New Phrases

- We say a language is in \(P \) if there exists a polynomial time algorithm that decides the language.
- We say a problem is in \(NP \) if there exists a polynomial time verifier TM \(V \) such that for all \(x \in \Sigma^* \), \(x \) is in \(L \) if and only if there exists a polynomial length certificate \(P \) such that \(V(x, p) = 1 \).
- A problem \(A \) reduces in polynomial time to a problem \(B \) if, given an algorithm to solve \(B \), we can use it to solve \(A \) in polynomial time. If this is the case, we write this as \(A \leq_P B \).
- A problem \(Y \) is \(NP \)-hard if for every problem \(X \in NP \), \(X \leq_P Y \).
- A problem is \(NP \)-complete if it is both in \(NP \) and \(NP \)-hard.

NP is Not Not Polynomial

Show that \(P \) is contained in \(NP \).

No Privacy

DOUBLE-CLIQUE: Given a graph \(G = (V, E) \) and a natural number \(k \), does \(G \) contain two vertex-disjoint cliques of size \(k \) each?

Show DOUBLE-CLIQUE is NP-Complete.

No Pun

VERTEX-COVER: Given a graph \(G = (V, E) \), and a natural number \(k \), does there exist a subset \(U \subseteq V \) with \(|U| \leq k \) such that every edge \(e \in E \) has at least one of its endpoints in \(U \)?

Show VERTEX-COVER is NP-complete. (Hint: Reduce from 3SAT)

Never Pausing

(a) Prove that the Halting Problem is \(NP \)-hard.

(b) (Bonus) Consider the HALTS-KINDA-SOON problem: Given a turing machine \(T \) and an input \(x \), does it halt in \(2^{|x|} \) steps?

Show that HALTS-KINDA-SOON is not in \(P \). That is, for any positive \(k \), HALTS-KINDA-SOON is not solvable in time \(O(n^k) \).