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Challenges in Low-resource MT

e MT of high-resource languages (HRLs) with large
parallel corpora — good translations

e MT of low-resource languages (LRLs) with small
parallel corpora — nonsense!
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A Concrete Example

A system that is trained with 5000 sentence pairs on
Azerbaijani and English ?

source - Atam balaca boz radiosunda BBC Xabarlarina qulag
asirdi.

translation - So I'm going to became a lot of people.

reference - My father was listening to BBC News on his small ,
gray radio.

Does not convey the correct meaning at all.
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Standard Approaches (1)

e Transfer HRL to LRL e Joint training with LRL

(Zoph et al., 2016; Nguyen and HRL parallel data
and Chiang, 2017) (Johnson et al., 2017;
Neubig and Hu, 2018)

train
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" LRL - ENG.
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b concatenate

e Problems: Suboptimal lexical/syntactic sharing.
o Azerbaijani (LRL) word - zafarin
o Turkish (HRL) word - zaferin
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Standard Approaches (2)

e Back translation (Sennrich et al. 2016)

ENG -> LRL —

N

MT

System
- v

e Problems: Poor-quality ENG->LRL system
results in poor data.
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This Work

e Question: Is there a better way of performing data
augmentation for low-resource MT?

e Contributions:
o A generalized framework for utilizing training data
iIn low-resource MT.
o New methods for pivoting through related HRLs
to generate pseudo-parallel data.
o An extensive empirical study comparing these
methods, with gains of up to 1.5-8 BLEU.
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Available Resources + ENG-LRL

Back-translation

ENG -> LRL
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Proposal 1: English -> HRL Augmentation

e Problem: ENG-LRL back-translation might be
low quality

ENG -> HRL > HRL-M

e |ldea: also back-
translate into HRL
O more sentence pairs
o vocabulary sharing of source-side
o syntactic similarity of source-side
o Improves target-side LM

ENG: Thank you very much. < | |
Language TUR: Cok tesekkur ederim.
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Available Resources + ENG-LRL and ENG-HRL
Back-translation

ENG -> LRL
> @
ENG -> HRL
>. .
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Proposal 2: Augmentation via Pivoting

e Problem: HRL-ENG data might suffer from lack
of lexical/syntactic overlap

e |ldea: Translate existing HRL-ENG data

o Translate from HRL to LRL

4 ~
HRL -> LRL
HRL » LRL-H
. .

TUR: Cok tesekkur ederim. —, AZE: Cox sag olun.
ENG: Thank you so much. ENG: Thank you so much.
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Available Resources + ENG-LRL and ENG-HRL
Back-translation + Pivoting

ENG -> LRL
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Proposal 3: Back-Translation by Pivoting

e Problem: ENG-HRL back-translated
data also suffers from lexical or
syntactic mismatch

e Proposal 3: ENG-HRL-LRL
o Large amount of English

monolingual data can be utilized

Language
Technologies
Institute

HRL-M

ENG -> HRL

HRL -> LRL
[
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ENG: Thank you so much.

v

TUR: Cok tesekkur ederim.
ENG: Thank you so much.

v

AZE: Cox sag olun.
ENG: Thank you so much.



A Generalized Framework for
Low-Resource Data Augmentation

-

ENG -> LRL
>

ENG -> HRL

HRL -> LRL
HRL-M

HRL -> LRL @
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HRL-LRL (Related Languages) Translation

e Still a low resource setting! Standard
supervised translation did not work well.

e \We propose two simple technigues
o Word substitution
o Modified Unsupervised MT

P

Word Subst.
HRL » LRL

Modified UMT
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HRL-LRL Translation - Word Substitution

e Lexicon Induction (e.g. Xing et al. 2015; Zhang et al.

2017; Lample et al. 2018)

‘.0
beddi
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v
e Corpus Construction
o Replace HRL words with LRL

ones to construct pseudo
LRL-ENG corpus

.oo
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HRL-LRL Translation - Unsupervised MT

e Word substitution still lacking:
o |s not context-dependent
o Cannot handle reordering
o Still have HRL words

e An alternative: unsupervised HRL-LRL MT!
(Lample et al., 2018; Artetxe et al., 2018)

e Problem: direct unsupervised MT from HRL to
LRL showed poor results.
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HRL-LRL Translation - Modified Unsupervised MT

Word substitution for HRL
UMT over Pseudo-LRL and LRL corpus

Jointly segmented => introduce more lexicon overlap
Translate pseudo-LRL to LRL to construct LRL-ENG

corpus
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Experiments
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Experiment Setting - Dataset

e Parallel Data: Ted Corpus (Qi et al., 2018)
o LRL-ENG: 5.9-61K sentences
o HRL-LRL: 5.7-44K sentences
o HRL-ENG: 103-208K sentences

e Monolingual Data: Wiki Dumps
o HRL, LRL, ENG: 2M sentences

e Sentence pieced 8k
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Experiment Results

Augmentation from HRL-ENG

B joint training
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supervised/un
supervised MT

» LRL-H

Experiment Results

Augmentation from HRL-ENG

B jointtraining WM supervised MT 8 unsupervised MT
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Low-resource supervised and vanilla unsupervised HRL-LRL
% aage  translation do not lead to significant improvements.
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Experiment Results

word subst.
modified UMT @'
Augmentation from HRL-ENG

B jointtraining WM supervised MT B unsupervised MT [ word subst. 8 modified UMT
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Our methods improve the performance by 1.5 - 7.3 BLEU points.
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Experiment Results

Augmentation from HRL-ENG

B jointtraining W@ supervised MT B unsupervised MT [ word subst. @ modified UMT [ combinations
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The combination of the two methods give further improvements.
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word subst.

modified UMT
-

ENG-HRL

Experiment Results

Augmentation from English via Pivoting

B jointtraining W@ wordsubst. B modified UMT

40
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14.18
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aze(tur)-eng bel(rus)-eng glg(por)-eng slk(ces)-eng

Augmentation from English with 200k sentences brings 2-5 BLEU

% Lmgee  jmprovements.
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Experiment Results

word subst.
ENG-HRL modified UMT @

Augmentation from English via Pivoting

B jointtraining W word subst. B modified UMT B word subst. combination 8 all combination
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aze(tur)-eng bel(rus)-eng glg(por)-eng slk(ces)-eng

Combining the two methods give further improvements, ~4-8 BLEU in
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Rare word
address Rate -

The percentage of
rare words that
become frequent

after data

augmentation
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Why does our methods do better?
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A Concrete Example (Cont.)

source -
Atam balaca boz radiosunda BBC Xabarlarina qulag asirdi.

translation output before data augmentation -
So I'm going to became a lot of people.

translation output after data augmentation-
My dad used to listen to BBC News on a little radio.

reference -
My father was listening to BBC News on his small , gray radio.
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Conclusion

e Propose a generalized data augmentation
framework

e T[ranslating between related languages can
improve LRL MT

e |t’s important to make the best use of existing
data for LRL MT

Thank you! Question?
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https://github.com/xiamengzhou/DataAugForLRL

