An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-Resource Languages

Antonios Anastasopoulos¹, David Chiang¹, Long Duong²

¹ University of Notre Dame, USA ² University of Melbourne, Australia

Why Speech-based MT?

90% of languages do not have a writing system

Why Speech-based MT?

90% of languages do not have a writing system

Why Speech-based MT?

90% of languages do not have a writing system

Endangered languages documentation

Use speech with translations

Using the Aikuma (Bird 2010) app to collect parallel speech

Low-resource languages

Utilize translations rather than transcriptions

Source side: Frames of the speech signal

Source side: Frames of the speech signal

Target side: Translation text

a little bit of knowledge

Source side: Frames of the speech signal

Target side: Translation text

Task: find best alignment between source and target side

a little bit of knowledge

Source side: Frames of the speech signal

Target side: Translation text

Source side: Frames of the speech signal

Target side: Translation text

Source side: Frames of the speech signal

Target side: Translation text

Source side: Frames of the speech signal

Target side: Translation text

Source side: Frames of the speech signal

Target side: Translation text

Source side: Frames of the speech signal

Target side: Translation text

Task: find best alignment between source and target side

Our method outperforms both baselines

go dog go

Distortion model

Controls the reordering of the target words

- based on fast-align [Dyer et al.]

Distortion model

DIS go dóg go

Controls the reordering of the target words

- based on fast-align [Dyer et al.]

Original

Distortion model

Controls the reordering of the target words

- based on fast-align [Dyer et al.]

Modification

f₈: + d f₁₃: f₈: + d f₈: + d

Assuming a "prototype" for each cluster

 $|f_8|$

Training

Expectation-Maximization

Training

Expectation-Maximization

go dog go

Expectation-Maximization
Initialize spans and clusters

go dog go

Expectation-Maximization
Initialize spans and clusters

Expectation-Maximization
Initialize spans and clusters

Expectation-Maximization
Initialize spans and clusters

Expectation-Maximization

- M step:
 - Re-estimate prototypes

Expectation-Maximization

- M step:
 - Re-estimate prototypes

Expectation-Maximization

- M step:
 - Re-estimate prototypes

Expectation-Maximization

Initialize spans and clusters

- M step:
 - Re-estimate prototypes
- E step:

go dog go

Expectation-Maximization

- M step:
 - Re-estimate prototypes
- E step:
 - Assign cluster and align

Expectation-Maximization

- M step:
 - Re-estimate prototypes
- E step:
 - Assign cluster and align

Expectation-Maximization

- M step:
 - Re-estimate prototypes
- E step:
 - Assign cluster and align

Expectation-Maximization

- M step:
 - Re-estimate prototypes
- E step:
 - Assign cluster and align
 - We restrict the search space:
 - voice activity detection
 - phone boundary detection [Khanaga et al.]

Experiments

Language Pair	Dataset	Number of utterances
Griko - Italian	[Lekakou et al]	330
Spanish - English	CALLHOME (sample)	2k
	CALLHOME (all)	17k
	Fisher	143k

- Naive:
 - frames/word ~ #characters
 - along the diagonal

- Naive:
 - frames/word ~ #characters
 - along the diagonal

Austin is great

Austin is great

- Naive:
 - frames/word ~ #characters
 - along the diagonal
- Neural [Duong et al]:
 - DNN optimised for direct translation of speech
 - convert attention mechanism weights to alignments

Word-level F-score

Example

Conclusion

Alignment model

Extension of IBM-2 with fast-align for speech-to-translation

k-means clustering with DTW and DBA

Improvements in F-score and particularly Precision

https://bitbucket.org/ndnlp/speech2translation

Example

Example

Proper model

Deficient:
$$p(\mathbf{e}, \mathbf{a}, \mathbf{b}, \mathbf{f} \mid \boldsymbol{\phi}) = p(l) \prod_{i=1}^{l} u(f_i) \times s(a_i, b_i \mid f_i, \boldsymbol{\phi}) \times \delta(a_i, b_i \mid i, l, |\boldsymbol{\phi}|) \times t(e_i \mid f_i).$$

Proper model

Proper:
$$p(\mathbf{e}, \mathbf{a}, \mathbf{b}, \mathbf{f} \mid \boldsymbol{\phi}) = p(l) \prod_{i=1}^{l} \delta(a_i, b_i \mid i, l, |\boldsymbol{\phi}|) \times s(f_i \mid a_i, b_i, \boldsymbol{\phi}) \times t(e_i \mid f_i).$$

Proper model

Proper:
$$p(\mathbf{e}, \mathbf{a}, \mathbf{b}, \mathbf{f} \mid \boldsymbol{\phi}) = p(l) \prod_{i=1}^{l} \delta(a_i, b_i \mid i, l, |\boldsymbol{\phi}|) \times s(f_i \mid a_i, b_i, \boldsymbol{\phi}) \times t(e_i \mid f_i).$$

The proper model performs much worse.

-It favours too long or too short spans

Example

Background: DTW and DBA

Dynamic Time Warping (DTW)

Background: DTW and DBA

DTW Barycenter Averaging (DBA)

M-step:

Prototype estimation with DTW Barycenter Averaging

M-step:

Prototype estimation with DTW Barycenter Averaging

M-step:

Prototype estimation with DTW Barycenter Averaging

