Great Theoretical Ideas in Computer Science

Lecture 3: Deterministic Finite Automata (DFA)

September 6th, 2016
What is computation?

What is an algorithm?

How can we mathematically define them?
Let’s assume two things about our world

No universal machines exist.

We only have machines to solve decision problems.
What is computation?

What is an algorithm?

How can we mathematically define them?

Today:

How do we represent information/data?
What is a computational problem?

Introducing deterministic finite automata (DFA)
Examples of computational problems

<table>
<thead>
<tr>
<th>Instance</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0</td>
<td>0</td>
</tr>
<tr>
<td>0, 1</td>
<td>1</td>
</tr>
<tr>
<td>1, 1</td>
<td>2</td>
</tr>
<tr>
<td>2, 2</td>
<td>4</td>
</tr>
<tr>
<td>2, 3</td>
<td>5</td>
</tr>
<tr>
<td>10, 1</td>
<td>11</td>
</tr>
<tr>
<td>100, 99</td>
<td>199</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Examples of computational problems

<table>
<thead>
<tr>
<th>Instance</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>251</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Examples of computational problems

Input data → isPalindrome → Output data

<table>
<thead>
<tr>
<th>Instance</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Yes</td>
</tr>
<tr>
<td>10101</td>
<td>Yes</td>
</tr>
<tr>
<td>selfless</td>
<td>No</td>
</tr>
<tr>
<td>dammitimmad</td>
<td>Yes</td>
</tr>
<tr>
<td>parahaziramarizaharap</td>
<td>Yes</td>
</tr>
</tbody>
</table>

...
Examples of computational problems

[vanilla, mind, Anil, yogurt, doesn’t]

Instance

[Anil, doesn’t, mind, vanilla, yogurt]

Solution
Representing information

Familiar idea:

Information in a computer is represented with 0s and 1s.

Can encode/represent any kind of data (numbers, text, pairs of numbers, graphs, images, etc...) with a finite length binary string.
Representing information

\[\Sigma = \{0, 1\} \]

alphabet \rightarrow symbols of the alphabet

\[\Sigma^* = \text{the set of all finite length strings over } \Sigma \]

\[\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \ldots\} \]

string of length 0 (empty string)

A subset \(L \subseteq \Sigma^* \) is called a language.
Representing information

\[\Sigma = \{a, b\} \]

\[\Sigma = \{a, b, c\} \]

\[\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]

\[\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \]

Can use whichever is convenient.
What is a computational problem?

Let \(\Sigma = \{0, 1\} \).

The **palindrome** computational problem is:

<table>
<thead>
<tr>
<th>Instance</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>1 Yes</td>
</tr>
<tr>
<td>0</td>
<td>1 Yes</td>
</tr>
<tr>
<td>1</td>
<td>1 Yes</td>
</tr>
<tr>
<td>00</td>
<td>1 Yes</td>
</tr>
<tr>
<td>01</td>
<td>0 No</td>
</tr>
<tr>
<td>10</td>
<td>0 No</td>
</tr>
<tr>
<td>11</td>
<td>1 Yes</td>
</tr>
<tr>
<td>000</td>
<td>1 Yes</td>
</tr>
<tr>
<td>001</td>
<td>0 No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
What is a computational problem?

Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \#\}$.

The *multiplication* computational problem is:

<table>
<thead>
<tr>
<th>Instance</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0#0</td>
<td>0</td>
</tr>
<tr>
<td>0#1</td>
<td>0</td>
</tr>
<tr>
<td>1#0</td>
<td>0</td>
</tr>
<tr>
<td>1#1</td>
<td>1</td>
</tr>
<tr>
<td>10#2</td>
<td>20</td>
</tr>
<tr>
<td>11#3</td>
<td>33</td>
</tr>
<tr>
<td>12345679#9</td>
<td>111111111</td>
</tr>
</tbody>
</table>
What is a computational problem?

Definition: A *computational problem* is a function
\[f : \Sigma^* \to \Sigma^*. \]

Definition: A *decision problem* is a function
\[f : \Sigma^* \to \{0, 1\}. \]

- No, Yes
- False, True
- Reject, Accept
What is a computational problem?

Important

There is a one-to-one correspondence between decision problems and languages.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>000</td>
<td>1</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$L \subseteq \Sigma^*$

$L = \{\epsilon, 0, 1, 00, 11, 000, \ldots\}$
What is computation?

What is an algorithm?

How can we mathematically define them?

Today:

How do we represent information/data?
What is a computational problem?

Introducing deterministic finite automata (DFA)
What is computation?

What is an algorithm?

How can we mathematically define them?

Today:

How do we represent information/data?
What is a computational problem?

Introducing deterministic finite automata (DFA)
Introducing deterministic finite automata (DFA)

- restricted model of computation
- very limited memory
 - reads input from left to right, and accepts or rejects. (one pass through the input)
\(\Sigma = \{0, 1\} \)
\[\Sigma = \{0, 1\} \]
State diagram of a DFA

\[\Sigma = \{0, 1\} \]
Simulation of a DFA

\[\Sigma = \{0, 1\} \]

Input: 1010
\(\Sigma = \{0, 1\} \)

Input: 1010
Simulation of a DFA

\[\Sigma = \{0, 1\} \]

Input: 1010
Simulation of a DFA

\[\Sigma = \{0, 1\} \]

Input: 1010
Simulation of a DFA

\[\Sigma = \{0, 1\} \]

Input: 1010
Simulation of a DFA

\[\Sigma = \{0, 1\} \]

Input: 1010
Simulation of a DFA

\(\Sigma = \{0, 1\}\)

Input: 1010
Simulation of a DFA

\[\Sigma = \{0, 1\} \]

Input: 1010

Diagram of a DFA with states q0, q1, q2, and q3. The transitions are:
- From q0: 0 → q0, 1 → q1
- From q1: 0,1 → q2, 1 → q1
- From q2: 0 → q3, 1 → q0
- From q3: 0 → q3, 1 → q0

The input 1010 is processed through the DFA, starting from state q0.
Simulation of a DFA

\[\Sigma = \{0, 1\} \]

Input: 1010

Decision: Reject
\[\Sigma = \{0, 1\} \]

Input: 01111
\[\Sigma = \{0, 1\} \]

Input: 01111
Simulation of a DFA

\[\Sigma = \{0, 1\} \]

Input: 01111

\[q_0 \quad q_1 \quad q_2 \quad q_3 \]

- From \(q_0 \) to \(q_1 \) on 0
- From \(q_1 \) to \(q_2 \) on 0, 1
- From \(q_2 \) to \(q_3 \) on 0
- From \(q_3 \) to \(q_0 \) on 1

The input 01111 transitions the DFA through states as follows:

1. \(q_0 \rightarrow q_1 \) on 0
2. \(q_1 \rightarrow q_2 \) on 0
3. \(q_2 \rightarrow q_3 \) on 0
4. \(q_3 \rightarrow q_0 \) on 1
\[\Sigma = \{0, 1\} \]

Input: 01111

Simulation of a DFA
\(\Sigma = \{0, 1\} \)

Input: 01111
Simulation of a DFA

\[\Sigma = \{0, 1\} \]

Input: 01111
\(\Sigma = \{0, 1\} \)

Input: 01111
Simulation of a DFA

$\Sigma = \{0, 1\}$

Input: 01111

Decision: Accept
Anatomy of a DFA

- States
- Accepting states
- Start state
- Transition rule: labeled arrows
def foo(input):
 i = 0;

 STATE 0:
 if (i == input.length): return False;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 0;
 case ‘1’: go to STATE 1;

 STATE 1:
 if (i == input.length): return True;
 letter = input[i];
 i++;
 switch(letter):
 case ‘0’: go to STATE 2;
 case ‘1’: go to STATE 2;

 …
DFA as a programming language

def foo(input):
 i = 0;

STATE 0:
 if (i == input.length): return False;
 letter = input[i];
 i++;
 switch(letter):
 case '0': go to STATE 0;
 case '1': go to STATE 1;

STATE 1:
 if (i == input.length): return True;
 letter = input[i];
 i++;
 switch(letter):
 case '0': go to STATE 2;
 case '1': go to STATE 2;

...
DFA as a programming language

```python
def foo(input):
    i = 0;

    # STATE 0:
    if (i == input.length): return False;
    letter = input[i];
    i++;
    switch(letter):
        case '0':  go to STATE 0;
        case '1':  go to STATE 1;

    # STATE 1:
    if (i == input.length): return True;
    letter = input[i];
    i++;
    switch(letter):
        case '0':  go to STATE 2;
        case '1':  go to STATE 2;
```

Input: 0 1 1 1 1 1

Read current letter.
DFA as a programming language

def foo(input):
 i = 0;

 STATE 0:
 if (i == input.length): return False;
 letter = input[i];
 i++;
 switch(letter):
 case '0': go to STATE 0;
 case '1': go to STATE 1;

 STATE 1:
 if (i == input.length): return True;
 letter = input[i];
 i++;
 switch(letter):
 case '0': go to STATE 2;
 case '1': go to STATE 2;

 ...
def foo(input):
 i = 0;
 STATE 0:
 if (i == input.length): return False;
 letter = input[i];
 i++;
 switch(letter):
 case '0': go to STATE 0;
 case '1': go to STATE 1;

 STATE 1:
 if (i == input.length): return True;
 letter = input[i];
 i++;
 switch(letter):
 case '0': go to STATE 2;
 case '1': go to STATE 2;

 ...
Definition: Language decided by a DFA

Let M be a DFA.

We let $L(M)$ denote the set of strings that M accepts.

So, $L(M) = \{ x \in \Sigma^* : M(x) \text{ accepts.} \} \subseteq \Sigma^*$

If $L = L(M)$, we say that M decides L.
computes recognizes accepts
$L(M) = \text{all binary strings with an even number of } 1\text{'s}
= \{x \in \{0, 1\}^* : x \text{ has an even number of } 1\text{'s}\}
$L(M) = \text{all binary strings with even length}$

$= \{ x \in \{0,1\}^* : |x| \text{ is even} \}$
DFA Examples

$L(M) = \{ x \in \{0, 1\}^* : x \text{ ends with a 0} \} \cup \{ \epsilon \}$
DFA Examples

\[M \]

\[\sum = \{a, b, c\} \]

\[L(M) = \{a, b, cb, cc\} \]
Poll

The set of all words that contain at least three 0’s
The set of all words that contain at least two 0’s
The set of all words that contain 000 as a substring
The set of all words that contain 000 as a substring
The set of all words that contain 00 as a substring
The set of all words ending in 000
The set of all words ending in 00
None of the above
Beats me
DFA Examples

Draw a DFA that decides

\[L = \{ x \in \{0, 1\}^* : x \text{ starts and ends with same bit} \} \]

Hint: How do you decide all strings that end with a 0? How do you decide all strings that end with a 1?
\[L = \{110, 101\} \]
\[L = \{0, 1\}^* \setminus \{110, 101\} \]
\[L = \{x \in \{0, 1\}^* : x \text{ starts and ends with same bit.}\} \]
\[L = \{x \in \{0, 1\}^* : |x| \text{ is divisible by 2 or 3.}\} \]
\[L = \{\varepsilon, 110, 110110, 110110110, \ldots\} \]
\[L = \{x \in \{0, 1\}^* : x \text{ contains the substring 110.}\} \]
\[L = \{x \in \{0, 1\}^* : 10 \text{ and 01 occur equally often in } x.\} \]
Formal definition: DFA

A deterministic finite automaton (DFA) \(M \) is a 5-tuple

\[
M = (Q, \Sigma, \delta, q_0, F)
\]

where

- \(Q \) is a finite set (which we call the set of states);
- \(\Sigma \) is a finite set (which we call the alphabet);
- \(\delta \) is a function of the form \(\delta : Q \times \Sigma \rightarrow Q \) (which we call the transition function);
- \(q_0 \in Q \) is an element of \(Q \) (which we call the start state);
- \(F \subseteq Q \) is a subset of \(Q \) (which we call the set of accepting states).
A deterministic finite automaton (DFA) \(M \) is a 5-tuple

\[
M = (Q, \Sigma, \delta, q_0, F)
\]

where

\[
Q = \{q_0, q_1, q_2, q_3\}
\]

\[
\Sigma = \{0, 1\}
\]

\[
\delta : Q \times \Sigma \rightarrow Q
\]

\[
F = \{q_1, q_2\}
\]

\(q_0\) is the start state.

\[
\begin{array}{|c|c|c|}
\hline
\delta & 0 & 1 \\
\hline
q_0 & q_0 & q_1 \\
q_1 & q_2 & q_2 \\
q_2 & q_3 & q_2 \\
q_3 & q_0 & q_2 \\
\hline
\end{array}
\]
Formal definition: DFA accepting a string

Let \(w = w_1w_2 \cdots w_n \) be a string over an alphabet \(\Sigma \). Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA.

We say that \(M \) accepts the string \(w \) if there exists a sequence of states \(r_0, r_1, \ldots, r_n \in Q \) such that

- \(r_0 = q_0 \);
- \(\delta(r_{i-1}, w_i) = r_i \) for each \(i \in \{1, 2, \ldots, n\} \);
- \(r_n \in F \).

Otherwise we say \(M \) rejects the string \(w \).
Definition: A language L is called regular if

$$L = L(M)$$

for some DFA M. **regular**
Regular languages

\[\mathcal{P}(\Sigma^*) \]

All languages

Regular languages

\{110, 101\}
\{0, 1\}^* \setminus \{110, 101\}
\{x \in \{0, 1\}^* : x \text{ starts and ends with same bit.}\}
\{x \in \{0, 1\}^* : |x| \text{ is divisible by 2 or 3.}\}
\{\epsilon, 110, 110110, 11010110, \ldots\}
\{x \in \{0, 1\}^* : x \text{ contains the substring 110.}\}
\{x \in \{0, 1\}^* : 10 \text{ and } 01 \text{ occur equally often in } x.\}
\ldots
Questions:

1. Are all languages regular?
 (Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?
A non-regular language

Theorem:
The language \(L = \{0^n1^n : n \in \mathbb{N}\} \) is not regular.

Note on notation:
For \(a \in \Sigma \), \(a^n \) denotes the string \(aa \cdots a \) \(n \) times.

For \(u, v \in \Sigma^* \), \(uv \) denotes \(u \) concatenated with \(v \).

So \(L = \{\epsilon, 01, 0011, 000111, 00001111, \ldots\} \).
A non-regular language

Theorem:
The language \(L = \{0^n1^n : n \in \mathbb{N}\} \) is not regular.

Intuition:

Seems like the DFA would need to remember how many 0’s it sees.

But it has a constant number of states.
And no other way of remembering things.

Careful though:

\(L = \{x \in \{0, 1\}^* : 10 \text{ and } 01 \text{ occur equally often in } x.\} \) is regular!
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides \(L = \{0^n1^n : n \in \mathbb{N}\} \).

Input: 0000000011111111

imagine some arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides $L = \{0^n1^n : n \in \mathbb{N}\}$.

Input: 0000000011111111

Imagine some arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides $L = \{0^n1^n : n \in \mathbb{N}\}$.

Input: 0000000011111111

Imagine some arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides $L = \{0^n1^n : n \in \mathbb{N}\}$.

Input: 0000000011111111

imagine some arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides \(L = \{0^n1^n : n \in \mathbb{N}\} \).

Input: 0000000011111111

\[q_0 \rightarrow q_1 \rightarrow q_1 \rightarrow q_2 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_5 \]

\textit{imagine some arbitrary transitions}
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides $L = \{0^n1^n : n \in \mathbb{N}\}$.

Input: 000000011111111

Imagine some arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides $L = \{0^n1^n : n \in \mathbb{N}\}$.

Input: 0000000011111111

imagine some arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides $L = \{0^n1^n : n \in \mathbb{N}\}$.

Input: 0000000011111111

Imagine some arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides \(L = \{0^n1^n : n \in \mathbb{N}\} \).

Input: 0000000011111111

imagine some
arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides $L = \{0^n1^n : n \in \mathbb{N}\}$.

Input: 0000000011111111

imagine some arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides \(L = \{0^n1^n : n \in \mathbb{N}\} \).

Input: 0000000011111111

Imagine some arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides $L = \{0^n1^n : n \in \mathbb{N}\}$.

Input: 0000000011111111

imagine some arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides \(L = \{0^n1^n : n \in \mathbb{N}\} \).

Input: 0000000011111111

imagine some arbitrary transitions
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides \(L = \{0^n1^n : n \in \mathbb{N}\} \).

Input: 0000000011111111
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides \(L = \{0^n1^n : n \in \mathbb{N}\} \).

Input: 0000000011111111

Imagine some arbitrary transitions

After 00 and 000000 we ended up in the same state \(q_3 \).

0011 and 00000011 end up in the same state.

But
0011 \(\rightarrow\) accept
00000011 \(\rightarrow\) reject
A non-regular language

Warm-up:
Suppose a DFA with 6 states decides \(L = \{0^n1^n : n \in \mathbb{N}\} \).

Input: \(0000000011111111\)

Imagine some arbitrary transitions

Pigeonhole Principle
Where will \(0000000\) go?
A non-regular language

Theorem:
The language \(L = \{0^n1^n : n \in \mathbb{N}\} \) is not regular.

Proof: Proof is by contradiction. So suppose \(L \) is regular.
So there is a DFA \(M \) that decides \(L \).
Let \(k \) denote the number of states of \(M \).
Let \(r_n \) denote the state \(M \) is in after reading \(0^n \).
By PHP, there exists \(i, j \in \{0, 1, \ldots, k\} \), \(i \neq j \), such that \(r_i = r_j \). So \(0^i \) and \(0^j \) end up in the same state.
For any string \(w \), \(0^i w \) and \(0^j w \) end up in the same state.
But for \(w = 1^i \), \(0^i w \) should end up in an accepting state,
and \(0^j w \) should end up in a rejecting state.
This is the desired contradiction.
Proving a language is not regular

Usually the proof goes like:

1. Assume (to reach a contradiction) that the language is regular. So a DFA decides it.

2. Argue by PHP that there are two strings x and y that lead to the same state in the DFA.

3. Find a string z such that $xz \in L$ but $yz \not\in L$.
Regular languages

\(\mathcal{P}(\Sigma^*) \)

All languages

\textbf{Regular languages}

\{110, 101\}
\{0, 1\}^* \setminus \{110, 101\}
\{x \in \{0, 1\}^* : x \text{ starts and ends with same bit.}\}
\{x \in \{0, 1\}^* : |x| \text{ is divisible by 2 or 3.}\}
\{\epsilon, 110, 110110, 110110110, \ldots\}
\{x \in \{0, 1\}^* : x \text{ contains the substring 110.}\}
\{x \in \{0, 1\}^* : 10 \text{ and 01 occur equally often in } x.\}\
Regular languages

All languages $\mathcal{P}(\Sigma^*)$

Regular languages

- $\{110, 101\}$
- $\{0, 1\}^* \setminus \{110, 101\}$
- $\{x \in \{0, 1\}^* : x \text{ starts and ends with same bit.}\}$
- $\{x \in \{0, 1\}^* : |x| \text{ is divisible by 2 or 3.}\}$
- $\{\epsilon, 110, 110110, 110110110, \ldots\}$
- $\{x \in \{0, 1\}^* : x \text{ contains the substring 110.}\}$
- $\{x \in \{0, 1\}^* : 10 \text{ and } 01 \text{ occur equally often in } x.\}$
- $\{0^n1^n : n \in \mathbb{N}\}$
Questions:

1. Are all languages regular?
 (Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?
Closure properties or regular languages

Closed under union:

\[L_1, L_2 \text{ regular} \implies L_1 \cup L_2 \text{ regular.} \]

\[L_1 \cup L_2 = \{ x \in \Sigma^* : x \in L_1 \text{ or } x \in L_2 \} \]

Closed under concatenation:

\[L_1, L_2 \text{ regular} \implies L_1 \cdot L_2 \text{ regular.} \]

\[L_1 \cdot L_2 = \{ xy : x \in L_1, y \in L_2 \} \]

Closed under star:

\[L \text{ regular} \implies L^* \text{ regular.} \]

\[L^* = \{ x_1x_2 \cdots x_k : k \geq 0, \forall i \ x_i \in L \} \]
Fact:

Can define regular languages inductively as follows:

- \emptyset is regular.
- For every $a \in \Sigma$, $\{a\}$ is regular.
- L_1, L_2 regular \implies $L_1 \cup L_2$ regular.
- L_1, L_2 regular \implies $L_1 \cdot L_2$ regular.
- L regular \implies L^* regular.

Regular expression:

$$a(a \cup b)^* a \cup b(a \cup b)^* b \cup a \cup b$$
Theorem:
Let Σ be some finite alphabet.
If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is $L_1 \cup L_2$.

Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be the decider for L_1
and $M' = (Q', \Sigma, \delta', q'_0, F')$ be the decider for L_2.
We construct a DFA $M'' = (Q'', \Sigma, \delta'', q''_0, F'')$
that decides $L_1 \cup L_2$, as follows:
Regular languages are closed under union

Example

\[L_1 = \text{strings with even number of 1's} \]

\[L_2 = \text{strings with length divisible by 3.} \]
Regular languages are closed under union

Input: 101001

M_1

q_{even}

q_{odd}

M_2

p_0

p_1

p_2
Regular languages are closed under union.

Input: 101001

Transition diagram for M_2: $p_0 \xrightarrow{0, 1} p_1 \xrightarrow{0, 1} p_2$

Transition diagram for M_1: $q_{	ext{even}} \xrightarrow{0} q_{	ext{even}} \xrightarrow{1} q_{	ext{odd}} \xrightarrow{1} q_{	ext{odd}}$
Regular languages are closed under union

Input: 101001
Regular languages are closed under union

Input: 101001

Machine M_1:
- States: q_{even}, q_{odd}
- Transitions:
 - $0 \rightarrow q_{even}$
 - $1 \rightarrow q_{odd}$
 - $1 \rightarrow q_{even}$
 - $0 \rightarrow q_{odd}$

Machine M_2:
- States: p_0, p_1, p_2
- Transitions:
 - $0, 1 \rightarrow p_0$
 - $0, 1 \rightarrow p_1$
 - $0, 1 \rightarrow p_2$
Regular languages are closed under union

Input: 101001

M_1

q_{even}

q_{odd}

M_2

p_0

p_1

p_2
Regular languages are closed under union

Input: 101001
Regular languages are closed under union

Input: 101001

Diagram:

- **M₁**
 - Start state: q_{even}
 - Transitions:
 - 0 → q_{even}
 - 1 → q_{even}
 - q_{even} → q_{odd}
 - 0 → q_{odd}
 - 1 → q_{odd}

- **M₂**
 - Start state: p₀
 - Transitions:
 - 0, 1 → p₀
 - 0, 1 → p₁
 - 0, 1 → p₂
 - p₀ → p₁
 - p₁ → p₂
 - p₂ → p₀
 - p₂ → p₁

The diagram shows two finite automata, M₁ and M₂, with states and transitions defined for input symbols 0 and 1.
Regular languages are closed under union

Input: 101001
Regular languages are closed under union

Input: 101001

Accept
Main idea:
Construct a DFA that keeps track of both at once.
Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of both at once.
Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of both at once.
Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of both at once.
Main idea:
Construct a DFA that keeps track of both at once.

Regular languages are closed under union
Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of both at once.

Diagram:
- \(q_{\text{even } p_0} \) transitions to \(q_{\text{even } p_1} \) on input 0.
- \(q_{\text{odd } p_0} \) transitions to \(q_{\text{odd } p_1} \) on input 1.
- \(q_{\text{even } p_0} \) and \(q_{\text{odd } p_0} \) are initial states.
- \(q_{\text{even } p_2} \) and \(q_{\text{odd } p_2} \) are accepting states.
Main idea:
Construct a DFA that keeps track of both at once.

Diagram

- **q_{even} p_0**
 - Transition on 0 to **q_{even} p_1**
 - Transition on 1 to **q_{odd} p_0**

- **q_{even} p_1**
 - Transition on 0 to **q_{odd} p_1**
 - Transition on ?

- **q_{even} p_2**

- **q_{odd} p_0**
 - Transition on 0 to **q_{odd} p_1**

- **q_{odd} p_1**

- **q_{odd} p_2**
Main idea:
Construct a DFA that keeps track of both at once.
Main idea:
Construct a DFA that keeps track of both at once.
Main idea:
Construct a DFA that keeps track of both at once.
Regular languages are closed under union

Main idea:
Construct a DFA that keeps track of both at once.
Regular languages are closed under union

Input: 101001
Regular languages are closed under union

Input: \texttt{101001}
Regular languages are closed under union

Input: 101001
Decision: Accept

The diagram shows a deterministic finite automaton (DFA) with states and transitions specified by edges labeled with symbols. The input string '101001' is processed through the automaton, leading to the decision 'Accept'.
Regular languages are closed under union

Theorem:
Let Σ be some finite alphabet. If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is $L_1 \cup L_2$.

Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be the decider for L_1 and $M' = (Q', \Sigma, \delta', q'_0, F')$ be the decider for L_2. We construct a DFA $M'' = (Q'', \Sigma, \delta'', q''_0, F'')$ that decides $L_1 \cup L_2$, as follows:

- $Q'' = Q \times Q' = \{ (q, q') : q \in Q, q' \in Q' \}$
- $\delta''((q, q'), a) = (\delta(q, a), \delta'(q', a))$
- $q''_0 = (q_0, q'_0)$
- $F'' = \{ (q, q') : q \in F$ or $q' \in F' \}$
Regular languages are closed under union

Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be the decider for L_1 and $M' = (Q', \Sigma, \delta', q'_0, F')$ be the decider for L_2. We construct a DFA $M'' = (Q'', \Sigma, \delta'', q''_0, F'')$ that decides $L_1 \cup L_2$, as follows:

- $Q'' = Q \times Q' = \{(q, q') : q \in Q, q' \in Q'\}$
- $\delta''((q, q'), a) = (\delta(q, a), \delta'(q', a))$
- $q''_0 = (q_0, q'_0)$
- $F'' = \{(q, q') : q \in F$ or $q' \in F'\}$

It remains to show that $L(M'') = L_1 \cup L_2$.

$L(M'') \subseteq L_1 \cup L_2 : \ldots$

$L_1 \cup L_2 \subseteq L(M'') : \ldots$
String Searching Problem

Input: string T of length n. string w of length k.
Output: Yes/No. Does w occur in T?

Naive algorithm:

About nk steps.
Can we do better?
An application of DFAs

String Searching Problem

Input: string T of length n. string w of length k.

Output: Yes/No. Does w occur in T?

Automaton solution:

The language $\Sigma^* w \Sigma^*$ is regular.

So there is some DFA M_w that accepts it.

Build M_w and feed it T. Running time: $\sim n$ steps.

Time to build M_w? Simple alg: $\sim k^3$ steps.
An application of DFAs

String Searching Problem

Input: string T of length n. string w of length k.

Output: Yes/No. Does w occur in T?

Knuth-Morris-Pratt 1977:

$\sim k$ steps to build M_w.
Next Time