Definitions and Review

- **Field.** A field is a set F equipped with two operations $+, \times$ such that S forms an abelian (commutative) group under $+$, and $F \setminus \{0\}$ forms an abelian group under \times where '0' is the identity of $+$ (a.k.a the additive identity). Also, multiplication should distribute over addition : $\forall x, y, z \in F, x \times (y + z) = x \times y + x \times z$

- **Polynomial.** Given a field F, we can construct the set of polynomials over F, denoted by $F[x]$. This is simply the set of expressions of the form $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where the a_is are elements of the field F.

- **RSA Crash Course.** Let’s say I want to send my credit card number c to Amazon. Amazon creates an asymmetric pair of keys as follows:

 1. Pick two random, distinct large primes p and q.
 2. Let $N = pq$. Compute $\phi(N)$ using the formula $\phi(pq) = (p - 1)(q - 1)$.
 3. Pick a random element from $\mathbb{Z}_{\phi(N)}^*$, call it e.
 4. Publish (N, e) on the internet. This is the **public key**.
 5. Compute the inverse of e modulo $\mathbb{Z}_{\phi(N)}^*$, and call it d. d is Amazon’s **private key**.

Given this setup, I can send $M = c^e \mod N$ to Amazon, and Amazon can recover c using this equality : $M^d \equiv_N c^{ed} \equiv_N c^1$

RSA Fundamentals

(a) In step (3), why did we pick e from $\mathbb{Z}_{\phi(N)}^*$?

(b) What prevents an attacker from computing the inverse of e in $\mathbb{Z}_{\phi(N)}^*$ themselves?

(c) Do we know for sure that $c \in \mathbb{Z}_{N}^*$? What if it’s not?

Inverting RSA

Suppose I’m communicating with an untrusted server that claims to be Amazon. I want the server to prove that it is indeed Amazon. Come up with a ‘digital signature’ scheme (based on RSA) that will let me verify Amazon’s identity. Note that the underlying assumption is that I trust Amazon’s public key indeed belongs to Amazon and not some imposter.

1To see a real world private key, run `cat ~/.ssh/id_rsa` on a Unix system
Interpolation

Find the unique degree-2 polynomial \(f \) over \(\mathbb{Z}_7 \) that satisfies the following:

\[
f(1) = 5, f(2) = 3, f(4) = 1
\]

Fields are Meta

Let \(F \) be \(\mathbb{Z}_7 \) - this is the unique field of size 7, up to isomorphism. Let \(S \) be the set of polynomials over \(F \) with degree at most 2.

(a) What is the size of \(S \)?

(b) Verify that \(S \) is a field under addition and multiplication modulo \(x^3 - 2 \).

#Hashing

A length-compressing hashing function is a function \(f : \{0, 1\}^n \to \{0, 1\}^m \), where \(m < n \). Note that such a function cannot be injective (by the pigeonhole principle), so it has collisions (i.e. \(\exists x, y \in \{0, 1\}^n \) such that \(f(x) = f(y) \)).

Let \(p \) be an \(n \)-bit prime and let \(g \in \mathbb{Z}_p^* \) be a generator of this group. Fix some \(y \in \mathbb{Z}_p^* \). Consider the following hashing function \(h : \{0, 1\}^{n+1} \to \{0, 1\}^n \), given by \(h_{p, g, y}(x, b) = y^b g^x \mod p \). Note that \(x \in \{0, 1\}^n \) and \(b \in \{0, 1\} \), and we interpret \(x \) as a number (an element of \(\mathbb{Z}_p^* \)).

Prove that the problem of efficiently finding collisions for this hash function is at least as hard as the discrete log problem\(^2\).

\(^2\)If we can find collisions in \(h_{p, g, y} \) for arbitrary \(p, g, y \), then we can find the discrete log (base \(g \)) of arbitrary elements of \(\mathbb{Z}_p^* \).