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STATISTICAL MT

Given a foreign language F and a sentence f, find the most
probable sentence § in the translation target language S, out of all
possible translations s.

S = arg maxs p(s|f)
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STATISTICAL MT

Given a foreign language F and a sentence f, find the most
probable sentence § in the translation target language S, out of all
possible translations s.

$ = arg maxs p(s|f)

From the Bayes rule:

0>

= arg maxs p(s)p(f]s)

©a Pnopolgeg vu} [ pou ] [ PEPEIG ] { £V TIOTNPL VE PG } [ o napakahd; ]

{ Could you } [ please ] [ bring ] { me } [ a glass of water? ]
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@ Reference-based: BLEU, NIST, Meteor
(Modifications of ML precision or recall)
@ Metrics of Post-Editing Effort:
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@ Reference-based: BLEU, NIST, Meteor
(Modifications of ML precision or recall)
o Metrics of Post-Editing Effort:

e Human Annotations
e Post-Editing time

o Human Translation Edit Rate (HTER)

HTER — #edits

~ #postedited words
edits = insertions, deletions, substitutions, shifts
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MT EVALUATION

@ Reference-based: BLEU, NIST, Meteor
(Modifications of ML precision or recall)
@ Metrics of Post-Editing Effort:

o Human Annotations
o Post-Editing time
o Human Translation Edit Rate (HTER)

#edits

HTER =
##postedited words

edits = insertions, deletions, substitutions, shifts
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HTER EXAMPLE

source:

Because I also have a penchant for traditiomn ,
manners and customs

produced translation:

Porque tambien tengo una inclinacion por tradiciom ,
modales y costumbres

post-edited:

Porque tambien tengo una inclinacion por la tradicion
, los modales y las costumbres

3
HTER = — =0.2
15 0-20
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THE QE TASK

DEFINITION

The task of estimating the quality of a system's output for a given
input, without information about the expected output.

@ Initially a classification task: ‘good” and “bad” translations
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The task of estimating the quality of a system's output for a given
input, without information about the expected output.

@ Initially a classification task: ‘good” and “bad” translations
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THE QE TASK

DEFINITION

The task of estimating the quality of a system's output for a given
input, without information about the expected output.

@ Initially a classification task: ‘good” and “bad” translations
@ Now a regression task: Quality score (eg. HTER)
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Machine Translation
The Quality Estimation Task
Motivation

THE QE TASK

DEFINITION

The task of estimating the quality of a system's output for a given
input, without information about the expected output.

@ Initially a classification task: ‘good” and “bad” translations
@ Now a regression task: Quality score (eg. HTER)
e Evaluation campaigns OWMT

@ Current focus on feature engineering
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CONNECTION WITH INDUSTRY

Vanilla CAT Tool

[[File Edir  view Help ]
BZUsehieb]i=ic|e 28O ] [TM Matches 7 MT Suggestion
Editor
== ]
But T must explain to you how all this mistaken idea of | .
denouncing pleasure and praising pain was bern and T will give | | partial MT fragments ;

you a complete account of the system, and expound the actual | (informative MT).
teachings of the great explorer of the fruth, the master-
builder of human happiness.

Nemo enim ipsam P quia veluptas sit asp: aut
odit aut fugit, sed quia consequuntur magni dolores eos qui
ratione voluptatem sequi nesciunt.

Concordance / Terminology

| inology is artomatically

Na ane rejects, dislikes, or avoids pleasure itself, because I extracted from the MT phrase-
it is pleasure. .. | B =t
informative MT).

Suggestion by MT of TM, el
Neque porro quisquam est, q "anked by a dynamic sit ‘ T
amet, consectetur, adipisci v S199¢stion manager. | eius
modi Tempora incidunt ut lab¢ m
quaerat voluptatem, Ut enim ad minima veniam, quis nostrum
exercitationem ullam corporis suscipit labriosam, nisi ut Collaboration between I

customers, translators
and MT provider,

aliquid ex ea commadi consequatur?

Project Analytics: % completion; % repetitians; % fuzzy matches; % new words _]
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Machine Translation
The Quality Estimation Task
Motivation

MOTIVATION AND OPEN QQUESTIONS

GOAL: Increase the productivity of the translator

This can be done by:
@ Increasing the quality of the translations provided by the SMT
systems
@ Providing the translator with information about the quality of
the suggested translations
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Machine Translation
The Quality Estimation Task
Motivation

MOTIVATION AND OPEN QQUESTIONS

GOAL: Increase the productivity of the translator

This can be done by:
@ Providing the translator with information about the quality of
the suggested translations

In this direction...

@ Small amount of data

e How much data do we need for good quality predictions?
@ Notion of quality is subjective

o Can we adapt to an individual user?
o Different translation jobs

e Can we adapt to domain changes?
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@ Online SVR

o Passive-Aggressive Alg.

@ Sparse Online Gaussian Processes
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SUPPORT VECTOR REGRESSION

DEFINITION

Given a training set {(x1, y1), (x2,¥2), .., (Xn, ¥n)} C X x R of n
training points, were x; is a vector of dimensionality d (so

X =R9), and y; € N is the target, find a hyperplane (function)
f(x) that has at most e deviation from the target y;, and at the
same time it is as flat as possible.

f(x)+e
f(x)

f(x)-&
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SUPPORT VECTOR REGRESSION

Linear regression function:
f(x) =WTd(x)+ b
Convex optimization problem by requiring:
.1 >
minimize EHWH

y;—WTCD(x)— b <e

subject to{ WTO(x)+b—y <e

Solution found through the dual optimization problem, using a
kernel function, as long as the KKT conditions hold.
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ONLINE SUPPORT VECTOR REGRESSION

@ Introduced by Ma et al (2003).

o ldea: update the coefficient of the margin of the new sample
Xc in a finite number of steps until it meets the KKT
conditions.

@ In the same time it must be ensured that also the rest of the
existing samples continue to satisfy the KKT conditions.
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@ Same idea as SVR: e-insensitive loss function that creates a
hyper-slab of width 2¢
e Update:

. [0, if [W-x—y|<e
W (%, y) = { |W-x—y| —¢, otherwise
@ Passive: if I is 0, W1 = Wq.

o Aggressive: if I is not 0, W1 = Wy + sign(ye — V) Texe,
where T; = min(C, -k

th\2)'
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PASSIVE-AGGRESSIVE ALGORITHMS

@ Same idea as SVR: e-insensitive loss function that creates a
hyper-slab of width 2¢

e Update:

0, if [W-x—y|<e
|W.-x—y| —¢€ otherwise

IW; (x,y) = {
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PASSIVE-AGGRESSIVE ALGORITHMS

@ Same idea as SVR: e-insensitive loss function that creates a
hyper-slab of width 2¢

e Update:

0, if W-x—y|<e
|W.-x—y| —¢€ otherwise

leW; (x,y) = {

@ Passive: if I is 0, W11 = We.
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PASSIVE-AGGRESSIVE ALGORITHMS

@ Same idea as SVR: e-insensitive loss function that creates a
hyper-slab of width 2¢

e Update:
_ |0, if [W-x—y|<e
W (x,y) = { IW-x —y|—e€, otherwise
@ Passive: if I is 0, W11 = We.

Aggressive: if . is not 0, W11 = Wy + sign(y: — 9+) Text,
where T; = min(C, W)
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(G AUSSIAN PROCESSES

DEFINITION
...a collection of random variables, any finite number of which have
a joint Gaussian distribution (Rasmussen 2006)

Any Gaussian Process can be completely defined by its mean
function m(x) and the covariance function k(x,x’):

GP(m(x), k(x,x)).
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(G AUSSIAN PROCESSES

Any Gaussian Process can be completely defined by its mean
function m(x) and the covariance function k(x, x'):

GP(m(x), k(x,x")).

The Gaussian Process assumes that every target y; is generated
from the corresponding data x; and an added white noise 7 as:

yi=f(x;)+n, where 1~ N(0,02)
This function f(x) is drawn from a GP prior:
f(x) ~ GP(m(x), k(x,x")).
where the covariance is encoded using the kernel function k(x,x’).

Anastasopoulos Online QE



Introduction
Implementation System Overview
Experiments Machine Learning Component
Conclusion

ONLINE GAUSSIAN PROCESSES

Using RBF kernel and automatic relevance determination kernel,
smoothness of the functions can be encoded.
Current state-of-the-art for regression and QE.
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ONLINE GAUSSIAN PROCESSES

Using RBF kernel and automatic relevance determination kernel,
smoothness of the functions can be encoded.
Current state-of-the-art for regression and QE.
Online GPs (Csato and Opper, 2002):
@ Basis Vector set BY with pre-defined capacity.
@ Online update based on properties of Gaussian distribution.
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BAsiCc FEATURES

We use 17 features. Indicatively:

@ source and target sentence length (in tokens)

@ source and target sentence 3-gram language model
probabilities and perplexities

@ average source word length

@ percentage of 1 to 3-grams in the source sentence belonging
to each frequency quartile of a monolingual corpus

@ number of mismatching opening/closing brackets and
quotation marks in the target sentence

@ number of punctuation marks in the source and target
sentences

@ average number of translations per source word in the
sentence (as given by IBM 1 table thresholded so that
prob(t|s) > 0.2)
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General Framework
English-Spanish
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EXPERIMENT FRAMEWORK

We compare:

@ the adaptive approach (for all online algorithms)

Performance measured with Mean Absolute Error (MAE)

MAE = Z?:l’yf _YI"
n
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EXPERIMENT FRAMEWORK

General Framework
English-Spanish
English-Italian

We compare:
@ the adaptive approach (for all online algorithms)

@ the batch approach, implemented with simple SVR

Performance measured with Mean Absolute Error (MAE)

MAE = Z?:l’yi _YI"
n
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EXPERIMENT FRAMEWORK

General Framework
English-Spanish
English-Italian

We compare:
@ the adaptive approach (for all online algorithms)
@ the batch approach, implemented with simple SVR

@ the empty adaptive approach, starting with an empty model
without training.

Performance measured with Mean Absolute Error (MAE)

MAE = Z?:l’yi —Yi‘
n
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@ Shuffled and split into:

e Data from WMT-2012 (2254 instances)

o TRAIN (first 1500 instances)

o TEST (last 754 instances)

@ 3 sub-experiments:

e Train on 200 instances
e Train on 600 instances

e Train on 1500 instances

Training Labels Test Labels
Training | Avg. HTER | St. Dev. | Avg. HTER | St. Dev.
200 32.71 14.99

600 33.64 16.72
1500 33.54 18.56

32.32 17.32
«O0>» «Fr «=)» « =) A
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EN-Es DATA (EXPERIMENT 1)

General Framework
English-Spanish
English-Italian

e Data from WMT-2012 (2254 instances)
@ Shuffled and split into:

o TRAIN (first 1500 instances)

o TEST (last 754 instances)

@ GridSearch with 10-fold Cross Validation for optimization of
the initial parameters
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General Framework
English-Spanish
English-Italian

e Data from WMT-2012 (2254 instances)
@ Shuffled and split into:

o TRAIN (first 1500 instances)
o TEST (last 754 instances)

@ 3 sub-experiments:

e Train on 200 instances
e Train on 600 instances
e Train on 1500 instances
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General Framework

English-Spanish
English-Italian

e Data from WMT-2012 (2254 instances)

@ Shuffled and split into:
o TRAIN (first 1500 instances)
o TEST (last 754 instances)

@ 3 sub-experiments:

e Train on 200 instances
e Train on 600 instances
e Train on 1500 instances

Training Labels Test Labels
Training | Avg. HTER | St. Dev. | Avg. HTER | St. Dev.
200 32.71 14.99
600 33.64 16.72 32.32 17.32
1500 33.54 18.56
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RESULTS FOR EXPERIMENT 1

General Framework
English-Spanish
English-Italian

Algorithm | Kernel MAE MAE MAE

& (i =200) | (i = 600) | (i = 1500)
Batch
Linear 13.5 13.0 12.8
SVR; RBF 13.2% 12.7* 12.7*
Adaptive

Linear 13.2% 12.9 12.8

OSVRi | rpr 13.6 13.7 13.5

PA; - 14.0 13.4 13.3

OGP; RBF | 13.2% 12.9 12.8
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RESULTS FOR EXPERIMENT 1

Implementation

Introduction

General Framework

Experiments
Conclusion

English-Spanish
English-Italian

Algorithm | Kernel MAE MAE MAE
& (i =200) | (i = 600) | (i = 1500)
Empty
Linear 135
OSVRo | rgr 13.7
PAg 14.4
OGP, RBF 13.3
Anastasopoulos Online QE
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General Framework
English-Spanish
English-Italian

TIME PERFORMANCE AND COMPLEXITY

Given a number of seen samples n and a number of features f for
each sample, the computational complexity of updating a trained
model with a new instance is:
o O(n?f) for training standard (not online) Support Vector
Machines.
o O(n3f) (average case: O(n?f)) for updating a trained model
with OSVR.
e (O(f) for the Passive-Aggressive algorithm.
o O(nd?f) (on run-time: ©(nd?f)) for an Online GP method
with bounded BV vector with maximum capacity d, where d
is the actual number of vectors in the BV vector.
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EN-Es DATA (EXPERIMENT 2)

General Framework
English-Spanish
English-Italian

e Data from WMT-2012 (2254 instances)
@ Sorted according to the label and split into:

o Bottom (first 600 instances)
o Top (last 600 instances)
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General Framework
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EN-Es DATA (EXPERIMENT 2)

e Data from WMT-2012 (2254 instances)
@ Sorted according to the label and split into:

o Bottom (first 600 instances)
o Top (last 600 instances)

@ 2 sub-experiments:

e Train on Bottom, test on Top
e Train on Top, test on Bottom.

Anastasopoulos Online QE



Introduction
Implementation
Experiments
Conclusion

EN-Es DATA (EXPERIMENT 2)

General Framework
English-Spanish
English-Italian

e Data from WMT-2012 (2254 instances)
@ Sorted according to the label and split into:

o Bottom (first 600 instances)
o Top (last 600 instances)

@ 2 sub-experiments:

e Train on Bottom, test on Top
e Train on Top, test on Bottom.

’ Set \ Average HTER ‘ HTER St. Deviation

Top 56.27 12.59
Bottom 12.35 6.43
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General Framework
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English-Italian

RESULTS FOR EXPERIMENT 2

Test on Top Test on Bottom
Algorithm \ Kernel \ MAE Algorithm \ Kernel \ MAE
Batch Batch

Linear | 43.7 Linear | 39.3

Top Bottom
SVRgottom | RBF | 43.2 SVR7op RBF | 40.7

Adaptive Adaptive

Linear | 28.7 Linear | 27.0

Top Bottom
O5VRpottom | RBF | 31.1 OSVRTop RBF | 295

To, Bottom
PA Bo’t’ rom - 28.2 PA To;t - 31.0
OGPl | RBF |27.2 | | OGPFto™ | RBF | 28.3
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General Framework
English-Spanish
English-Italian

RESULTS FOR EXPERIMENT 2

’ Algorithm ‘ Kernel ‘ MAE on Top | MAE on Bottom

Empty
Linear 8.42 5.67
OSVRo | rgr 8.55 5.37
PAq - 8.37 5.30
OGP, RBF 8.83 5.22
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English-Italian

EN-IT DATA

Data from a Field-Test @FBK (2012)

Two domains: IT and Legal

(]

Same document for each domain: 4 Translators
e 280 sentences for IT dataset
e 160 sentences for Legal dataset
Split into:
o TRAIN: Day 1 of Field Test
o TEST: Day 2 of Field Test

All combinations of translators
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General Framework
English-Spanish
English-Italian

MODELLING TRANSLATOR BEHAVIOUR

We rank translator pairs and compare:
@ Average HTER
@ Common vocabulary size
@ Common n-grams percentage
@ Average overlap
e Distribution difference (Hellinger distance)
@ Reordering (Kendall's 7 metric)
°

Instance-wise Difference
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General Framework
English-Spanish
English-Italian

MODELLING TRANSLATOR BEHAVIOUR

We rank translator pairs and compare:
Average HTER
Common vocabulary size

Common n-grams percentage

Distribution difference (Hellinger distance)

°
°

°

@ Average overlap
°

@ Reordering (Kendall's 7 metric)
°

Instance-wise Difference

HTER correlates better with all the other possible metrics.
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General Framework
English-Spanish
English-Italian

TRANSLATOR BEHAVIOUR

Legal domain:

Post-editor | Avg HTER ‘ HTER St. Deviation

1 29.04 16.84
2 32.33 18.87
3 43.25 14.86
4 23.52 15.80
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General Framework
English-Spanish
English-Italian

TRANSLATOR BEHAVIOUR

IT domain:

Post-editor | Avg HTER ‘ HTER St. Deviation

1 39.32 21.03
2 47.77 20.49
3 37.72 20.05
4 36.60 19.71
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IN-DOMAIN RESULTS

General Framework
English-Spanish
English-Italian

In general:

e When post-editors behave similarly, eg. (IT 1,3), batch and
adaptive both work well.

@ When post-editors are more different, eg (IT 3,2 or L 3,4), the
adaptive approach significantly outperforms batch.

Learning Algorithm comparison:
@ OnlineGP >> OnlineSVR >> PA
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IN-DOMAIN RESULTS

General Framework
English-Spanish
English-Italian

In general:

e When post-editors behave similarly, eg. (IT 1,3), batch and
adaptive both work well.

@ When post-editors are more different, eg (IT 3,2 or L 3,4), the
adaptive approach significantly outperforms batch.

Learning Algorithm comparison:
@ OnlineGP >> OnlineSVR >> PA

Algorithms perform well also in Empty mode.
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IT domain
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OUT-DOMAIN RESULTS

We select the most different translators from each domain (Low,
High).
8 combinations:

Experiment | Training Set | Test Set | HTER Diff.
4.1 Low,L High,IT 245
4.2 High,IT Low,L 24
4.3 Low,IT Low,L 13.5
4.4 Low,L Low,IT 12.7
4.5 Low,IT High,L 8.3
4.6 High,L High,IT 6.8
4.7 High,L Low,IT 5
4.8 High,IT High,L 2.2
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Exp. | HTER Diff. | MAE Batch | MAE Adaptive | MAE Empty
4.1 24.5 27.00 19.77 16.55
4.2 24.0 25.37 19.96 12.46
4.3 135 17.54 15.73 12.46
4.4 12.7 17.58 15.50 15.45
4.5 8.3 13.00 10.51 11.28
4.6 6.8 16.89 16.38 16.55
4.7 5.0 16.15 14.40 15.45
4.8 2.2 10.84 10.64 11.28

Correlation of performance and hter difference:

Mode | Correlation

batch 0.945
adaptive 0.812

empty 0.190
Anastasopoulos Online QE
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Discussion:

@ Adaptive approaches perform significantly better even with
change in user or domain.

@ Batch approaches are only good when post-editing behaviour
is the same between train and test.

o Empty adaptive models also achieve outstanding results with
very little data.
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Discussion:

@ Adaptive approaches perform significantly better even with
change in user or domain.

@ Batch approaches are only good when post-editing behaviour
is the same between train and test.

o Empty adaptive models also achieve outstanding results with
very little data.

Learning Algorithms comparison:

@ OSVR and OGP are more robust to domain and user change
than PA.
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o We introduce the use of online learning techniques for the QE
task.

@ We show that they can deal with data scarsity and user and
domain change, better than batch approaches.

e The AQET (Adaptive QE Tool) is suitable for commercial use
and will be integrated into the MateCat-tool.
Default alg: Online GP with RBF kernel

@ The code is available in
https://bitbucket.org/antonis/adaptiveqe.
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@ We introduce the use of online learning techniques for the QE
task.

@ We show that they can deal with data scarsity and user and
domain change, better than batch approaches.
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task.

@ We show that they can deal with data scarsity and user and
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e The AQET (Adaptive QE Tool) is suitable for commercial use
and will be integrated into the MateCat-tool.
Default alg: Online GP with RBF kernel
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SYNOPSIS

@ We introduce the use of online learning techniques for the QE
task.

@ We show that they can deal with data scarsity and user and
domain change, better than batch approaches.

e The AQET (Adaptive QE Tool) is suitable for commercial use
and will be integrated into the MateCat-tool.
Default alg: Online GP with RBF kernel

@ The code is available in
https://bitbucket.org/antonis/adaptiveqe.

Anastasopoulos Online QE


https://bitbucket.org/antonis/adaptiveqe

@ Incorporate more features, following recent developments
@ Create and work on different datasets.
@ Personalization

o Keep "history” of certain user

o New features for personalization
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Thank you!!
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