15-251: Great Theoretical Ideas In Computer Science
Recitation 2

Training Manual

- **Deterministic Finite Automaton (DFA):** A DFA M is a machine that reads a finite input one character at a time in one pass, transition from state to state, and ultimately accepts or rejects. Formally, M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where Q is the finite set of states, Σ is the finite alphabet, $\delta : Q \times \Sigma \rightarrow Q$ is the transition function, $q_0 \in Q$ is the starting state, and $F \subseteq Q$ is the set of accepting states.

- **Regular language:** A language L is regular if $L = L(M)$ for some DFA M (M decides L).

- **Turing Machine (TM):** A TM M is a machine that can read and write to an infinite tape containing the input, transition from state to state, and ultimately accepts or rejects. Formally, M is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$, where:
 - Q is the finite set of states,
 - Σ is the finite input alphabet with $\sqcup \notin \Sigma$,
 - Γ is the finite tape alphabet with $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
 - $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$ is the transition function,
 - $q_0 \in Q$ is the starting state,
 - $q_{acc} \in Q$ is the accepting state,
 - and $q_{rej} \in Q$ is the rejecting state.

- **Decider TM:** A TM M is a decider if it halts on all inputs.

- **Decidable language:** A language L is decidable (or computable) if $L = L(M)$ for some decider TM M.

Odd Ones Out

Draw a DFA that decides the language

$$L = \{x : x \text{ has an even number of 1s and an odd number of 0s}\}$$

over the alphabet $\Sigma = \{0, 1\}$.

Ones Too Many

Show that the language $L = \{1^n \mid \log_2(n) \in \mathbb{N}\}$ over the alphabet $\Sigma = \{1\}$ is not regular.

Busy Intersection

(a) Prove that if L_1 and L_2 are regular, then $L_1 \cap L_2$ is regular.

(b) Using (a), show that $L = \{w : w \text{ has the same number of 0s and 1s}\}$ over the alphabet $\Sigma = \{0, 1\}$ is not regular.
Balance in All Things

Construct a TM that decides the language $L = \{ x : \text{the parentheses in } x \text{ are balanced} \}$ over the alphabet $\Sigma = \{ (,) \}$.

Closure Ceremony

Suppose that L_1 and L_2 are decidable languages. Show that the three languages $L_1 \cup L_2$, $L_1 \cdot L_2$ and L_1^* are all decidable as well.