "empty" models (with OSVR) with highly heterogeneous data
- Our open source tool!

http://hlt.fbk.eu/technologies/aget

