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Realistic scenario

• Predictions on natural speech data 
– Not phones or lattices (Adams et al., 2016; Godard et al., 

2016) 
– Not synthetic speech (Bérard et al., 2016) 

• Using real endangered language recordings 
– Ainu (~2.5hrs) and Arapaho (~1hr) 
– Plus Spanish (~20hrs) 

• Can predict a few terms with ok precision, 
better than (the only) previous approach.



Baseline system (utd-align)
Bansal et al. (2017)

the man saw a dog near the tall tree

the dog ran to the man riding a horse

With 
translation

s

Speech 
only

Input data:
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1-2. Segment and cluster 
(UTD) 3. Align clusters to words

man saw dog tall tree
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horse  dog

4. Predict translations for 
unaligned clusters



Here: joint system plus predictions
• Builds on previous work that jointly learns to 

segment, cluster, and align (Anastasopoulos et al., 2016)

go dog go
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Extension 1: variable # of prototypes

• Before re-estimating prototypes, cluster speech 
segments aligned to each word using a similarity 
threshold.
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Extension 2: use prototypes to predict

• Modify UTD system (Jansen et al., 2010) to search for 
prototypes in unlabelled speech.

• Similarity threshold s: trades off precision/
recall.

go f8 :

f13 :dog

dog



Experiments: Spanish

• CALLHOME: 20hr Spanish speech with 
English translations (Post et al., 2013) 

• Random 70% utts training, 10% dev, 20% 
test 

• Tune hyperparameters on dev: 
– Min len of segments used to compute 

prototypes 
– Sim threshold for creating prototype 

subclusters 
– % length of prototype to match for predictions
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Experiments: endangered languages
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Results: Arapaho / Ainu

• Compute token accuracies over full 
narratives. 

• On average per narrative, 
– UTD-align finds only 2 / 4 tokens (0.4% / 0.1% 

recall). 
– Our system finds 65 / 122 tokens.



Results: Arapaho / Ainu
Accuracy of tokens predicted per narrative

0

12.5

25

37.5

50

Arapaho Ainu

Precision (%) Recall (%) F-score (%)



Results: Arapaho / Ainu
Accuracy of tokens predicted per narrative

0

12.5

25

37.5

50

Arapaho Ainu

Precision (%) Recall (%) F-score (%)

• Oracle recall is 48% / 64% 



Precision/Recall tradeoff

• Varying similarity threshold for matching 
prototypes:



Examples
Ainu #2: The Young Lad Raised by the Cat 
God



Conclusions

• First test of cross-lingual keyword labelling of 
speech data from endangered languages, using 
very small translated portions. 

• Joint alignment/clustering outperforms 
pipelined system. 

• Identifies a handful of terms, but speech 
matching problem is really hard! 

• Future: consider NN approaches, improve 
speech feature extraction using multilingual 
data.


