Fields and Polynomials
First, a little more
Number Theory
Bezout’s identity

Let a, b be arbitrary positive integers. There exist integers r and s such that

$$r a + s b = \gcd(a, b)$$

A non-algorithmic proof:

- Consider the set L of all positive integers that can be expressed as $r a + s b$ for some integers r, s.
- L is non-empty (e.g. $a \in S$).
- So L has a minimum element d (well-ordering principle \iff principle of induction)

Claim: $d = \gcd(a, b)$

Follows from Extended Euclid Algorithm
Claim: \(\gcd(a,b) = d \) (the minimum positive integer expressible as \(ra+sb \))

1. \(\gcd(a,b) \) divides both \(a \) and \(b \), and hence also divides \(d \). So \(d \geq \gcd(a,b) \)

2. \(d \) divides both \(a \) and \(b \), and hence \(d \leq \gcd(a,b) \)

Let’s show \(d \mid a \).
Write \(a = qd + t \), with \(0 \leq t < d \).
\(t = a – qd \) is also expressible as a combination \(r’ a + s’ b \).
Contradicts minimality of \(d \).
Lemma: If \(\gcd(a,b) = 1 \) and \(a \mid bc \), then \(a \mid c \).

Proof: Let \(r,s \) be such that \(ra + sb = 1 \)

\[
ra \cdot c + sb \cdot c = c
\]

\(a \mid bc \) and \(a \mid ra \cdot c \), so \(a \mid c \).

Corollary: If \(p \) is a prime and \(p \mid q_1 \cdot q_2 \cdots q_k \), then \(p \) must divide some \(q_i \).

If the \(q_i \)'s are also prime, then \(p = q_i \) for some \(i \).

Uniqueness of prime factorization follows from this!
Poll

Which of these numbers is congruent to 1 (mod 5), 6 (mod 7), and 8 (mod 9)?

- No such number exists
- 91
- 136
- 197
- 251
- 291
- None of the above
- Beats me
Chinese Remaindering

Chinese Remainder Theorem: Suppose positive integers \(n_1, n_2, \ldots, n_k \) are pairwise coprime. Then, for all integers \(b_1, b_2, \ldots, b_k \), there exists an integer \(x \) solving the below system of simultaneous congruences

\[
\begin{align*}
x &\equiv b_1 \pmod{n_1} \\
x &\equiv b_2 \pmod{n_2} \\
\vdots \\
x &\equiv b_k \pmod{n_k}.
\end{align*}
\]

Further, all solutions \(x \) are congruent to each other modulo \(N = \prod_{i=1}^{k} n_i \).

Uniqueness of solutions modulo \(N \)

If \(x, y \) are two solutions, then \(n_i \) divides \(x - y \), for \(i=1,2,\ldots,k \)

Since the \(n_i \) are pairwise coprime, this means the product \(N = n_1 \times n_2 \times \ldots \times n_k \) divides \(x - y \), thus \(x \equiv y \pmod{N} \)
Extended Euclid and Chinese Remaindering

Chinese Remainder Theorem: Suppose positive integers \(n_1, n_2, \ldots, n_k \) are pairwise coprime. Then, for all integers \(b_1, b_2, \ldots, b_k \), there exists an integer \(x \) solving the below system of simultaneous congruences

\[
\begin{align*}
x &\equiv b_1 \pmod{n_1} \\
x &\equiv b_2 \pmod{n_2} \\
& \quad \vdots \\
x &\equiv b_k \pmod{n_k}.
\end{align*}
\]

Further, all solutions \(x \) are congruent to each other modulo \(N = \prod_{i=1}^{k} n_i \).

Proof for \(k=2 \):

Take \(x = b_1 \left(n_2^{-1} \mod n_1 \right) n_2 + b_2 \left(n_1^{-1} \mod n_2 \right) n_1 \)

Divisible by \(n_2 \),
Remainder 1 mod \(n_1 \)

Divisible by \(n_1 \)
Remainder 1 mod \(n_2 \)

Can compute \(x \) efficiently (by computing modular inverses)
Chinese Remainder Theorem: Suppose positive integers \(n_1, n_2, \ldots, n_k \) are \textit{pairwise coprime}. Then, for all integers \(b_1, b_2, \ldots, b_k \), there exists an integer \(x \) solving the below system of simultaneous congruences

\[
\begin{align*}
x &\equiv b_1 \pmod{n_1} \\
x &\equiv b_2 \pmod{n_2} \\
& \vdots \\
x &\equiv b_k \pmod{n_k}.
\end{align*}
\]

Further, all solutions \(x \) are congruent to each other modulo \(N = \prod_{i=1}^{k} n_i \).

For arbitrary \(k \): Let \(m_i = N/n_i \)

Note \(\gcd(m_i, n_i) = 1 \)

\(n_i | m_j \) for \(j \neq i \)

Take \(x = b_1 \left(m_1^{-1} \mod n_1 \right) m_1 + b_2 \left(m_2^{-1} \mod n_2 \right) m_2 + \ldots + b_k \left(m_k^{-1} \mod n_k \right) m_k \)

First term contributes the remainder mod \(n_1 \) (rest are divisible by \(n_1 \)), \ldots, \(k'\)th term contributes the remainder mod \(n_k \)
Quick Recap:
Groups
Recap: Definition of a group

G is a “group under operation \bullet” if:

0. [Closure] G is closed under \bullet
 i.e., $a \bullet b \in G \quad \forall \ a,b\in G$

1. [Associativity] Operation \bullet is associative:
 i.e., $a \bullet (b \bullet c) = (a \bullet b) \bullet c \quad \forall \ a,b,c\in G$

2. [Identity] There exists an element $e \in G$
 (called the “identity element”) such that
 $a \bullet e = a, \ e \bullet a = a \quad \forall \ a\in G$

3. [Inverse] For each $a \in G$ there is an element $a^{-1} \in G$
 (called the “inverse of a”) such that
 $a \bullet a^{-1} = e, \ a^{-1} \bullet a = e$
Symmetries of undirected cycle: dihedral group

\[G = \{ \text{Id, } r_1, r_2, r_3, r_4, f_1, f_2, f_3, f_4, f_5 \} \]
Abelian groups

In a group we do NOT NECESSARILY have

\[a \cdot b = b \cdot a \]

Definition:

“\(a,b \in G \) commute” means \(ab = ba \).

Definition:

A group is said to be abelian if all pairs \(a,b \in G \) commute.
Order of a group element

Let G be a **finite** group. Let $a \in G$.

Definition: The order of x, denoted $\text{ord}(a)$, is the smallest $m \geq 1$ such that $a^m = 1$.

Note that $a, a^2, a^3, \ldots, a^{m-1}, a^m = 1$ all distinct.
Order Theorem: For every $a \in G$, \(\text{ord}(a) \) divides \(|G|\).

Corollary: $a^{|G|} = 1$ for all $a \in G$.

Corollary (Euler’s Theorem): For $a \in \mathbb{Z}_n^*$, $a^{\phi(n)} = 1$.
That is, if $\gcd(a,n) = 1$, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Corollary (Fermat’s little theorem): For prime p, if $\gcd(a,p) = 1$, then $a^{p-1} \equiv 1 \pmod{p}$.
Cyclic groups

A finite group G of order n is cyclic if $G = \{e, b, b^2, \ldots, b^{n-1}\}$ for some group element b.

In such a case, we say b "generates" G, or b is a "generator" of G.

Examples:

• $(\mathbb{Z}_n, +)$ (1 is a generator)

• C_4 (Rot$_{90}$ is a generator)

Non-examples: Mattress group; dihedral group; any non-abelian group.
Lagrange's Theorem: If G is a finite group, and H is a subgroup then $|H|$ divides $|G|$.

A useful corollary: If G is a finite group and H is a proper subgroup of G, then $|H| \leq |G|/2$.
Feature Presentation: Field Theory
Find out about the wonderful world of \mathbb{F}_{2^k} where two equals zero, plus is minus, and squaring is a linear operator!

– Richard Schroeppel
A group is a set with a single binary operation.

Number-theoretic sets often have more than one operation defined on them.

For example, in \(\mathbb{Z} \), we can do both addition and multiplication.

Same in \(\mathbb{Z}_n \) (we can add and multiply modulo \(n \)).

For reals \(\mathbb{R} \) or rationals \(\mathbb{Q} \), we can also divide (inverse operation for multiplication).
Fields

Informally, it’s a place where you can add, subtract, multiply, and divide.

Examples: Real numbers \mathbb{R}
Rational numbers \mathbb{Q}
Complex numbers \mathbb{C}
Integers mod prime \mathbb{Z}_p (Why?)

NON-examples: Integers \mathbb{Z}
Non-negative reals \mathbb{R}^+ division??
subtraction??
A field is a set F with two binary operations, called $+$ and \cdot.

$(F, +)$ an abelian group, with identity element called 0

$(F \setminus \{0\}, \cdot)$ an abelian group, identity element called 1

Distributive Law holds:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

Example:

$$F_3 = \mathbb{Z}_3^*$$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdot</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Fields: familiar examples

Real numbers \(\mathbb{R} \)
Rational numbers \(\mathbb{Q} \)
Complex numbers \(\mathbb{C} \)
Integers mod \textit{prime} \(\mathbb{Z}_p \)

The last one is a finite field
Example

Quadratic “number field”

\[\mathbb{Q}(\sqrt{2}) = \{ a + b \sqrt{2} : a, b \in \mathbb{Q} \} \]

Addition: \((a + b \sqrt{2}) + (c + d \sqrt{2}) = (a+c) + (b+d) \sqrt{2}\)

Multiplication:
\[(a + b \sqrt{2}) \cdot (c + d \sqrt{2}) = (ac+2bd) + (ad+bc) \sqrt{2}\]

Exercise: Prove above defines a field.
Finite fields

Some familiar infinite fields: \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) (now \(\mathbb{Q}(\sqrt{2}) \))

Finite fields we know: \(\mathbb{Z}_p \) aka \(\mathbb{F}_p \) for \(p \) a prime

Is there a field with 2 elements? Yes
Is there a field with 3 elements? Yes
Is there a field with 4 elements? Yes

\[
\begin{array}{cccc}
+ & 0 & 1 & a & b \\
0 & 0 & 1 & a & b \\
1 & 1 & 0 & b & a \\
a & a & b & 0 & 1 \\
b & b & a & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
\cdot & 0 & 1 & a & b \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & a & b \\
a & a & b & 1 & a \\
b & 0 & b & 1 & a \\
\end{array}
\]
Evariste Galois (1811–1832) introduced the concept of a finite field (also known as a Galois Field in his honor)
<table>
<thead>
<tr>
<th>Finite fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a field with 2 elements?</td>
</tr>
<tr>
<td>Is there a field with 3 elements?</td>
</tr>
<tr>
<td>Is there a field with 4 elements?</td>
</tr>
<tr>
<td>Is there a field with 5 elements?</td>
</tr>
<tr>
<td>Is there a field with 6 elements?</td>
</tr>
<tr>
<td>Is there a field with 7 elements?</td>
</tr>
<tr>
<td>Is there a field with 8 elements?</td>
</tr>
<tr>
<td>Is there a field with 9 elements?</td>
</tr>
<tr>
<td>Is there a field with 10 elements?</td>
</tr>
</tbody>
</table>
Finite fields

Theorem (which we won’t prove):
There is a field with q elements if and only if q is a power of a prime.

Up to isomorphism, it is unique.

That is, all fields with q elements have the same addition and multiplication tables, after renaming elements.

This field is denoted \mathbb{F}_q (also $GF(q)$)
Finite fields

Question:

If q is a prime power but not just a prime, what **are** the addition and multiplication tables of \mathbb{F}_q?

Answer:

It’s a bit hard to describe.

We’ll tell you later, but for 251’s purposes, you mainly only need to know about prime q.
Polynomials
Polynomials

Informally, a polynomial is an expression that looks like this:

\[6x^3 - 2.3x^2 + 5x + 4.1\]

\(x\) is a symbol, called the variable (or indeterminate)

the ‘numbers’ standing next to powers of \(x\) are called the coefficients
Polynomials

Informally, a polynomial is an expression that looks like this:

$$6x^3 - 2.3x^2 + 5x + 4.1$$

Actually, coefficients can come from any field.

Can allow multiple variables, but we won’t.

Set of polynomials with variable x and coefficients from field F is denoted $F[x]$.
Polynomials – formal definition

Let F be a field and let x be a variable symbol.

$F[x]$ is the set of polynomials over F, defined to be expressions of the form

$$c_d x^d + c_{d-1} x^{d-1} + \cdots + c_2 x^2 + c_1 x + c_0$$

where each c_i is in F, and $c_d \neq 0$.

We call d the degree of the polynomial.

Also, the expression 0 is a polynomial.

(By convention, we call its degree $-\infty$.)
Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in $\mathbb{F}_{11}[x]$

$$P(x) = x^2 + 5x - 1$$
$$Q(x) = 3x^3 + 10x$$

$$P(x) + Q(x) = 3x^3 + x^2 + 15x - 1$$
$$= 3x^3 + x^2 + 4x - 1$$
$$= 3x^3 + x^2 + 4x + 10$$
Adding and multiplying polynomials

You can add and multiply polynomials (they are a “ring” but we’ll skip a formal treatment of rings)

Example. Here are two polynomials in \(\mathbb{F}_{11}[x] \)

\[
\begin{align*}
P(x) &= x^2 + 5x - 1 \\
Q(x) &= 3x^3 + 10x
\end{align*}
\]

\[
P(x) \cdot Q(x) = (x^2 + 5x - 1)(3x^3 + 10x)
= 3x^5 + 15x^4 + 7x^3 + 50x^2 - 10x
= 3x^5 + 4x^4 + 7x^3 + 6x^2 + x
\]
Adding and multiplying polynomials

Polynomial addition is associative and commutative.
\[0 + P(x) = P(x) + 0 = P(x). \]
\[P(x) + (-P(x)) = 0. \]
So \((F[x], +)\) is an abelian group!

Polynomial multiplication is associative and commutative.
\[1 \cdot P(x) = P(x) \cdot 1 = P(x). \]
Multiplication distributes over addition:
\[P(x) \cdot (Q(x) + R(x)) = P(x) \cdot Q(x) + P(x) \cdot R(x) \]

If \(P(x) / Q(x)\) were always a polynomial, then \(F[x]\) would be a field! Alas…
Dividing polynomials?

P(x) / Q(x) is not necessarily a polynomial.

So \(F[x] \) is not quite a field.

(It’s a “ring”)

Same with \(\mathbb{Z} \), the integers:

it has everything except division.

Actually, there are many analogies between \(F[x] \) and \(\mathbb{Z} \).

• starting point for rich interplay between algebra, arithmetic, and geometry in mathematics
Dividing polynomials?

\(\mathbb{Z} \) has the concept of “division with remainder”:

Given \(a, b \in \mathbb{Z}, b \neq 0 \), can write

\[a = q \cdot b + r, \]

where \(r \) is “smaller than” \(b \).

\(F[x] \) has the same concept:

Given \(A(x), B(x) \in F[x], B(x) \neq 0 \), can write

\[A(x) = Q(x) \cdot B(x) + R(x), \]

where \(\deg(R(x)) < \deg(B(x)) \).
“Division with remainder” for polynomials

Example: Divide \(6x^4 + 8x + 1\) by \(2x^2 + 4\) in \(\mathbb{F}_{11}[x]\)

\[
\begin{array}{rcccl}
& & 3x^2 & + 5 \\
\hline
2x^2 + 4 & | & 6x^4 & + 8x & + 1 \\
- & - & 6x^4 & + x^2 \\
\hline
& & -x^2 & + 8x & + 1 \\
- & - & -x^2 & + 9 \\
\hline
& & & 8x & + 3
\end{array}
\]

Check:

\[
6x^4 + 8x + 1 = (3x^2 + 5)(2x^2 + 4) + (8x + 3)
\]

(in \(\mathbb{F}_{11}[x]\))
Integers \mathbb{Z}

“size” = absolute value

“division”:
$$a = qb + r, \quad |r| < |b|$$

can use Euclid’s Algorithm to find GCDs

p is “prime”:
no nontrivial divisors

\mathbb{Z} mod p:
a field iff p is prime

Polynomials $F[x]$

“size” = degree

“division”:
$$A(x) = Q(x)B(x) + R(x), \quad \deg(R) < \deg(B)$$

can use Euclid’s Algorithm to find GCDs

$P(x)$ is “irreducible”:
no nontrivial divisors

$F[x]$ mod $P(x)$:
a field iff $P(x)$ is irreducible
(with $|F|^{\deg(P)}$ elements)
The field with 4 elements

Degree < 2 polynomials \{0,1,x,1+x\} \subseteq \mathbb{F}_2[x]

Addition and multiplication modulo 1+x+x^2

\[
\begin{array}{cccc}
+ & 0 & 1 & a \\
0 & 0 & 1 & a \\
1 & 1 & 0 & b \\
a & a & b & 0 \\
b & b & a & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
\cdot & 0 & 1 & a \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & a \\
a & 0 & a & b \\
b & 0 & b & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
a=x \\
b=1+x
\end{array}
\]
The field with \(p^d \) elements

Degree < d polynomials \(\subseteq \mathbb{F}_p[x] \)

Addition and multiplication modulo \(h(x) \), which is any degree d **irreducible** polynomial in \(\mathbb{F}_p[x] \)

- **Fact**: Irreducibles of every degree exist in \(\mathbb{F}_p[x] \)

Field with 9 elements: \(\mathbb{F}_3[x] \mod (x^2+1) \)

Field with 8 elements: \(\mathbb{F}_2[x] \mod (x^3+x+1) \)
Enough algebraic theory.

Let’s play with polynomials!
Evaluating polynomials

Given a polynomial $P(x) \in F[x]$, $P(a)$ means its evaluation at element a.

E.g., if $P(x) = x^2 + 3x + 5$ in $\mathbb{F}_{11}[x]$

$P(6) = 6^2 + 3 \cdot 6 + 5 = 36 + 18 + 5 = 59 = 4$

$P(4) = 4^2 + 3 \cdot 4 + 5 = 16 + 12 + 5 = 33 = 0$

Definition: α is a root of $P(x)$ if $P(\alpha) = 0$.
Polynomial roots

Theorem:

Let $P(x) \in F[x]$ have degree 1.
Then $P(x)$ has exactly 1 root.

Proof:

Write $P(x) = cx + d$ (where $c \neq 0$).
Then $P(r) = 0 \iff cr + d = 0$

$\iff cr = -d$

$\iff r = -d/c.$
Polynomial roots

Theorem:

Let \(P(x) \in F[x] \) have degree 2.
Then \(P(x) \) has... how many roots??

E.g.: \(x^2 + 1 \)...

<table>
<thead>
<tr>
<th>Field</th>
<th># of roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_2[x])</td>
<td>1</td>
</tr>
<tr>
<td>(F_3[x])</td>
<td>0</td>
</tr>
<tr>
<td>(F_5[x])</td>
<td>2</td>
</tr>
<tr>
<td>(\mathbb{R}[x])</td>
<td>0</td>
</tr>
<tr>
<td>(\mathbb{C}[x])</td>
<td>2</td>
</tr>
</tbody>
</table>
The single most important theorem about polynomials over fields:

A nonzero degree-

polynomial has

at most d roots.
Theorem: Over a field, for all \(d \geq 0 \), a nonzero degree-\(d \) polynomial \(P \) has at most \(d \) roots.

Proof by induction on \(d \in \mathbb{N} \):

Base case: If \(P(x) \) is degree-0 then \(P(x) = a \) for some \(a \neq 0 \). This has 0 roots.

Induction: Assume true for \(d \geq 0 \). Let \(P(x) \) have degree \(d+1 \).

If \(P(x) \) has 0 roots: we’re done! Else let \(b \) be a root.

Divide with remainder: \(P(x) = Q(x)(x-b) + R(x) \). \((\ast)\)

\(\deg(R) < \deg(x-b) = 1 \), so \(R(x) \) is a constant. Say \(R(x)=r \).

Plug \(x = b \) into \((\ast)\): \(0 = P(b) = Q(b)(b-b)+r = 0+r = r \).

So \(P(x) = Q(x)(x-b) \). Now, \(\deg(Q) = d \). \(: \) \(Q \) has \(\leq d \) roots.

\(: \) \(P(x) \) has \(\leq d+1 \) roots, completing the induction.
A useful corollary

Theorem: Over a field F, for all $d \geq 0$, degree-d polynomials have at most d roots.

Corollary: Suppose a polynomial $R(x) \in F[x]$ is such that

(i) R has degree $\leq d$ and
(ii) R has $> d$ roots

Then R must be the 0 polynomial

I’ve used the above corollary *several times* in my research.
Theorem:
Over a field, degree-d polynomials have at most d roots.

Reminder:
This is only true over a field.

E.g., consider $P(x) = 3x$ over \mathbb{Z}_6.

It has degree 1, but 3 roots: 0, 2, and 4.
Interpolation

Say you’re given a bunch of “data points”

Can you find a (low-degree) polynomial which “fits the data”?
Interpolation

Let pairs \((a_1, b_1), (a_2, b_2), \ldots, (a_{d+1}, b_{d+1})\) from a field \(F\) be given \((with all a_i’s distinct)\).

Theorem:

There is exactly one polynomial \(P(x)\) of degree at most \(d\) such that
\[P(a_i) = b_i \text{ for all } i = 1 \ldots d+1. \]

E.g., through 2 points there is a unique linear polynomial.
Interpolation

There are two things to prove.

1. There is at least one polynomial of degree \(\leq d \) passing through all \(d+1 \) data points.

2. There is at most one polynomial of degree \(\leq d \) passing through all \(d+1 \) data points.

Let’s prove #2 first.
Interpolation

Theorem: Let pairs \((a_1,b_1), (a_2,b_2), \ldots, (a_{d+1},b_{d+1})\) from a field \(F\) be given (with all \(a_i\)'s distinct). Then there is **at most one** polynomial \(P(x)\) of degree at most \(d\) with \(P(a_i) = b_i\) for all \(i\).

Proof: Suppose \(P(x)\) and \(Q(x)\) both do the job. Let \(R(x) = P(x)−Q(x)\).

Since \(\text{deg}(P), \text{deg}(Q) \leq d\) we must have \(\text{deg}(R) \leq d\).

But \(R(a_i) = b_i−b_i = 0\) for all \(i = 1\ldots d+1\).

Thus \(R(x)\) has more roots than its degree.

\(\therefore\) \(R(x)\) must be the 0 polynomial, i.e., \(P(x) = Q(x)\).
Interpolation

Now let’s prove the other part, that there is at least one polynomial.

Theorem:
Let pairs \((a_1,b_1), (a_2,b_2), \ldots, (a_{d+1},b_{d+1})\) from a field \(F\) be given (with all \(a_i\)’s distinct). Then there exists a polynomial \(P(x)\) of degree at most \(d\) with \(P(a_i) = b_i\) for all \(i\).
Interpolation

The method for constructing the polynomial is called Lagrange Interpolation.

Discovered in 1779 by Edward Waring.

Rediscovered in 1795 by J.-L. Lagrange.
Lagrange Interpolation

Want $P(x)$
(with degree $\leq d$)
such that $P(a_i) = b_i \ \forall i$.
Lagrange Interpolation

<table>
<thead>
<tr>
<th>a_1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_2</td>
<td>0</td>
</tr>
<tr>
<td>a_3</td>
<td>0</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>a_d</td>
<td>0</td>
</tr>
<tr>
<td>a_{d+1}</td>
<td>0</td>
</tr>
</tbody>
</table>

Can we do this special case?

Promise: once we solve this special case, the general case is very easy.
Lagrange Interpolation

\[a_1 \quad 1 \]
\[a_2 \quad 0 \]
\[a_3 \quad 0 \]
\[\ldots \quad \ldots \]
\[a_d \quad 0 \]
\[a_{d+1} \quad 0 \]
Lagrange Interpolation

\[
a_1 \quad 1 \\
a_2 \quad 0 \\
a_3 \quad 0 \\
\vdots \\
a_d \quad 0 \\
a_{d+1} \quad 0
\]

Idea #1: \(P(x) = (x-a_2)(x-a_3)\cdots(x-a_{d+1}) \)

Degree is \(d \). ✔

\[
P(a_2) = P(a_3) = \cdots = P(a_{d+1}) = 0. \quad \checkmark
\]

\[
P(a_1) = (a_1-a_2)(a_1-a_3)\cdots(a_1-a_{d+1}). \quad ??
\]

Just divide \(P(x) \) by this number.
Lagrange Interpolation

\[\begin{align*}
 a_1 & : 1 \\
 a_2 & : 0 \\
 a_3 & : 0 \\
 \ldots & : \ldots \\
 a_d & : 0 \\
 a_{d+1} & : 0
\end{align*} \]

Idea #2:
Denominator is a nonzero field element
Numerator is a deg. \(d\) polynomial

Call this the selector polynomial for \(a_1\).

\[S_1(x) = \frac{(x - a_2)(x - a_3)\ldots(x - a_{d+1})}{(a_1 - a_2)(a_1 - a_3)\ldots(a_1 - a_{d+1})} \]
Lagrange Interpolation

a_1	0
a_2	1
a_3	0
...	...
a_d	0
a_{d+1}	0

Great! But what about this data?

\[
S_2(x) = \frac{(x - a_1)(x - a_3) \cdots (x - a_{d+1})}{(a_2 - a_1)(a_2 - a_3) \cdots (a_2 - a_{d+1})}
\]
Lagrange Interpolation

\[
\begin{array}{c|c}
\text{a}_1 & 0 \\
\text{a}_2 & 0 \\
\text{a}_3 & 0 \\
\vdots & \vdots \\
\text{a}_d & 0 \\
\text{a}_{d+1} & 1 \\
\end{array}
\]

Great! But what about **this** data?

\[
S_{d+1}(x) = \frac{(x - \text{a}_1)(x - \text{a}_2) \cdots (x - \text{a}_d)}{(\text{a}_{d+1} - \text{a}_1)(\text{a}_{d+1} - \text{a}_2) \cdots (\text{a}_{d+1} - \text{a}_d)}
\]
Lagrange Interpolation

\[a_1 \quad b_1 \\
\quad a_2 \quad b_2 \\
\quad a_3 \quad b_3 \\
\quad \ldots \quad \ldots \\
\quad a_d \quad b_d \\
\quad a_{d+1} \quad b_{d+1} \]

Great! Finally, what about this data?

\[P(x) = b_1 \cdot S_1(x) + b_2 \cdot S_2(x) + \cdots + b_{d+1} \cdot S_{d+1}(x) \]
Lagrange Interpolation – example

Over \(\mathbb{Z}_{11} \), find a polynomial \(P \) of degree \(\leq 2 \) such that \(P(5) = 1 \), \(P(6) = 2 \), \(P(7) = 9 \).

\[
S_5(x) = \frac{6}{(5 - 6)(5 - 7)}(x - 6)(x - 7)
\]

\[
S_6(x) = -\frac{1}{(5 - 6)(5 - 7)}(x - 5)(x - 7)
\]

\[
S_7(x) = \frac{6}{(5 - 6)(5 - 7)}(x - 5)(x - 6)
\]

\[
P(x) = 1 \cdot S_5(x) + 2 \cdot S_6(x) + 9 \cdot S_7(x)
\]

\[
P(x) = 6(x^2 - 13x + 42) - 2(x^2 - 12x + 35) + 54(x^2 - 11x + 30)
\]

\[
P(x) = 3x^2 + x + 9
\]
The Chinese Remainder Theorem had a very similar proof.

Not a coincidence: algebraically, integers & polynomials share many common properties.

Lagrange interpolation is the exact analog of Chinese Remainder Theorem for polynomials.
Chinese Remainder Theorem: Suppose n_1, n_2, \ldots, n_k are pairwise coprime. Then, for all integers a_1, a_2, \ldots, a_k, there exists an integer x solving the below system of simultaneous congruences

\[
x \equiv a_1 \pmod{n_1} \\
x \equiv a_2 \pmod{n_2} \\
\vdots \\
x \equiv a_k \pmod{n_k}.
\]

Further, all solutions x are congruent modulo $N = \prod_{i=1}^{k} n_i$.

Let $m_i = N/n_i$

i’th “selector” number: $T_i = \left(m_i^{-1} \mod n_i\right) m_i$

\[
x = a_1 \ T_1 + a_2 \ T_2 + \ldots + a_k \ T_k
\]
Recall: Interpolation

Let pairs \((a_1, b_1), (a_2, b_2), \ldots, (a_{d+1}, b_{d+1})\) from a field \(F\) be given (with all \(a_i\)'s distinct).

Theorem:

There is a unique degree \(d\) polynomial \(P(x)\) satisfying \(P(a_i) = b_i\) for all \(i = 1 \ldots d+1\).
A linear algebra view

Let \(p(x) = p_0 + p_1x + p_2x^2 + \ldots + p_dx^d \)

Need to find the coefficient vector \((p_0, p_1, \ldots, p_d)\)

\[
p(a) = p_0 + p_1a + \ldots + p_da^d
= 1 \cdot p_0 + a \cdot p_1 + a^2 \cdot p_2 + \ldots + a^d \cdot p_d
\]

Thus we need to solve:

\[
\begin{pmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^d \\
1 & a_2 & a_2^2 & \cdots & a_2^d \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{d+1} & a_{d+1}^2 & \cdots & a_{d+1}^d \\
\end{pmatrix}
\begin{pmatrix}
p_0 \\
p_1 \\
\vdots \\
p_d \\
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_{d+1} \\
\end{pmatrix}
\]
Lagrange interpolation

The \((d+1) \times (d+1)\) Vandermonde matrix

\[
M = \begin{pmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^d \\
1 & a_2 & a_2^2 & \cdots & a_2^d \\
1 & a_3 & a_3^2 & \cdots & a_3^d \\
& & \vdots & & \\
1 & a_{d+1} & a_{d+1}^2 & \cdots & a_{d+1}^d
\end{pmatrix}
\]

is invertible.

- The determinant of \(M\) is nonzero when \(a_i\)'s are distinct.

Thus can recover coefficient vector as \(\vec{p} = M^{-1} \vec{b} \)

The columns of \(M^{-1}\) are given by the coefficients of the various “selector” polynomials we constructed in Lagrange interpolation.
Representing Polynomials

Let $P(x) \in F[x]$ be a degree-d polynomial.

Representing $P(x)$ using $d+1$ field elements:

1. List the $d+1$ coefficients.
2. Give P’s value at $d+1$ different elements.

Rep 1 to Rep 2: Evaluate at $d+1$ elements

Rep 2 to Rep 1: Lagrange Interpolation
Number Theory:
- Unique factorization
- Chinese Remainder theorem

Fields:
- Definitions
- Examples
- Finite fields of prime order

Polynomials:
- Degree-d polys have \(\leq d \) roots.
- Polynomial division with remainder
- Lagrange Interpolation