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ABSTRACT 

Multi-touch gestures can be very difficult to program cor-
rectly because they require that developers build high-level 
abstractions from low-level touch events. In this paper, we 
introduce programming primitives that enable programmers 
to implement multi-touch gestures in a more understandable 
way by helping them build these abstractions. Our design of 
these primitives was guided by a formative study, in which 
we observed developers’ natural implementations of custom 
gestures. Touch groups provide summaries of multiple fin-
gers rather than requiring that programmers track them 
manually. Cross events allow programmers to summarize the 
movement of one or a group of fingers. We implemented 
these two primitives in two environments: a declarative 
programming system and in a standard imperative pro-
gramming language. We found that these primitives are ca-
pable of defining nuanced multi-touch gestures, which we 
illustrate through a series of examples. Further, in two user 
evaluations of these programming primitives, we found that 
multi-touch behaviors implemented in these programming 
primitives are more understandable than those implemented 
with standard touch events. 
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Figure 1: An illustration of a two-finger swipe-right gesture 
implemented with touch groups and cross events. Touch 
groups summarize properties of groups of touch events 
that move in synchrony. Cross events fire when a touch 
group crosses a given path. In this gesture, a 'twoFin-
gerRightSwipe' event fires after a two-finger touch group 
crosses a path 10 pixels to the right of where the touch 
group started. 

1 Introduction 

For end-users, multi-touch user interfaces (UIs) can be more 
intuitive and direct than their mouse-keyboard counterparts. 
For developers, however, implementing multi-touch UIs can 
be counter-intuitive and error-prone, particularly when the 
UI involves custom gestures [13,15,16]. 

Researchers have proposed new gestures and have 
shown that allowing users to define their own gestures can 
have usability benefits [22,30]. For example, a drawing ap-
plication might include a custom gesture to allow artists to 
quickly switch between brushes. Although there are libraries 
that allow developers to re-use pre-existing multi-touch ges-
tures, programming multi-touch gestures is still a funda-
mental problem in human-computer interaction. 

1.1 Programming Multi-Touch Gestures 

Multi-touch behaviors are traditionally programmed using 
the event-action framework and three events: touchstart, 
touchmove, and touchend. In most multi-touch program-
ming frameworks, programmers define custom gestures us-
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ing callbacks in response to these events. These callbacks 
then handle the specifics of each touch event by referencing 
unique touch identifiers. In this paper, we refer to such 
frameworks as “touch*” frameworks. However, there are 
several challenges that developers face when working with 
touch* frameworks. Correctly programming a multi-touch 
gesture requires building high-level abstractions from low-
level touch events by tracking the movement of multiple 
fingers and maintaining consistency across a potentially 
large number of intermediate gesture states, and managing 
conflicts among multiple gestures [14,16]. 

1.2 Designing New Touch Primitives 

In this paper, we approach the challenges of multi-touch 
gesture programming with the goal of simplifying the un-
derlying events by introducing higher-level abstractions that 
can be used to program multi-touch gestures. We introduce 
programming primitives that help developers write and test 
multi-touch gestures by abstracting away some of the chal-
lenging aspects of building these behaviors. 

To design our new touch primitives, we adopted natural 
programming techniques [20,21]. We asked four developers 
to write pseudo-code for four multi-touch gestures while 
defining any high-level events that they found helpful in or-
der to do so.  From these pilot studies, two design features 
were clear. First, when a multi-touch gesture involved mul-
tiple touches moving in synchrony (such as a two-finger tap 
where both fingers will be pressed and released around the 
same time and in the same area) participants naturally 
grouped them into a single event. This is in contrast with 
the mechanics of conventional touch* frameworks, where 
touch events are limited to the individual touches. Second, 
participants often drew annotations on their sketches to 
mark interaction areas and paths. These annotations were 
not meant to be visible in the user interface, but to mark ges-
ture boundaries. Defining the position of these annotations, 
their dynamics, and their interactions with touch* events 
can be challenging. 

We defined touch group and cross event primitives to 
address the design needs we observed in our pilot studies. 
We implemented these primitives both in regular JavaScript 
and in the InterState  programming framework [23]. 

1.3 Contributions 

This paper makes the following contributions: 
 Introducing “touch groups” as a way to enable more ex-

pressive multi-touch gestures by summarizing one or 
multiple fingers. 

 Introducing “cross events” as a primitive component of 
multi-touch gestures that help developers by summariz-
ing the movement of a touch group and by allowing de-

velopers to define custom shapes and produce an event 
if a touch group crosses them. 

 Introducing primitives to help developers manage con-
flicts between multi-touch gestures implemented with 
touch groups and cross events. 

 Evaluations of these touch primitives that show that 
they can be more effective than traditional (touch*) pro-
gramming mechanisms. 

In this paper, we first discuss related work, which focuses on 
previous multi-touch event models, gesture recognition 
techniques, and other UI programming techniques. After re-
lated work, we detail our new primitives, touch groups and 
cross events. We then discuss our evaluations of the reada-
bility and writability of these primitives compared to a tradi-
tional multi-touch event model. We subsequently illustrate 
the effectiveness of these primitives by describing examples 
of custom gestures and their implementations with touch 
groups and cross events. Finally, we conclude with a discus-
sion of our scope and future work. 

2 Related Work 

Previous research has shown that custom multi-touch ges-
tures are pervasive [5,7], as developers invent new multi-
touch gestures [22] or mix and match previous gestures [9]. 
Researchers have proposed a number of systems to help de-
velopers define multi-touch gestures. The following sections 
will review a few of the previous approaches researchers 
have taken. 

2.1  Multi-Touch Abstractions and Event Models 

Several other researchers and projects have proposed alter-
native event models and multi-touch abstractions. Different 
abstractions make different assumptions about which as-
pects of a behavior are important and which can be abstract-
ed away. 

Several projects have proposed declarative event models 
where developers specify the features of the gestures in 
which they are interested rather than how to classify them 
[6]. These systems are built to help abstract away the low-
level code to track and maintain a gesture’s state. GDL [11], 
Proton [14], and Proton++ [13] all introduce various declara-
tive syntaxes for defining multi-touch behaviors that are 
built on touch-* events.   Similar syntaxes could be built with 
touch groups and cross events. 

CoGest [4], GeForMT [8,10], and Midas [26] propose al-
ternative syntaxes for declaring or modeling custom ges-
tures that are more abstracted away from touch-* events 
than our proposed primitives (for example, linear movement 
gestures are built-in primitives). Although this level of ab-
straction can help to greatly simplify how one describes ges-
tures, they come at the cost of flexibility and expressiveness. 
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To the best of our understanding from reading these papers, 
we could not build the example gestures described later in 
the paper with these frameworks. 

2.2  Automated Gesture Recognition Techniques 

An alternate way to help developers define multi-touch ges-
tures is by allowing them to train and use a gesture recog-
nizer. GRANDMA [25] was one of the first automatic ges-
ture recognition systems. The $1 gesture recognizer [29] fo-
cuses on making it easier to include custom gestures in ap-
plications. Gesture Coder [16] builds on previous work by 
allowing developers to create state machines for classifying 
multi-touch gestures by demonstrating gesture examples to 
its learning system. Our system focuses on giving the pro-
grammer exact control over the recognition of the gestures, 
rather than relying on statistical techniques. 

2.3  Cross Gestures and Picking Views 

Our proposed multi-touch primitives also include a way for 
developers to “draw” custom shapes on the screen and bind 
events to them. This idea is analogous to “picking views” in 
MDPC (an extension of MVC) [3]. For instance, in both 
MDPC and cross events, developers can specify that they 
want a menu to slide out if the user presses in the bottom 
left corner by drawing a rectangle in the bottom left corner 
of the screen and binding event handlers to touch events on 
this rectangle. This rectangle would not be visible to users of 
the applications but would be visible for developers to help 
them debug. We extend picking views by allowing such 
shapes to be dynamic through constraints. 

Cross gestures have been proposed as an interaction 
technique in mouse/keyboard [1] and touch [17,18] envi-
ronments, but the cross events we propose are used by de-
velopers to help them define the state of multi-touch ges-
tures. Cross events have also been used in EventHurdle [12] 
to help designers prototype mobile applications. However, 
our system is more expressive by allowing developers to de-
fine cross events on custom, dynamic paths and enabling 
cross events to be combined in the context of a larger multi-
touch gesture. Further, by combining cross events with 
touch groups (described in the next section), we allow de-
velopers to summarize the movement of multiple touches. 

3 Touch Groups 

Touch groups introduce a way to describe multi-finger touch 
events. Touch groups serve both as events and as a set of 
options that are required for that event to fire (or be “satis-
fied”). When a touch group is satisfied, it provides its posi-
tion, rotation, scale, force, and several other output variables 
that can be used by developers. Touch groups also include 
conflict management mechanisms to help developers resolve 

conflicts among multiple gestures in the same interface. The 
following sections describe touch groups’ options, outputs, 
and the conflict management mechanisms. 

3.1  Touch Group Options 

A touch group enables developers to specify the number of 
fingers (numFingers) required for it to be satisfied. In the 
trivial case, numFingers=1 and the touch group is equiva-
lent to a touch* event. Current gesture recognition toolkits, 
such as Apple’s UIGestureRecognizer and Android’s Ges-
tureDetector, only allow the number of fingers to be speci-
fied for pre-built gestures (such as double tap or zoom) ra-
ther than on the event level, as we propose. Enabling the 
number of fingers to be specified on the event level allows 
developers to write custom gestures in a more understanda-
ble way. 

When numFingers>1, the touch group summarizes 
multiple touch events. For example, if the developer wants 
to start when two fingers touch the screen, then numFin-
gers would be 2, and the touch group would fire only when 
two fingers hit the screen at the same time. However, multi-
finger touches are not simultaneous for every type of multi-
finger gesture. For example, most pan-and-zoom interfaces 
allow users to pan with one finger for any amount of time 
before zooming with a second finger. 

To handle both cases, touch groups include a customi-
zable field maxTouchInterval that specifies maximum 
time between the first and last element of this touch group, 
which defaults to 100 milliseconds for nearly simultaneous 
touches. Similarly, the individual touches that comprise a 
multi-finger touch group might need to be sufficiently close 
(in position) to each other to be valid. For example, a two-
finger tap typically requires that both touches are adjacent 
as well as nearly simultaneous. In touch groups, a maxRadi-
us field allows developers to declare the maximum distance 
between the touches of a multi-finger gesture. Touch groups 
also include downInside and downOutside options that 
specify shapes that touches need to be inside (or outside) of 
for the touch group to fire. These parameters can also be ig-
nored by setting their value to false. 

3.2  Touch Group Outputs 

Touch groups summarize multiple fingers in the context of a 
touch group object. This object provides the position (x and 
y) as the centroid of its constituent touches. The touch 
group also includes the locations of the individual fingers. 
Touch groups’ outputs are best utilized in constraints, which 
declare a relationship once and have it be automatically 
maintained. For example, given a touch group object named 
tg, and a left-hand panel pnl, we could define a single con-
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straint that defines the panel’s position relative to the user’s 
finger. Defined as a constraint, this relationship would hold 
even as users move their fingers: 

pnl.x := min(0, tg.x-pnl.width) 

For gestures whose properties are defined relative to 
fingers’ starting or ending locations (such as swipe gestures 
that fire when touches move far enough away from their 
initial position), touch groups also track fingers’ start and 
end positions (startX, startY, endX, and endY) for both 
the touch group as a whole and for each individual finger. 
For example, the code in Figure 7 uses startX and startY 
to calculate a circle around where the user initially presses. 

For multi-finger touch groups, the relative distances be-
tween constituent touches can fire continuous gestures. For 
example, standard pan-and-zoom interfaces typically allow 
users to scale and rotate a viewport by spreading and twist-
ing their fingers. Touch groups provide scale and rota-
tion fields that developers can leverage. A simple pan-and-
zoom interface for viewport vp can be defined with four 
constraints tg2(numFingers=2,downInside=vp): two to 
set its position (as specified by vp.x and vp.y), one to spec-
ify its scale (vp.scale), and one to specify its rotation 
(vp.rotation), as follows: 

vp.x := vp.startX + tg2.x - tg2.startX 
vp.y := vp.startY + tg2.y – tg2.startY 
vp.scale := vp.startScale * tg2.scale 
vp.rotation := vp.startRotation + tg2.rotation 

3.3  Touch Group Conflict Management 

Another challenge in multi-touch programming is disam-
biguating between “conflicting” gestures—gestures that may 
be triggered by the same set of touch inputs. Touch groups 
use two built-in mechanisms to resolve conflicts among ges-
tures. Event states allow gestures to wait for higher-priority 
events before firing. Touch-claiming allows gestures to re-
solve conflicts that are not temporally separated. 

3.3.1 Event States. For example, most touchscreen Web 
browsers open a link when the user single-taps a page link 
and zoom when a user double-taps. Without conflict man-
agement, the first finger of the double-tap might erroneously 
trigger the single finger event. For example, when a user 
double-taps a page link, the browser should typically discard 
the two single taps and instead zoom in response to the 
double-tap. In our system, the conflict between the single-
tap and double-tap gestures is managed by delaying the first 
single-tap from firing until it can be determined if the user 
will double-tap, and marking the two touch groups that only 
one should fire. To reduce the end-developer’s burden of 
managing conflicting gestures, touch groups provide a no-

tion of event states that abstracts away many of the chal-
lenges of dealing with conflicting behaviors. 

These event states build on previous event models [19] 
by adding delays and differentiating between requested and 
confirmed event firings. Every touch group satisfaction event 
has four atomic sub-events (indicated in RED CAPITAL 
LETTERS in Figure 2): REQUESTED, CONFIRMED, CAN-
CELLED, and BLOCKED. Every touch group has a customi-
zable timeout that specifies how long to wait between 
event requests and confirmations and a priority. By de-
fault, every event uses timeout=0 and priority=0, mean-
ing there is no distinction between requests and confirma-
tions. Figure 3 illustrates the sequence of states that single-
tap and double-tap gestures follow.  

Event priorities represent a simple way to deal with 
many types of conflicts between multi-touch events: if an 
event with a higher priority fires, then any lower-priority 
requested events are blocked. When event priorities are not 
sufficient—for example, if a gesture should be cancelled if 
the interface changes state—developers can also use their 
own conflict resolution mechanisms by directly calling 
.cancel() any time after it has been requested (but before 
it has been confirmed). Touch groups also include an 
eventGroup property that allows touch groups to be 
grouped by event type or target widget. When an event-
Group property is specified, event groups’ priorities only 
apply within that group. 

One of the most common ways to resolve ambiguities in 
two potentially conflicting events is by adding a short delay 
before firing an event. If this delay is long enough to be no-
ticeable, the interface should also give intermediate feedback 
for a single tap during the delay period. For example, in an 
interface that must disambiguate between a tap and a long 
press might display a count-down timer to show how long 
the interface will wait before triggering a long press.  

Implementing this method of conflict resolution, partic-
ularly while giving users intermediate feedback, is challeng-
ing in standard touch frameworks because of the interac-
tions between timeouts, event listeners, and any intermedi-
ate feedback mechanisms. By contrast, as Figure 3 illustrates, 
managing these conflicts is relatively easy with our touch 
group conflict management mechanisms. 

3.3.2 Greedy and Non-Greedy Touch Groups. Not all conflict-
ing gestures are temporally separated. For example, in iOS 
version 9, a one-finger swipe from the left edge of the 
touchscreen pulls out a sidebar and a five-finger swipe from 
the left edge of the touchscreen changes the currently exe-
cuted application. Here, the five-finger swipe has a higher 
priority than the one-finger swipe and should thus prevent 
the one-finger one from triggering. These conflicts can occur 
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both in standard touch* frameworks and in touch-group-
based gestures. For example, suppose a developer defines 
one three-finger touch group (anywhere on the screen), and 
three one-finger touch groups (for different places on the 
screen). By default, when the user presses three fingers 
down in the target areas for the three one-finger groups, all 
four event groups will fire, as Figure 4 shows. 

In Figure 4, all four touch groups would fire. However, 
this is not always the desired interaction between touch 
groups. Thus, to allow developers to specify how touch 
groups should interact with each other, they include a 
“greedy” field that specifies whether a given touch group 
should allow other touch groups to use the same fingers as it 
uses. Figure 5 illustrates an example of greedy behavior. 

The “greedy” property can be used in conjunction with 
the event delay feature to resolve many of the common con-
flicts between multi-finger gestures. The delay feature al-
lows touch groups to delay before confirming the event and 
wait for another touch group to register. 

4 Cross Events 

Many multi-touch gestures depend on the path that a user’s 
finger takes [9,14,27]. For example, many touchscreen scroll-
ing interfaces determine if a user’s finger is moving vertical-
ly, horizontally, or diagonally to determine which direction 
to scroll in. Implementing these behaviors using only touch 
move events can be difficult, particularly if the behavior in-
volves multiple fingers. In fact, many multi-touch classifiers 
use machine learning to abstract away these details 
[15,16,29]. However, machine learning is error-prone, re-
quires multiple examples, and can unnecessarily difficult to 
use for recognizing common gestures. 

Cross events are events that fire when a touch group 
(described above) moves across a path that the developer 
specifies. Similar ideas have been explored in the context of 
end-user interfaces [1] and a less general version for proto-
typing interactions [12]. 

4.1  Cross Event Options 
Cross events have several customizable options in addition 
to a touch group and a path. Path cross events also allow de-
velopers to specify the minimum and maximum speeds (in 
pixels per second) that a user’s finger must have for that 

 
Figure 3: The sequence of states for single-tap and double-
tap gestures as a user performs a single-tap then a double-
tap. The states and events that are shown here reference
those that are defined in Figure 2. In this example, there
are two instantiations of the state machine: one for single-
tap and one for double-tap. The single-tap gesture uses
timeout=dbl_interval and the double-tap gesture uses
timeout=0. User actions are shown on the left. After the
user performs a single tap, the single-tap event is request-
ed and confirmed after dbl_interval milliseconds. When
the user performs a double tap, the double-tap event blocks
the single-tap event, because it has a higher priority. 

 
Figure 2: A state machine showing the various states of a
touch event with priority p. An event can be in three states:
idle, pending fire, or pending block. By default, every event
is in the idle state. When the event fires (a), it enters the
pending state. After enough time (as defined by the
timeout parameter, default:0), the event’s firing is con-
firmed (b). If the event firing is cancelled before the
timeout interval passes, then the event is cancelled (c). If a
higher priority event is requested before the timeout inter-
val passes, then the event moves to the pending block stage
(f). If any other event with a higher priority is confirmed,
then the event is blocked (d). If all the events with a higher
priority are cancelled, then the event will return to the
pending fire state (g). If the event times out while in the
“pending block” state, then the event is blocked (e) and
does not fire. 
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cross event to fire. For example, a cross event defining swipe 
gesture might require that a user’s finger is travelling with 
sufficient velocity to fire. By default, both the minimum and 
maximum speed parameters are false, meaning that the 
cross event will fire at any speed. 

4.2  Dynamic Paths 

The meaning of a given touch gesture often depends on the 
position of UI elements [3], device-specific variables (such as 
dimensions), and the position of other fingers. Thus, cross 
events allow developers to use custom, dynamic paths that 
are computed using other context. Enabling these paths to 
be dynamic allows developers to define events relative to 
other interface elements or touch event locations. For exam-
ple, in determining if a user is swiping left or right with two  
fingers, the developer can define a two-finger touch group 
and define (hidden) lines immediately to the left and right of 
where those fingers start. If the touch group crosses either of 
those lines, either the left or right cross event fires, depend-
ing on the swipe direction. A developer can also specify that 
a press and hold gesture should be aborted if the user moves 
their finger too far. They can define “too far” by computing 
a circle around where a touch group starts and when a cross 
event fires (meaning that the user’s finger moved outside of 
the circle boundary), transitioning the gesture back to the 
default state. 

5 User Evaluation of Readability 

We performed two studies of touch groups and cross events 
relative to touch* events. The first study focused on under-
standability and the second study (described in section 6) on 
writability. In the first user study, our goal was to evaluate 
the understandability of the events themselves, so we used 

textual representations for the touch groups, cross events, 
and touch* events. 

5.1  User Evaluation Setup 

We recruited 18 participants who all had programming ex-
perience. We asked participants to read the code for multi-
touch behaviors and asked them to specify which gesture 
that code implements. As Figure 6 and Figure 7 illustrate, 
participants selected one of four options for every imple-
mentation. Each option contained a brief description of the 
behavior and an animation of example touch sequences that 
activated the behavior. At the start of the study, we asked 
participants to complete a demographic questionnaire. 

We used a within-subjects design where every partici-
pant was given 10 touch* implementations and 10 touch 
group/cross event implementations. The specified imple-
mentations and multiple-choice options were randomized 
per-participant. Participants were given a short tutorial ex-
plaining how both paradigms worked. To account for learn-
ing effects, we randomized the order of implementations 
that participants used. Each study lasted approximately one 
hour (30 minutes per implementation). 
3.2.2 Controlling for External Factors. To ensure that the mul-
ti-touch behaviors we used were representative, we chose 
four dimensions along which we varied our behaviors. Our 
dimensions are based on prior work [9,30]: 
 Standard vs. custom: “standard” gestures to be multi-

touch gestures that are currently widespread, as op-
posed to “custom” gestures. We define “widespread” to 
mean that they are implemented as built-ins in either 
the iOS or Android gesture recognizers. For example, 
standard gestures include pinch to zoom and 
press+hold. 

 Discrete vs. continuous: “discrete” gestures have a single 
output whereas “continuous” gestures have a start and 

 
Figure 5: Like in Figure 4, here the developer has defined
one three-finger touch group and three one-finger touch
groups. However, the developer has specified that the
three-finger touch group should be “greedy”, so that other
touch groups should not fire with any of the touches used.
In this case, when the user presses three fingers down, only
the three-finger touch group will fire. 

 
Figure 4: The default, “non-greedy” behavior for touch
groups is that every touch group can claim the same fin-
gers. For instance, suppose a developer defines one three-
finger touch group and three one-finger touch groups
across different elements in an interface. With non-greedy
behavior, when the user presses three fingers down, all
four touch group activation events would fire. 
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end. For example, a tap is a discrete gesture and a scroll 
is a continuous gesture. 

 Static vs. dynamic: “static” gestures do not involve fin-
ger movement along x or y coordinates or in the “third-
dimension” (such as pressure), whereas “dynamic” ges-
tures rely on the path fingers take. Thus, press+hold 
gesture is static whereas a right-swipe is dynamic. 

 One-finger vs. multi-finger: “one-finger” gestures in-
volve one touch at a time whereas “multi-finger” ges-
tures involve multiple fingers moving in synchrony. A 
right-swipe is a one-finger gesture whereas a two-finger 
swipe right (Figure 1) is a multi-finger gesture. 

We implemented at least one instance of every permu-
tation of these four dimensions (for example, tap and 

press+hold are standard/discrete/static/one-finger). In total, 
we implemented 20 behaviors. For each behavior, we im-
plemented a touch* version and a group/cross version for a 
total of 40 implementations. Although gestures that are both 
static and continuous are relatively uncommon, we used 
pressure-sensitive gestures (also known as “force touch”) in 
our user study. Our gesture implementations had an average 
length of 54 lines for touch* implementations and 47.5 lines 
for touch group/cross event implementations. The relatively 
small difference (6 lines) in length illustrates that touch* 
code is difficult to understand because users find it hard to 
follow the control flow, not because it is overly verbose. 

To ensure that our implementations of the touch* be-
haviors in code were representative, we hired a third-party 
developer to implement them and we asked another profes-
sional developer to refactor any parts of our implementa-
tions that they thought were unclear. We also asked them to 

 
Figure 6: Participants were given the code for a multi-
touch behavior. In this example, the code implements a
“tap” gesture. To gauge their understanding of the code,
they were asked to select which behavior that code imple-
mented, from the four choices at the bottom. Participants
were given ten behaviors in one implementation (either
touch* or touch groups/cross events) and then ten using
the other implementation. We randomized the implement-
ed behaviors, multiple choice options, and multiple-choice
ordering. 

 
Figure 7: The same (“tap”) behavior as Figure 6, implement-
ed with cross events touch groups. In addition to being
more concise than the touch* implementation of the same
gesture, many modifications to this gesture that would re-
quire significant changes to the touch* implementation are
straightforward. For example, changing this gesture from a
one-finger tap to a two-finger tap requires significant
changes to the touch* implementation but is a one-line 
change in the touch group/cross event implementation 
(updating the second line to numFingers: 2). Using cor-
rectness in this task as a measure of understanding, partic-
ipants were better able to understand code written with
touch groups and cross events than with touch* events. 
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ensure that variable names were clear and were similar be-
tween implementations, and that no variable name gave 
away the answer. 

Finally, to ensure that participants read and attempt to 
understand every implementation’s code (as opposed to 
looking at the four multiple-choice options and answering 
by elimination) we added a 30 second delay before the mul-
tiple-choice options appeared. Thus, participants were re-
quired to read and attempt to understand the behavior im-
plementation before selecting any answers.  

5.2  Results 
Our quantitative results are shown in Table 1. Participants 
were able to understand a higher percentage of behaviors in 
less time when those behaviors were implemented with 
touch groups and cross events than when they were imple-
mented with touch* events. With touch* events (“control”), 
participants correctly answered 53.3% (stdev 0.235m) of the 
questions in an average of 2.41 minutes per question (stdev 
0.97m). With touch groups and cross events, participants 
correctly answered 68.0% (sample stdev 0.201) of the ques-
tions in an average of 1.95 minutes per question (stdev 0.57). 
A pair-wise two-tailed t-test showed that participants were 
significantly faster (p=0.035) and had significantly more cor-
rect answers (p= 0.013) when reading the touch group and 
cross event implementation than the standard multi-touch 
programming framework. 

We observed benefits across every type of gesture, as 
Table 1 shows, including statistically significant differences 
in custom, discrete, dynamic, and multi-finger touch ges-
tures. In Table 1, better than average results are shaded in 
green and worse than average results are shaded in orange. 
Statistically significant differences are represented with 
* (p<0.05) or ** (p<0.01) in a two-tailed paired t-test.  

As the “setup” section above describes, participants 

spent at least 30 seconds reading code before they could se-
lect an option. This means that the minimum possible time 
for either condition was 30 seconds*10 tasks = 5 minutes. 
Thus, participants did spend time evaluating the multiple-
choice options and reading the behavior implementations 
after the required 30 seconds. 

To gain more insight into participants’ thought process-
es when reading both implementations, we gave every par-
ticipant a post-study questionnaire. From these responses, a 
few commonalities emerged. According to participants, 
touch groups and cross events were a higher-level abstrac-
tion that they found helpful: 

“This [touch group + cross event] implementation is a level of ab-
straction higher than the [touch*] implementation, which makes 
the code much more regular and easy to read. Once you under-
stand the flow of create a [group], draw a shape, and respond to 
touch events, then each gesture is easy to get through quickly. 
This implementation also seems more conductive to good practic-
es than the [touch*] implementation.” 
(P11, prior UI programming experience: intermediate) 

“It breaks the variables and functions out with better natural 
language for the user and is pretty intuitive to understand.” 
(P3, prior UI programming experience: limited) 

Participants also expressed that although touch* events were 
easy to understand in theory, they are difficult to compre-
hend in actual behavior implementations: 

“[the touch* implementation] was easier to understand on paper 
but difficult to comprehend in code.” 
(P2, prior UI programming experience: basic) 

“[The touch* implementation] loads a lot of information into the 
three functions, so it can often be difficult to read and under-
stand quickly. Event handlers like that are just generally kind of 
a mess to read.” 
(P3, prior UI programming experience: limited) 

  Standard  Custom  Discrete  Continuous  Static  Dynamic  1-Finger  Multi-Finger OVERALL 

Control 

time (mins) 2.17 2.59 2.40 2.40 2.31 2.69 2.49 2.33 2.41 

stdev  ± 0.72  ± 1.25  ± 1.02  ± 1.24  ± 0.92  ± 1.20  ± 1.17  ± 0.95 ± 0.97 

correct of 10 5.08 5.47 5.32 5.34 5.72 4.26 5.64 5.03 5.33 

stdev  ± 2.57  ± 2.37  ± 2.47  ± 3.38  ± 2.86  ± 2.81  ± 2.57  ± 2.93 ± 2.35 

Group+ 
Cross  

time (mins) 1.92 1.94 2.06 1.94 2.09 2.02 2.02 1.87 1.95 

stdev  ± 1.26  ± 0.84  ± 0.95  ± 1.39  ± 1.59  ± 0.79  ± 1.10  ± 0.79 ± 0.95 

correct of 10 7.47 6.23 6.30 7.39 6.74 7.24 6.19 7.32 6.80 

stdev  ± 1.92  ± 2.80  ± 2.71  ± 2.30  ± 2.20  ± 2.79  ± 2.98  ± 2.52 ± 2.01 

Difference 
time (mins) -0.25 -0.65* -0.35** -0.47 -0.22 -0.67* -0.47 -0.47* -0.46* 

correct of 10 +2.39 +0.76* +0.98** +2.05 +1.01 +2.99* +0.54 +2.30* +1.47* 

Table 1: This table summarizes the user study results broken down by gesture type (green cells represent a better perfor-
mance than the overall average and orange cells represent a worse performance than the overall average). We focus on two 
options in each of four categories: standard or custom, discrete or continuous, static or dynamic, and 1-finger or multi-
finger. Thus, each gesture fell into one of 24=16 types. We found consistent performance gains in nearly every category for 
gestures implemented with touch groups and cross events. Performance gains were also especially high for multi-fingered 
and dynamic gestures, both of which averaged significantly more correct answers in significantly less time in the touch 
group+cross event conditions. We found that overall, participants using cross events and touch groups were able to com-
plete significantly more tasks in significantly less time. * denotes p<0.05 ** denotes p<0.01 in a two-tailed paired t-test. 
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5.3  Discussion 

As our post-study survey indicates, participants were more 
favorable towards touch groups and cross events than they 
were towards touch* implementations. Further, quantitative 
results from our studies also indicate that, in practice, pro-
grammers are better able to understand gestures written 
with touch groups and cross events as well.  

To put our results into perspective, most participants 
had little to no experience programming user interface code 
and only intermediate programming experience. Although 
our average gesture implementation was only slightly over 
50 lines of code, interactions between callbacks (in both 
conditions) make understanding this kind of code difficult. 
Thus, although there is still room for improvement, a suc-
cess rate of 68% vs. 53.3% for conventional code shows the 
promise of the touch primitives that this paper introduces. 

Still, it is important to note their scope: our evaluation 
only studied the understandability of the events themselves, 
as opposed to visual representations for the events or other 
aspects (such as the event conflict resolution mechanisms 
and their expressiveness). Therefore, we performed another 
study to test the success of users writing complete touch ges-
tures in ours vs. a conventional environment. 

6 User Evaluation of Writability 

Our second user study evaluates how easily programmers 
can write custom gestures using touch groups and cross 
events relative to touch* events. We studied touch groups 
and cross events in two settings: textual (JavaScript) code 
and a GUI interface based on the InterState UI [23]. 

6.1  User Evaluation Setup 

We recruited an additional 10 participants who all had UI 
programming experience. We used a within-subjects design. 
Every participant was asked to implement three behaviors: a 
three-finger press+hold gesture, a one-finger “L”-shaped 
swipe (down then to the right) gesture, and a multi-part ges-
ture where the user places down two fingers and taps a third 
finger (similar to how custom menus are invoked in some 
touchscreen applications). Every participant implemented 
each behavior in either: 
 JavaScript code with touch* events 

 JavaScript code with touch groups + cross events 
 A GUI interface with touch groups + cross events. The 

GUI was based on the InterState  programming UI [23]. 
In this GUI, participants defined state machines to 
specify the touch behaviors (see Figure 8).  

We randomized which behavior was paired with which 
implementation and the order. All participants were also 
given three brief tutorials (10–15 minutes each) on how to 
use each of these implementation tools, and we gave partici-
pants a maximum 20 minutes per task. None of our partici-
pants had participated in the prior readability study. 

6.2  Results 

In order to analyze our results, we used not only partici-
pants’ completion times but we also developed a rubric to 
measure participants’ accuracy. The rubric includes items 
corresponding to the gesture behavior requirements we de-
scribed to participants, and all items contribute equally to 
the accuracy percentages reported below. We applied the 
same rubric across all implementation conditions to ensure 
consistency. As Table 2 shows, participants in both Group + 
Cross conditions outperformed participants in the Touch-* 
control condition—both in time taken and in accuracy. 
However, although the averages show promise, our results 
were not statistically significant in a two-tailed t-test. We 
believe this is largely because of high variance across partic-
ipants in how long a given programming task takes. 

In a post-test survey, we found that participants felt that 
the touch group + cross event mechanism was easy to learn: 
participants agreed 6.3/7 (Agree) that learning to use the 
touch group + cross event GUI was easy and 5.4/7 (Mildly 
agree) that it was easy to learn to use touch groups + cross 

 

Touch-* in 
JavaScript 

Group+Cross 
in JavaScript 

Group+Cross 
GUI 

time (m)  18.88 ± 2.97 16.11 ± 4.64 13.55 ± 6.52 
accuracy  51.0% ± 38% 59.26% ± 46% 74.1% ± 43% 

p (time)  - 0.0685 0.0708 
Table 2: The average time taken (in minutes) and accuracy 
(as a percentage) of participants’ implementations. The last 
row shows the results of a pairwise two-tailed t-test rela-
tive to the touch-* condition. 

 
Figure 8: An example of the UI for defining behaviors in 
the GUI / touch group + cross event condition via a state
machine. The black dot symbolizes the start state. Small
light squares symbolize states. The larger grey squares
specify transition events (e.g., cross events or touch group 
events).  
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events in JavaScript code. We also interviewed participants 
after the study. According to participants, touch groups and 
cross events were intuitive: 

“The ability to specify the path to say exactly where you want 
the event to actually cross was helpful, instead of trying to calcu-
late it yourself. Just be able to make a circle, to make an event 
handler for crossing that line, instead of trying to calculate 
where those points were and where they are now. And it’s nice 
that the circle can update its position based on the object.” 
(P19, UI programming experience: 2–3 years) 

6.3  Discussion 

Overall, our two studies (the readability study with less ex-
perienced programmers and the writability study with more 
experienced programmers) both indicate that touch groups 
and cross events could be effective in simplifying touch ges-
ture programming. 

In the writability study, some participants were con-
fused about exactly when a particular touch group would be 
active, especially when multiple touch groups existed; this is 
due in part to our tutorial not explaining all touch group 
configurable parameters and what the default settings were. 

7 Touch Gesture Examples 

Although our two user studies indicate the usability of touch 
groups and cross events, it is also important that these prim-
itives are capable of expressing realistic novel touch ges-
tures. To illustrate the expressiveness of these multi-touch 
constructs, we implemented several examples of custom 
multi-touch gestures from prior HCI literature [2,24,28]. We 

used touch groups and cross events in InterState [23] to im-
plement each of these example gestures. 

7.1  Pressure-Sensitive Gestures 

Rendl et al. proposed two sets of pressure-sensitive multi-
touch gestures for pressure-sensitive trackpads [24]. The 
first set of gestures is illustrated in Figure 9. We implement-
ed this behavior with three touch groups: two for the two 
two-finger gestures and one for the three-finger resize ges-
ture. To disambiguate between them, the three-finger touch 
group is “greedy”, meaning it the two-finger touch groups 
do not fire when the three-finger group is active. The two-
finger group for moving the viewport also specifies a mini-
mum pressure and is “greedy”, meaning that when it acti-
vates, it prevents the light two-finger scrolling gesture.  

Rendl et al.’s second proposed gesture set helps users 
perform modifications to text documents, which Figure 10 
illustrates. In our implementation, we used four touch 
groups and six cross events. The heavy one-finger press to 
initiate commands is represented with a one-finger greedy 
touch group, with downInside set to a rectangle in the top 
quartile of the trackpad. When this touch group is satisfied, 
the gesture enters “command” mode and listens for one of 
three defined commands: text selection, enumeration, or in-
dentation. Each of these commands is initiated when a sec-
ond touch group moves sufficiently either vertically or hori-
zontally (as specified by a cross event). 

 
Figure 9: An illustration of a set of pressure-sensitive
trackpad gestures. When the user presses three fingers on
the trackpad, the selected window resizes in response (yel-
low, top right). When the user presses with two fingers, the
viewport scrolls (blue, bottom left) or the window moves
(red, bottom right) depending on the finger pressure. Our
implementation manages conflicts between these three
gestures and standard one-finger touches (grey, top left). 

resize window with
three fingers

move window with
two-finger hard press

scroll viewport with
two-finger light press

one-finger touches
work normally

 
Figure 10: An illustration of three gestures for pressure-
sensitive trackpads that manipulate text. Here, the user
initiates “command mode” with a heavy (high pressure)
one-finger press in the top left quadrant of the trackpad.
As the user holds that finger down, they can perform a
light (low pressure) one-finger vertical scroll gesture to se-
lect text (top), a heavy two-finger gesture to enumerate the
selected text (middle), or a light two-finger scroll gesture to
specify the selected text’s indentation (bottom). The dashed
red lines indicate the paths that specify cross events that
initiate the gesture. 
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7.2  HandMark Menus 

HandMark menus are contextual menus that appear when a 
user presses a multi-touch screen with either two or five 
fingers [28]. Uddin et al. propose two versions of HandMark 
gestures: one invoked with two fingers and one invoked 
with five fingers. Figure 11 illustrates both versions. 

We implemented both versions of HandMark menus. 
Each implementation uses two touch groups; one for the 
multi-finger menu invocation and one for item selection. 
Icons’ locations are specified by constraints relative to each 
finger’s location. By implementing these gestures using 
touch groups, implementing the five-finger invocation re-
quired modifying only three equations from the two-finger 
invocation (two to update the icons’ x and y positions and 
one to change the number of fingers in the touch group).  

7.3  Pie Menus 

Banovic et al. proposed three alternative designs for pie con-
textual menus [2], as Figure 12 illustrates. These three de-
signs differ in how they are invoked: by a one-finger press 
and hold, a one-finger tap, and a one-finger double-tap. As 
in HandMark menus, the menu invocation is accomplished 
with a one-finger touch group. The location of every icon is 
specified with a constraint relative to the position of that 
touch group.  

8 Scope and Limitations 

Touch groups contain a superset of touch-* events, meaning 
that any GUI behavior can be expressed with touch-* events 
could be expressed with touch groups (one could define a 
one-finger touch group). However, touch groups are more 
useful when the fingers they contain move in synchrony. 

When an individual finger's motion is important, it is best 
defined in its own touch group. 

Our implementation of cross events was not designed 
for highly “path-specific” gestures, such as shape recogni-
tion. For example, a handwriting gesture might specify that 
a phone’s camera should open when a user draws a “C” on 
the touchscreen. For these types of gestures, we believe a 
machine-learned classifier is likely still the best tool for 
building a gesture recognizer [15,29]. We are exploring 
whether path crossing events might help developers under-
stand machine-learned path-specific behaviors. In the cam-
era example above, a handwriting classifier might generate a 
series of paths in the shape of a “C” and specify that if a 
touch group crosses over 80% of those paths in the correct 
order, the “camera” event should fire. 

9 Conclusion 

We presented touch groups and cross events as mechanisms 
for defining custom multi-touch gestures. We found that 
these primitives can implement nuanced custom multi-touch 
behaviors. Our user evaluation and our experience with us-
ing them to implement many gestural behaviors found that 
multi-touch behaviors implemented with touch groups and 
cross events are more understandable than those imple-
mented using a standard multi-touch framework. 
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Figure 11: An illustration of HandMark menus. HandMark
menus are contextual menus that a user invokes with a
multi-finger gesture. We implemented two different ver-
sion of hand-mark menus. In the two-finger version (left)
the user invokes a context menu by pressing with two fin-
gers. As the user moves their two fingers, the menu follows.
The user can then use a third finger to select a single item.
In the five-finger version (right), users invoke the context
menu by pressing the touchscreen with five fingers. Menu
items then follow the individual fingers as they move. Us-
ers can use a sixth finger to select a menu item. 

 
Figure 12: An illustration of a custom contextual pie menu
for touchscreen devices. We created three implementations
with minimal changes to the gesture’s implementation: 1)
the user holds their finger then selects a menu item, 2) the
user taps their finger then selects a menu item, or 3) the 
user double taps their finger then selects a menu item. 
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