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Endangered languages documentation

Use speech with translations 

Motivation
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Using the Aikuma (Bird 2010) 
app to collect parallel speech



Low-resource languages

Utilize translations rather than transcriptions 

Motivation
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Our method outperforms both baselines
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Modification

Distortion model

Controls the reordering of the target words 
- based on fast-align [Dyer et al.]
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Span Start                              Span End
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Initialize spans and clusters
• M step:

- Re-estimate prototypes
• E step:

- Assign cluster and align
- We restrict the search space: 

- voice activity detection 
- phone boundary detection [Khanaga et al.]

Training

Expectation-Maximization
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Experiments
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Language Pair Dataset Number of 
utterances

Griko - Italian [Lekakou et al] 330

Spanish - English
CALLHOME (sample) 2k

CALLHOME (all) 17k
Fisher 143k
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• Naive:
• frames/word ~ #characters
• along the diagonal

• Neural [Duong et al]:
• DNN optimised for direct translation of speech
• convert attention mechanism weights to alignments

Austin is great
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Conclusion

Alignment model  

Extension of IBM-2 with fast-align for speech-to-
translation 

k-means clustering with DTW and DBA 

Improvements in F-score and particularly Precision 

https://bitbucket.org/ndnlp/speech2translation
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https://bitbucket.org/ndnlp/speech2translation


Alignment Recall

17

Results



Alignment Recall
Re

ca
ll

0

10

20

30

40

50

Griko-Italian Callhome (2k) Callhome (17k) Fisher (143k)

naive neural ours

17

Results



Alignment Recall
Re

ca
ll

0

10

20

30

40

50

Griko-Italian Callhome (2k) Callhome (17k) Fisher (143k)

naive neural ours

33.2

40.740.8

52.2

17

Results



Alignment Recall
Re

ca
ll

0

10

20

30

40

50

Griko-Italian Callhome (2k) Callhome (17k) Fisher (143k)

naive neural ours

27.8
32.9

29.830.0
33.2

40.740.8

52.2

17

Results



Alignment Recall
Re

ca
ll

0

10

20

30

40

50

Griko-Italian Callhome (2k) Callhome (17k) Fisher (143k)

naive neural ours

28.7

38.838.9

51.2

27.8
32.9

29.830.0
33.2

40.740.8

52.2

17

Results



Example

18



Example

19



Proper model
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Proper:

The proper model performs much worse. 
-It favours too long or too short spans
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Background: DTW and DBA

Dynamic Time Warping (DTW)
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DTW Barycenter Averaging (DBA)

Background: DTW and DBA
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M-step:

Prototype estimation with DTW Barycenter Averaging
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