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Realistic scenario

» Predictions on natural speech data

— Not phones or lattices (adams et al., 2016; Godard et al.,
2016)

— Not synthetic speech (Bérard et al., 2016)

» Using real endangered language recordings
— Ainu (~2.5hrs) and Arapaho (~1hr)
— Plus Spanish (~20hrs)

» Can predict a few terms with ok precision,
better than (the only) previous approach.
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4. Predict translations for
unaligned clusters




Here: joint system plus predictions

 Builds on previous work that jointly learns to
Segment, cluster, and align (Anastasopoulos et al., 2016)
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Extension |:variable # of prototypes

» Before re-estimating prototypes, cluster speech
segments aligned to each word using a similarity
thresh~!4
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* Modify UTD system (ansen et al., 2010) to search for
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» Similarity threshold s: trades of% precision/
recall.



Experiments: Spanish

 CALLHOME: 20hr Spanish speech with
English translations (post et al., 2013)

« Random 70% utts training, 10% dev, 20%
test

« Tune hyperparameters on dev:

— Min len of segments used to compute
prototypes

— Sim threshold for creating prototype
subclusters

— % length of prototype to match for predictions
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Experiments: endangered languages

» Hokkaido Ainu (10 speakers in 2007)

— 10 narratives, single speaker (150min)
— 2 for training: 24min, 490 English word types

* Arapaho (~1000 speakers)
— 8 narratives, several speakers (40min)
— 1 for training: 18min, 233 English word types

* No re-tuning of hyperparameters, except
threshold for returning matches.

National Institute for Japanese Language and Linguistics (2016). A Glossed Audio
Corpus of Ainu Folklore [Software]. http://ainucorpus.ninjal.ac.jp

Arapaho Language Project. http://www.colorado.edu/csilw/alp/index.html
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Results: Arapaho / Ainu

» Compute token accuracies over full
narratives.

« On average per narrative,

— UTD-align finds only 2 / 4 tokens (0.4% / 0.1%
recall).

— Our system finds 65 / 122 tokens.
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 Oracle recall is 48% / 64%



Precision/Recall tradeoff

» Varying similarity threshold for matching

prototypes:
—e— CALLHOME
| —m—  Arapaho
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Examples

Ainu #2: The Young Lad Raised by the Cat

God
said taughtyoung house thought
| \
demonthings

P A oo b 40




Conclusions

First test of cross-lingual keyword labelling of
speech data from endangered languages, using
very small translated portions.

Joint alighment/clustering outperforms
pipelined system.

|ldentifies a handful of terms, but speech
matching problem is really hard!

Future: consider NN approaches, improve
speech feature extraction using multilingual
data.



