Today’s Menu

- Graph search: DFS

- Minimum spanning tree

- Maximum matching
Graph Search
Given a map, and two locations x and y, determine efficiently if it is possible to go from x to y.

How can we efficiently check if two vertices in a graph are connected or not?
The basic idea:

To **explore** all the nodes you can reach from vertex \(x \):

explore all the nodes you can reach from the neighbors of \(x \).

Depth-First Search

DFS: On input \(G = (V, E) \), \(x \in V \)

Mark \(x \) as “visited”.

For each \(z \in N(x) \):

If \(z \) is not marked “visited”, run DFS\((G, z)\).
Suppose $x = 1$

The order in which vertices marked “visited”:

$$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12$$
I ❤ Recursion

DFS: On input $G = (V, E)$, $x \in V$

Mark x as “visited”.

For each $z \in N(x)$:

If z is not marked “visited”, run $\text{DFS}(G, z)$.

The above visits every vertex connected to x.

To traverse every vertex in the graph:

DFS2: On input $G = (V, E)$

For each vertex v that is not marked “visited”:

run $\text{DFS}(G, v)$.
I ❤️ Recursion

DFS: On input $G = (V, E)$, $x \in V$

Mark x as “visited”.

For each $z \in N(x)$:

If z is not marked “visited”, run $\text{DFS}(G, z)$.

DFS2: On input $G = (V, E)$

For each vertex v that is not marked “visited”:

run $\text{DFS}(G, v)$.

Running time: $O(m)$ (exercise)

Running time: $O(n + m)$ (exercise)
Can use DFS to solve:

- Check if there is a path between two given vertices.
- Decide if G is connected.
- Identify the connected components of G.
- (and other similar problems)

There are other graph traversing algorithms that you can use to solve above problems.

One famous one is Breadth-First Search (BFS).
Minimum Spanning Tree
Boruvka’s pal Jindrich Saxel was working for Zapadomoravské elektrárny (the West Moravian Power Plant company).

Saxel asked:
What is the least cost way to electrify southwest Moravia?
Remember the CS life lesson

If your problem has a graph, great. If not, try to make it have a graph!
Graph representation

weighted graph

Total weight/cost: 42
Minimum spanning tree problem

Input: A connected graph $G = (V, E)$, and a cost function $c : E \to \mathbb{R}^+$.

Output: Subset of edges with minimum total cost such that all vertices are connected.

Observation:

The output must be a tree.

Recall

tree: connected, acyclic

If not (i.e. there is a cycle), you could delete an edge from the cycle to get a cheaper solution.
Convenient Assumption:

Edges have distinct costs.

Exercise: In this case the MST is unique.

A hint on why this is WLOG:

“Whether the distance from Brno to Breclav is 50km or 50km and 1cm is a matter of conjecture.”
Jarník-Prim Algorithm

\[V' = \text{vertices connected so far} \]

\[E' = \text{edges in the solution so far} \]
V' = \{a\} \quad \text{(start with an arbitrary node)}

E' = \{\}
\(V' = \{a, b\} \)

\(E' = \{\{a, b\}\} \)
\[V' = \{a, b, g\} \]

\[E' = \{\{a, b\}, \{b, g\}\} \]
$V' = \{a, b, g, f\}$

$E' = \{\{a, b\}, \{b, g\}, \{g, f\}\}$
Jarník-Prim Algorithm

\[V' = \{a, b, g, f, e\} \]

\[E' = \\{(a, b), (b, g), (g, f), (g, e)\} \]
\[V' = \{a, b, g, f, e, d\} \]

\[E' = \{\{a, b\}, \{b, g\}, \{g, f\}, \{g, e\}, \{e, d\}\} \]
V' = \{a, b, g, f, e, d, c\}

E' = \{\{a, b\}, \{b, g\}, \{g, f\}, \{g, e\}, \{e, d\}, \{b, c\}\}

Total cost: 42
Jarník-Prim Algorithm

On input a weighted & connected graph $G = (V, E)$:

$V' = \{w\}$ (for an arbitrary w in V)

$E' = \emptyset$

While $V' \neq V$:

- Let $\{u, v\}$ be the min cost edge such that u is in V', v is not in V'.

- $E' = E' + \{u, v\}$

- $V' = V' + v$

Output E'
This is usually known as Prim’s algorithm. (due to a 1957 publication by Robert Prim)

Actually, first discovered by Vojtech Jarník, who described it in a letter to Boruvka, and later published it in 1930.

Boruvka himself had published a different algorithm in 1926.
How do we know the algorithm is correct?

Lemma: (MST Cut Property)

Let $G = (V, E)$ be a graph with distinct edge costs.

Let $V' \subset V$ \hspace{1cm} ($V' \neq \emptyset$, $V' \neq V$).

Let $e = \{u, v\}$ be the cheapest edge with $u \in V'$, $v \not\in V'$.

Then the MST **must** contain this edge e.
Proof idea:

Proof by contradiction.

Let T be the MST.

Suppose $e = \{u, v\}$ is not in T.

$e' = \{u', v'\}$ is in T. (e' chosen carefully)

$c(e') > c(e)$

$T - e' + e$ is a spanning tree with smaller cost.
- clearly has smaller cost
- clearly has $n-1$ edges
- argue it must be connected

\(\text{Contradiction} \)
A naïve implementation of Jarník-Prim runs in time $O(m^2)$.

A better implementation runs in time $O(m \log m)$.

In practice, this is pretty good!

But a good algorithm designer always thinks:

Can we do better?
1984: Fredman & Tarjan invent the “Fibonacci heap” data structure.

Running time improved from $O(m \log m)$ to $O(m \log^* m)$

also not Fredman
not Fredman
Tarjan
1986: Gabow, Galil, T. Spencer, Tarjan improved the alg.

Running time improved from $O(m \log^* m)$ to $O(m \log(\log^* m))$
1997: Chazelle invents "soft heap" data structure.

Running time improved from $O(m \log(\log^* m))$ to $O(m \alpha(m) \log \alpha(m))$

What is $\alpha(m)$?

Bernard Chazelle Damien Chazelle (writer & director)
What is $\alpha(m)$?

It is known as the Inverse-Ackermann function.

$\log^*(m)$ \# times you do \log to go down to 2.

$\log^{**}(m)$ \# times you do \log^* to go down to 2.

$\log^{***}(m)$ \# times you do \log^{**} to go down to 2.

$\alpha(m)$ \# \ast’s you need so that $\log^{****\cdots\cdots}(m) \leq 2$

Incomprehensibly small!
2002: Pettie & Ramachandran gave a new algorithm. They proved its running time is $O(\text{optimal})$.

Would you like to know its running time?

So would we! It is unknown. All we know is: whatever it is, it’s optimal.
Maximum matching problem
(in bipartite graphs)
Some motivating real-world examples

matching machines and jobs

Job 1

Job 2

...

Job n
Some motivating real-world examples

matching professors and courses

15-110
15-112
15-122
15-150
15-251
•
•
•
Some motivating real-world examples

matching students and internships
If your problem has a graph, great. If not, try to make it have a graph!
A bipartite graph $G = (V, E)$ is bipartite if:

- there exists a bipartition of V into X and Y
- each edge connects a vertex in X to a vertex in Y

Given a graph $G = (V, E)$, we could ask, is it bipartite?
Bipartite Graphs

Given a graph $G = (V, E)$, we could ask, is it bipartite?
Is this graph bipartite?

- Yes
- No
- Beats me
Bipartite Graphs

Often we write the bipartition explicitly:

\[G = (X, Y, E) \]
Bipartite Graphs

Great for modeling relations between two classes of objects.

Examples:

\[X = \text{machines}, \quad Y = \text{jobs} \]
An edge \(\{x, y\} \) means \(x \) is capable of doing \(y \).

\[X = \text{professors}, \quad Y = \text{courses} \]
An edge \(\{x, y\} \) means \(x \) can teach \(y \).

\[X = \text{students}, \quad Y = \text{internship jobs} \]
An edge \(\{x, y\} \) means \(x \) and \(y \) are interested in each other.

...
Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph

A matching:

A subset of the edges that do not share an endpoint.
Often, we are interested in finding a matching in a bipartite graph.

A matching:
A subset of the edges that do not share an endpoint.
Often, we are interested in finding a matching in a bipartite graph

A matching: A subset of the edges that do not share an endpoint.
Matchings in bipartite graphs

Often, we are interested in finding a **matching** in a bipartite graph

A **matching**: A subset of the edges that do not share an endpoint.
Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph

Maximum matching: a matching with largest number of edges (among all possible matchings).
Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph

Maximal matching: a matching which cannot contain any more edges.
Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph

A necessary condition for perfect matching: $|X| = |Y|

Perfect matching: a matching that covers all vertices.
Important Note

We can define matchings for non-bipartite graphs as well.
Important Note

We can define matchings for non-bipartite graphs as well.
The problem we want to solve is:

Input: A graph \(G = (V, E) \).

Output: A maximum matching in \(G \).
Actually, we want to solve the following restriction:

Bipartite maximum matching problem

Input: A *bipartite* graph $G = (X, Y, E)$.
Output: A maximum matching in G.
Bipartite maximum matching problem

A good first attempt:

What if we picked edges greedily?

```
1 -- 2 -- 3 -- 4
    |     |
    5 -- 6 -- 7
    |     |
    8
```
Bipartite maximum matching problem

A good first attempt:

What if we picked edges greedily?

1
2
3
4
5
6
7
8
Bipartite maximum matching problem

A good first attempt:

What if we picked edges *greedily*?

![Graph showing a bipartite matching example](image-url)
A good first attempt:

What if we picked edges greedily?

Is there a way to get out of this local optimum?
Bipartite maximum matching problem

A good first attempt:

What if we picked edges greedily?

Consider the following path:
Bipartite maximum matching problem

A good first attempt:

What if we picked edges greedily?

Consider the following path:
Augmenting paths

Let M be some matching.

An **augmenting path** with respect to M is a path in G such that:

- the edges in the path alternate between being in M and not being in M
- the first and last vertices are **not** matched by M

Matching = red edges

Augmenting path: $4-8-2-5-1-7$
Augmenting paths

Augmenting path: 4-8-2-5-1-7

matching = red edges

augmenting path \implies \text{can obtain a bigger matching.}
Augmenting paths

Augmenting path: 2-5-1-7

matching = red edges

An augmenting path need not contain all the edges of the matching.

augmenting path ⇒ can obtain a bigger matching.
Augmenting paths

Matching = red edges

Augmenting path: 4-8

An augmenting path need not contain any of the edges of the matching.

Augmenting path \(\Rightarrow \) can obtain a bigger matching.
Augmenting paths and maximum matchings

augmenting path \implies can obtain a bigger matching.

In fact, it turns out:

no augmenting path \implies maximum matching.

Theorem:
A matching M is maximum if and only if there is no augmenting path with respect to M.
Augmenting paths and maximum matchings

Proof:

If there is an augmenting path with respect to M, we saw that M is not maximum.

Want to show:

If M is not maximum, then there is an augmenting path.

Let M^* be a maximum matching. \[|M^*| > |M|. \]

Let S be the set of edges contained in M^* or M but not both.

\[S = (M^* \cup M) - (M \cap M^*) \]
Proof:

Let S be the set of edges contained in M^* or M but not both.

$S = (M^* \cup M) - (M \cap M^*)$

(Will find an augmenting path in S)

What does S look like?

Each vertex has degree at most 2. (why?)

So S is a collection of cycles and paths. (exercise)

The edges alternate red and blue.
Augmenting paths and maximum matchings

Proof:

Let S be the set of edges contained in M^* or M but not both.

$$S = (M^* \cup M) - (M \cap M^*)$$

So S is a collection of **cycles** and **paths**. (exercise)

The edges alternate **red** and **blue**.

red > # blue in S

red = # blue in **cycles**

So \exists a **path** with # red > # blue. This is an **augmenting path** with respect to M.
Algorithm to find maximum matching

Theorem:
A matching M is maximum if and only if there is no augmenting path with respect to M.

Algorithm:
- Start with a single edge as your matching M.
- Repeat until there is no augmenting path w.r.t. M:
 - Find an augmenting path with respect to M.
 - Update M according to the augmenting path.

OK, but how do you find an augmenting path?
Not too bad for bipartite graphs (attend recitation).
Today’s Menu

- Graph search: DFS

- Minimum spanning tree

- Maximum matching