Approximation Algorithms
<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT</td>
<td>given a Boolean formula F, is it satisfiable?</td>
</tr>
<tr>
<td>3SAT</td>
<td>same, but F is a 3-CNF</td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td>given G and k... are there k vertices which touch all edges?</td>
</tr>
<tr>
<td>Clique</td>
<td>are there k vertices all connected?</td>
</tr>
<tr>
<td>Max-Cut</td>
<td>is there a vertex 2-coloring with at least k “cut” edges?</td>
</tr>
<tr>
<td>Hamiltonian-Cycle</td>
<td>is there a cycle touching each vertex exactly once?</td>
</tr>
</tbody>
</table>
SAT ... is NP-complete
3SAT ... is NP-complete
Vertex-Cover ... is NP-complete
Clique ... is NP-complete
Max-Cut ... is NP-complete
Hamiltonian-Cycle ... is NP-complete
INVENTS BEAUTIFUL THEORY OF ALGORITHMIC COMPLEXITY

EVERYTHING IS NP-COMPLETE
There is only one idea in this lecture:

Don’t Give Up
Vertex-Cover

Given graph $G = (V,E)$ and number k, is there a size-k “vertex-cover” for G?

$S \subseteq V$ is a “vertex-cover” if it touches all edges.

(The “popular sets” on HW 5)

G has a vertex-cover of size 3.
Vertex-Cover

Given graph $G = (V, E)$ and number k, is there a size-k “vertex-cover” for G?

$S \subseteq V$ is a “vertex-cover” if it touches all edges.

G has no vertex-cover of size 2.

(Because you need ≥ 1 vertex per matching edge.)
Vertex-Cover

Given graph $G = (V, E)$ and number k, is there a size-k “vertex-cover” for G?

$(S \subseteq V$ is a “vertex-cover” if it touches all edges.)

The Vertex-Cover problem is **NP-complete.**

∴ assuming “P ≠ NP”, there is **no** algorithm running in **polynomial time** which, for **all graphs** G, finds the **minimum**-size vertex-cover.
Don’t Give Up

Subexponential-time algorithms:

Brute-force tries all 2^n subsets of n vertices.

Maybe there’s an $O(1.5^n)$-time algorithm.

Or $O(1.1^n)$ time, or $O(2^{n-1})$ time, or…

Could be quite okay if $n = 100$, say.

As of 2010: there is an $O(1.28^n)$-time algorithm.

:: assuming “P ≠ NP”, there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.
Don’t Give Up

Special cases:

Solvable in poly-time for…

- **tree** graphs,
- **bipartite** graphs,
- “**series-parallel**” graphs…

Perhaps for “graphs encountered in practice”?

\[\therefore\] assuming “P ≠ NP”, there is **no** algorithm running in **polynomial time** which, for all graphs \(G\), finds the **minimum**-size vertex-cover.
Don’t Give Up

Approximation algorithms:

Try to find *pretty small* vertex-covers.

Still want polynomial time, and for all graphs.

\[\therefore \text{assuming “P} \neq \text{NP”, there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.} \]
Easy Theorem (from 1976):

There is a *polynomial-time* algorithm that, given *any* graph $G = (V,E)$, outputs a vertex-cover $S \subseteq V$ such that

$$|S| \leq 2|S^*|$$

where S^* is the smallest vertex-cover.

“A factor 2-approximation for Vertex-Cover.”
Another one of my favorite graph problems:

Max-Cut

Input: A graph $G = (V, E)$.

Output: A “2-coloring” of V: each vertex designated blue or gray.

Goal: Have as many cut edges as possible. An edge is cut if its endpoints have different colors.
Max-Cut

Input: A graph $G=(V,E)$.

Output: A “2-coloring” of V: each vertex designated blue or gray.

Goal: Have as many cut edges as possible. An edge is cut if its endpoints have different colors.
On one hand: Finding the \textbf{MAX}-Cut is NP-hard.

On the other hand:

Polynomial-time “Local Search” algorithm guarantees cutting $\geq \frac{1}{2}|E|$ edges.

(Start with arbitrary 2-coloring and repeatedly switch color of a vertex if it improves cut value, till there is no such vertex.)

In particular:

$(\# \text{ cut by Local Search}) \geq \frac{1}{2} (\text{max } \# \text{ cuttable})$

“A factor $\frac{1}{2}$-approximation for Max-Cut.”
Max-Cut

By the way:

Goemans and Williamson (1994) gave a polynomial-time 0.87856-approximation for Max-Cut.

It is very beautiful, but requires some machinery (semidefinite programming).
A technicality: **Optimization vs. Decision**

NP defined to be a class of **decision problems**.

This is for technical convenience.

Usually have natural ‘optimization’ version.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT</td>
<td>Given a 3-CNF formula, is it satisfiable?</td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td>Given G and k, are there k vertices which touch all edges?</td>
</tr>
<tr>
<td>Clique</td>
<td>Given G and k, are there k vertices which are all mutually connected?</td>
</tr>
<tr>
<td>Max-Cut</td>
<td>Is there a vertex 2-coloring with at least k “cut” edges?</td>
</tr>
<tr>
<td>Hamiltonian-Cycle</td>
<td>Is there a cycle touching each vertex exactly once?</td>
</tr>
</tbody>
</table>
A technicality: **Optimization vs. Decision**

NP defined to be a class of decision problems. This is for technical convenience. Usually have natural ‘optimization’ version.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT</td>
<td></td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td>Given G, find the smallest $S \subseteq V$ touching all edges.</td>
</tr>
<tr>
<td>Clique</td>
<td>Given G, find the largest clique (set of mutually connected vertices).</td>
</tr>
<tr>
<td>Max-Cut</td>
<td>Given G, find the largest number of edges ‘cut’ by some vertex 2-coloring.</td>
</tr>
<tr>
<td>Hamiltonian-Cycle</td>
<td></td>
</tr>
</tbody>
</table>
A technicality: **Optimization vs. Decision**

NP defined to be a class of **decision problems**.

This is for technical convenience.

Usually have natural ‘optimization’ version.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-3SAT</td>
<td>Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.</td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td>Given G, find the smallest $S \subseteq V$ touching all edges.</td>
</tr>
<tr>
<td>Clique</td>
<td>Given G, find the largest clique (set of mutually connected vertices).</td>
</tr>
<tr>
<td>Max-Cut</td>
<td>Given G, find the largest number of edges ‘cut’ by some vertex 2-coloring.</td>
</tr>
</tbody>
</table>
A technicality: **Optimization vs. Decision**

NP defined to be a class of **decision problems**. This is for technical convenience. Usually have natural ‘optimization’ version.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-3SAT</td>
<td>Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.</td>
</tr>
<tr>
<td>Vertex-Cover</td>
<td>Given G, find the smallest $S \subseteq V$ touching all edges.</td>
</tr>
<tr>
<td>Clique</td>
<td>Given G, find the largest clique (set of mutually connected vertices).</td>
</tr>
<tr>
<td>Max-Cut</td>
<td>Given G, find the largest number of edges ‘cut’ by some vertex 2-coloring.</td>
</tr>
<tr>
<td>TSP</td>
<td>Given G with edge costs, find the cheapest cycle touching each vertex exactly once.</td>
</tr>
</tbody>
</table>
A technicality: **Optimization vs. Decision**

NP defined to be a class of **decision problems**.

This is for technical convenience.

Usually have natural ‘optimization’ version.

Technically, the ‘optimization’ versions can’t be in **NP**, since they’re not decision problems.

We often still say they are **NP-hard**.

This means: *if* you could solve them in poly-time, *then* you could solve any NP problem in poly-time.

Let’s not worry about this terminology technicality!
Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, …

All of these problems are equally NP-hard.

(There’s no poly-time algorithm to find the optimal solution unless P = NP.)

But from the point of view of finding approximately optimal solutions, there is an intricate, fascinating, and wide range of possibilities…
Today: A case study of approximation algorithms

1. A somewhat good approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the “k-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
Today: A case study of approximation algorithms

1. A somewhat good approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the “k-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
Given graph $G = (V,E)$ try to find the smallest “vertex-cover” for G.

($S \subseteq V$ is a “vertex-cover” if it touches all edges.)
A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

GreedyVC(G)

\[S \leftarrow \emptyset \]

while not all edges marked as “covered”

find \(v \in V \) touching most unmarked edges

\[S \leftarrow S \cup \{v\} \]

mark all edges \(v \) touches
GreedyVC example
GreedyVC example

(Break ties arbitrarily.)
GreedyVC example
GreedyVC example

Done. Vertex-cover size 3 (optimal) 😊.
GreedyVC analysis

Correctness:
✓ Always outputs a valid vertex-cover.

Running time:
✓ Polynomial time (good enough).

Solution quality:
This is the interesting question.
There must be some graph G where it doesn’t find the smallest vertex-cover.
Because otherwise… $P = NP!$
A bad graph for GreedyVC

Smallest? 3
A bad graph for GreedyVC

Smallest? 3 So GreedyVC is not even a 1.33-approximation.
GreedyVC? 4 (Because 1.33 < 4/3.)
A worse graph for GreedyVC

Smallest?

GreedyVC?

Poll

21

So GreedyVC is not even a 1.74-approximation.
(Because $1.74 < \frac{21}{12}$.)
Even worse graph for GreedyVC

Well... it’s a good homework problem.

We know GreedyVC is not a 1.74-approximation.

Fact: GreedyVC is not a 2-approximation.

Fact: GreedyVC is not a 3.14-approximation.

Fact: GreedyVC is not a 42-approximation.

Fact: GreedyVC is not a 999-approximation.
Greed is Bad (for Vertex-Cover)

Theorem: \(\forall C, \text{GreedyVC is not a } C\text{-approximation.} \)

In other words:

For any constant \(C \),

there is a graph \(G \) such that

\[|\text{GreedyVC}(G)| > C \cdot |\text{Min-Vertex-Cover}(G)|. \]
Gavril's simple algorithm

\[\text{GavrilVC}(G) \]

\[S \leftarrow \emptyset \]

while not all edges marked as “covered”

let \(\{v,w\} \) be any unmarked edge

\[S \leftarrow S \cup \{v,w\} \]

mark all edges \(v,w \) touch as covered
GavrilVC example
GavrilVC example
GavrilVC example

Smallest: 3
GavrilVC: 6
So GavrilVC is at best a 2-approximation.
Theorem:
GavrilVC is a 2-approximation for Vertex-Cover.

Proof:
Say GavrilVC(G) does T iterations. So its \(|S| = 2T.\)
Say it picked edges \(e_1, e_2, \ldots, e_T \in E.\)
Key claim: \(\{e_1, e_2, \ldots, e_T\}\) is a matching.
Because... when \(e_j\) is picked, it’s unmarked,
so its endpoints are not among \(e_1, \ldots, e_{j-1}.\)
So any vertex-cover must have \(\geq 1\) vertex from each \(e_j.\)
Theorem:

GavrilVC is a \(2\)-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does \(T\) iterations. So its \(|S| = 2T\).

Say it picked edges \(e_1, e_2, \ldots, e_T \in E\).

Key claim: \(\{e_1, e_2, \ldots, e_T\}\) is a matching.

Because… when \(e_j\) is picked, it’s unmarked, so its endpoints are not among \(e_1, \ldots, e_{j-1}\).

So any vertex-cover must have \(\geq 1\) vertex from each \(e_j\). Including the minimum vertex-cover \(S^*\), whatever it is.

Thus \(|S^*| \geq T\).

So for Gavril’s final vertex-cover \(S\),

\[|S| = 2T \leq 2|S^*|\]
Today: A case study of approximation algorithms

2. A pretty good approximation algorithm for the “k-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
Today: A case study of approximation algorithms

2. A pretty good approximation algorithm for the “k-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
“k-Coverage” problem
“Pokémon-Coverage” problem

Let’s say you have some Pokémon, and some trainers, each having a subset of Pokémon.

Given k, choose a team of k trainers to maximize the # of distinct Pokémon.
“Pokémon-Coverage” problem

This problem is **NP-hard**. 😞

Approximation algorithm?

We could try to be greedy again…

GreedyCoverage()

for $i = 1 \ldots k$

add to the team the trainer bringing in the most new Pokémon, given the team so far
Example with $k=3$:

Optimum: 27
GreedyCoverage: 21

So Greedy is at best a 77.7%-approximation.
Greed is Pretty Good (for k-Coverage)

Theorem:
GreedyCoverage is a 63%-approximation for k-Coverage.

More precisely, $1 - 1/e$

where $e \approx 2.718281828\ldots$
Proof: (Don’t read if you don’t want to.)

Let P^* be the Pokémon covered by the best k trainers.
Define $r_i = |P^*| - \# \text{Pokémon covered after } i \text{ steps of Greedy}.$
We’ll prove by induction that $r_i \leq (1-1/k)^i \cdot |P^*|.$
The base case $i=0$ is clear, as $r_0 = |P^*|.$
For the inductive step, suppose Greedy enters its ith step.
At this point, the number of uncovered Pokémon in P^* must be $\geq r_{i-1}.$
We know there are some k trainers covering all these Pokémon.
Thus one of these trainers must cover at least r_{i-1}/k of them.
Therefore the trainer chosen in Greedy’s ith step will cover $\geq r_{i-1}/k$ Pokémon.
Thus $r_i \leq r_{i-1} - r_{i-1}/k = (1-1/k) \cdot r_{i-1} \leq (1-1/k) \cdot (1-1/k)^{i-1} \cdot |P^*|$ by induction.
Thus we have completed the inductive proof that $r_i \leq (1-1/k)^i \cdot |P^*|.$
Therefore the Greedy algorithm terminates with $r_k \leq (1-1/k)^k \cdot |P^*|.$
Since $(1-1/k)^k \leq 1/e,$ we get $r_k \leq |P^*|/e.$
Thus Greedy covers at least $|P^*| - |P^*|/e = (1-1/e) \cdot |P^*|$ Pokémon.
This completes the proof that Greedy is a $(1-1/e)$-approximation algorithm.
Today: A case study of approximation algorithms

2. A 63% \((1−1/e)\) approximation algorithm for the “k-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
Today: A case study of approximation algorithms

2. A \(63\% (1-1/e)\) approximation algorithm for the “\(k\)-Coverage Problem”.

3. Some very good approximation algorithms for TSP.
TSP
(Traveling Salesperson Problem)

Many variants. Most common is “Metric-TSP”: (distance between two nodes is shortest path in graph)

Input: A graph $G=(V,E)$ with edge costs.

Output: A “tour”: i.e., a walk that visits each vertex at least once, and starts and ends at the same vertex.

Goal: Minimize total cost of tour.
TSP example

Cheapest tour:

3
+ 5
+ 5
+ 16
+ 26
+ 4
+ 12
+ 2
+ 2
= 71
TSP is probably the most famous NP-complete problem.

It has inspired many things…
Textbooks

The Traveling Salesman Problem
A Computational Study
David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook

The Traveling Salesman
Computational Solutions for TSP Applications
Gerhard Reinelt

Combinatorial Optimization
The Traveling Salesman Problem and Its Variations
Gregory Gutin and Abraham P. Punnen (Eds.)
“Popular” books
Advice: do not watch this movie
’60s sitcom-themed household-goods conglomerate ad/contests
People genuinely want to solve large instances.

Applications in:

- School bus routing
- Moving farm equipment
- Package delivery
- Space interferometer scheduling
- Circuit board drilling
- Genome sequencing
- ...

Basic Approximation Algorithm:
The MST Heuristic

Given G with edge costs…

1. Compute an **MST** T for G, rooted at any $s \in V$.
2. Visit the vertices via **DFS** from s.
MST Heuristic example

Step 1: MST
Step 2: DFS

Valid tour? ✓
Poly-time? ✓
Cost?

\(2 \times \text{MST Cost}\)

(84 in this case)
MST Heuristic

Theorem: MST Heuristic is factor-2 approximation.

Key Claim: Optimal TSP cost \geq MST Cost always.

This implies the Theorem, since

\[
\text{MST Heuristic Cost} = 2 \times \text{MST Cost}.
\]

Proof of Claim:

Take all edges in optimal TSP solution.
They form a connected graph on all $|V|$ vertices.
Take any spanning tree from within these edges.
Its cost is at least the MST Cost.
Therefore the original TSP tour’s cost is \geq MST Cost.
Can we do better?

Nicos Christofides, Tepper faculty, 1976:

There is a polynomial-time, factor 1.5-approximation algorithm for (Metric) TSP.

Proof is not too hard. Ingredients:

- MST Heuristic
- Eulerian Tours
- Cheapest Perfect Matching algorithm
Even better in a special case

In the important special case “Euclidean-TSP”, vertices are points in \mathbb{R}^2, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.1 approximation algorithm.
Even better in a special case

In the important special case “Euclidean-TSP”, vertices are points in \mathbb{R}^2, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a polynomial-time factor 1.01 approximation algorithm.
Even better in a special case

In the important special case “Euclidean-TSP”, vertices are points in \mathbb{R}^2, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.001 approximation algorithm.
Even better in a special case

In the important special case “Euclidean-TSP”, vertices are points in \(\mathbb{R}^2 \), costs are just the straight-line distances.

This special case is still \(\text{NP-hard} \).

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor \(1 + \epsilon \) approximation algorithm, for any \(\epsilon > 0 \).

(Running time is like \(O(n (\log n)^{1/\epsilon}) \).)
Euclidean-TSP:
NP-hard, but not that hard

\(n > 10,000 \) is feasible
Today: A case study of approximation algorithms

2. A 63% \((1-1/e)\) approximation algorithm for the “k-Coverage Problem”.

3. A 1.5-approximation algorithm for Metric-TSP.

4. A \((1+\epsilon)\)-approximation alg. for Euclidean-TSP.
Can we do better?

2. A $63\% \ (1-1/e)$ approximation algorithm for the “k-Coverage Problem”.

3. A 1.5-approximation algorithm for Metric-TSP.

4. A $(1+\epsilon)$-approximation alg. for Euclidean-TSP.
Can we do better?

2. A 63% \((1-1/e)\) approximation algorithm for the “k-Coverage Problem”.

What more do you want?!

3. A 1.5-approximation algorithm for Metric-TSP.

4. A \((1+\epsilon)\)-approximation alg. for Euclidean-TSP.
Can we do better?

3. A 1.5-approximation algorithm for Metric-TSP.

On one hand:
No improvement in the last 40 years.

On the other hand:
Researchers **strongly** believe we **can** improve the factor of 1.5.

Lots of progress on special cases and related problems in the last 5 years.

I predict an improvement within next 6 years.
Computer Scientists Take Road Less Traveled

After decades without progress, new shortcuts are discovered in the traveling salesman problem.
Can we do better?

2. A 63% \((1-1/e)\) approximation algorithm for the “k-Coverage Problem”.

We cannot do better. (Unless \(P=NP\).)

Theorem: For any \(\beta > 1-1/e\), it is NP-hard to factor \(\beta\)-approximate k-Coverage.

Proved in 1998 by Feige,
building on many prior works.
Unwound proof length of reduction: \(\approx 100\) pages.
Can we do better?

It is open if we can do better.

Theorem (Dinur & Safra, 2002, Annals of Math.):

For any \(\beta < 10\sqrt{5} - 21 \approx 1.36 \), it is **NP-hard** to \(\beta \)-approximate Vertex-Cover.
Approximating Vertex-Cover

Approximation Factor

NP-hard (Dinur–Safra) Poly-time (Gavril)

1 1.36 2

Between 1.36 & 2: unknown.
But a barrier called “Unique Games Conjecture” has been identified against improving factor 2 approximation
Unique Games Conjecture

Conjecture made by Subhash Khot in 2002 on intractability of certain approximation problem:

Given linear equations of form \(x_i - x_j \equiv \alpha_{ij} \pmod{p} \)

such that there is an assignment of \(x_i's \) with values in \(\{0, 1, \ldots, p-1\} \) satisfying 0.999* of the equations, it is hard to find assignment satisfying \(\gamma_p \) fraction of the equations, for some \(\gamma_p \to 0 \) as \(p \to \infty \)

* 0.999 is really \((1-\varepsilon)\) for arbitrary \(\varepsilon > 0 \)
The Unique Games Conjecture has many striking consequences

No $(2-\varepsilon)$-approximation algo for Vertex Cover [Khot-Regev’03]

No $(0.87856+\varepsilon)$-approx. algo. for Max-Cut! [Khot-Kindler-Mossel-O’Donnell’05]

Single unified algorithm (semidefinite programming) gives optimal approximation for all constraint satisfaction problems (like Max-Cut, Max-3SAT, etc.) [Raghavendra’08]

And many more implications…

Unlike P vs. NP, no consensus opinion on UGC’s validity.
A fascinating chapter in current algorithms & complexity research
Study Guide

Definitions:

Approximation algorithm.
The idea of “greedy” algorithms.

Algorithms and analysis:

Gavril algorithm for Vertex-Cover.

MST Heuristic for TSP.