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Abstract​—Experimentation through code is central to data       
scientists’ work. Prior work has identified the need for         
interaction techniques for quickly exploring multiple      
versions of the code and the associated outputs. Yet         
previous approaches that provide history information have       
been challenging to scale: real use produces a high number          
of versions of different code and non-code artifacts with         
dependency relationships and a convoluted mix of       
different analysis intents. Prior work has found that        
navigating these records to pick out the ​relevant        
information for a given task is difficult and time         
consuming. We introduce Verdant, a new system with a         
novel versioning model to support fast retrieval and        
sensemaking of messy version data. Verdant provides       
light-weight interactions for comparing, replaying, and      
tracing relationships among many versions of different       
code and non-code artifacts in the editor. We implemented         
Verdant into Jupyter Notebooks, and validated the       
usability of Verdant’s interactions through a usability       
study. 

Keywords—exploratory programming, versioning, data    
science 

I.   INTRODUCTION 

In data science, exploratory programming is essential to         
determining which data manipulations yield the best results        
[1] ​[2], [3]​. It can be highly helpful to record what iterations            
were run under what conditions and under what assumptions         
about the data. This gives data scientists better certainty in          
their work, the ability to reproduce it, and a more effective           
understanding about where to focus their efforts next. Today,         
most of this experimental history is lost. Our studies ​[4] ​[5]​, as            
well as those by Rule et al ​[6] and a 2015 survey from Jupyter              
of over 1000 data science users ​[7] have all found task needs            
as well as strong direct requests from data scientists for          
improved version support.  

In terms of versioning, where does data science         
programming diverge from any other form of code        
development? Typically in regular code development, the       
primary artifact that a programmer works with is code ​[8]​.          
Data science programming relies on working with a broader         
range of artifacts: the code itself, important details within the          
code ​[4]​, parameters or data used to run the code ​[9]​,           
visualizations, tables, and text output from the code, as well as           

Figure 1. Verdant in-line history interactions. For the top code cell, a ribbon             
visualization shows the versions of the third line of code. In the output cell              
below, a margin indicator on the right shows that there are 5 versions of the               
output. 

notes the data scientist jots down during their ​experimentation          
[10]​. The conditions under which code was run and under          
which data was processed gives meaning to a version of code           
[9]​. Data scientists need to ask questions that require         
knowledge of history about specific artifacts, specific code        
snippets, and the relationships among those artifacts over time:         
“What code on what data produced this graph?”, “What was          
the performance of this model under these assumptions?”,        
“How did this code perform on this dataset versus this other           
dataset?”, etc. Seeing relationships among artifacts allows a        
data scientist to answer cause-and-effect questions and       
evaluate the results and the progress of their experimentation.  

To achieve this level of history support, we aim to A) store a              
rich relational history for all artifacts, B) allow data scientists          
to pull out history specifically relevant to a given task, and C)            
clearly communicate how versions of different artifacts have        
combined together during experimentation. 

Several related areas of tooling offer promising avenues         
towards these goals. Computational notebook development      
environments, such as Jupyter notebooks, have become highly        
popular for data science programming because a notebook        
allows a data scientist to see all their input, output, formatted           
notes, and code artifacts in one place, and thus more easily           
work with and communicate context ​[11]​. Meanwhile, our        
prior research prototype called Variolite demonstrated several       
in-editor interactions for creating and manipulating versions of        
specific code snippets ​[4]​. Only working with code snippets,         
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Variolite did not treat the issue of a mix of code and non-code             
artifacts or issues of scalability, thus further exploration of this          
form of lightweight in-editor interactions is needed to adapt         
these ideas to more complex situations. Finally, the field of          
provenance research, meaning “origin or history of       
ownership” ​[12]​, has argued for and developed methods for         
automatically collecting input, code, and output each time a         
programmer runs their code, in order to capture a complete          
history ​[13], [14]​. Currently the best solutions available to data          
scientists are manually making Git commits at very frequent         
intervals, manually making copies of their code files, or         
manually writing logging code for parameter and output        
artifacts they want to record ​[4]​. Besides lessening the burden          
on the programmer to manually version their artifacts,        
automated approaches can detect and store dependency       
relationships among artifacts ​[13]​.  

Unfortunately, just collecting the appropriate history data is         
not enough. Prior provenance research illustrates that in real         
use, capturing history data produces a large number of         
versions with complex dependency relationships and a       
convoluted mix of different analysis intents that can become         
overwhelming for a human to interpret ​[13]​. Behavioral        
research has found that it is both a challenging and tedious           
task for human programmers to pick out and adapt relevant          
version data from long logs of code history ​[15]​. Even when           
using standard version control like Git, software developers        
often struggle with information overload from many versions,        
all of which are rarely labeled or organized in a clear enough            
way to easily navigate ​[8]​. 

In this work, we explore the design space of new           
interactions for providing easy-to-use history support for data        
scientists in their day-to-day tasks. Untangling messy history        
logs to deliver them in a useful form requires both advances in            
how edit history is modeled, and active testing of potential          
user interactions on actual log data from realistic data science          
tasks. To facilitate this, we developed a prototype tool called          
Verdant ​(from the meaning “an abundance of growing plants”         
[16]​) as an extension for Jupyter notebooks. By relying on          
existing Jupyter interactions to display code and non-code        
artifacts, Verdant adds a layer of history interactions on top of           
Jupyter’s interactions that are likely to be familiar to data          
scientists and already have been established to be usable even          
to novices ​[17]​. Underlying Verdant, we develop a novel         
approach to version collection to model versions of all         
artifacts in the notebook along with dependency relationships        
among them. Using this gathered history data, we then explore          
the design space of lightweight interactions for: 

1. Quickly retrieving versions of a specific artifact out        
of an abundance of versions of the entire document. 

2. Comparing multiple versions of different artifacts      
including code, tables, and images, which benefit       
from different diff-ing techniques. 

3. Walking the data scientist through how to reproduce        
a specific version of an artifact. 

Finally, we validate the real life task-fit of these interactions           
in an initial usability study with five experienced data science          
programmers. All participants were successfully able to       
complete small tasks using the tool and discussed use cases for           
Verdant specific to their own day-to-day work. With feedback         
from these use case walkthroughs from participants, we        
discuss next steps in his design space. 

 II.   RELATED WORK 

Computational Notebooks: ​Computational notebook     
programming dates back to early ideas of “literate        
programming” by Knuth ​[18] in 1984. Although there are         
many examples today of computational notebooks like       
Databricks ​[19] or Colab ​[20]​, Jupyter is a highly popular and           
representative example with millions of users. Therefore, we        
chose to use it in this work, particularly since it is open-source            
and thus easy to extend. Computational notebooks show many         
different artifacts together in-line. Each artifact, like code or         
markdown, has its own “cell” in the notebook, and the          
programmer is free to execute individual cells in any order,          
thus avoiding needing to re-run computationally expensive       
steps. The cell structure is an important consideration for         
versioning tools. Since the cell is a discrete structure, it can be            
tempting to version a notebook by cells so that the user can            
browse all history specific to one cell. However, we caution          
against overly relying on cell structure, because prior        
behavioral work ​[5], [6] shows that notebook users commonly         
add lots of new cells, then reduce or recombine them into           
different cell structures as they iterate. Users also reorder and          
move around cells ​[5], [6]​. Finally, Jupyter notebooks support         
“magic” commands, which are commands that start with “​%​”         
that a user can run in the notebook environment to inspect the            
environment itself. This includes a ​%history command that        
outputs a list of all code run in the current session. While prior             
history work in Jupyter notebooks ​[13] has relied on         
%history​, we take a different approach since this ​%history         
prints only the plaintext code run in a tangle of different           
analysis tasks, and we aim to collect more specific context          
across all artifacts involved. 

Provenance work: Provenance, tracking how a result was         
produced, has many different levels of granularity, all the way          
down to the operating system-level of the runtime        
environment ​[14]​. In this work, we do not collect ​absolute          
provenance, since we only collect reasonably fine-grained       
runtime information about code, input, and output that is         
accessible from inside the computational notebook      
environment. The focus of our research is how to make          
provenance data ​usable ​to data scientists, and thus we focus on           
recording the history metadata most useful for data scientists         
at the cost of some precision. Pimentel et al. in 2015 created            
an extension to Jupyter notebooks that collects Abstract        
Syntax Tree (AST) information to record the execution order         
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and the function calls used to produce a result ​[13]​. However,           
to retrieve this history, users must write SQL or Prolog queries           
into their notebook to retrieve either a list of metadata or a            
graph visualization of the resulting dependencies ​[13]​. Instead        
of having users write more code to retrieve history, our focus           
in this work is to provide direct manipulation interactions         
which require far less skill from the user. Extensive prior          
provenance work has used graph visualizations to       
communicate provenance relationships to users ​[21]​, however       
graph visualizations are well known to be difficult for         
end-users to use ​[22]​, thus we avoid them. 

Version History Interaction Techniques: ​In standard code        
versioning tools like Git, versions are shown as a list of           
commits, or a tree visualization to show different branches in a           
series of commits ​[23]​. In tools like R Studio ​[24] a data            
scientist can see a list of code they have run so far. However             
just like Jupyter’s ​%history list, a list of code lacks any           
context to tell which code went with which analysis tasks or           
artifact context like input/outputs/notes needed to return to a         
prior version. Variolite tackles more specific version context        
by structuring in tool form the informal copy-paste versioning         
that data scientists already use ​[4]​. In Variolite, programmers         
are able to select a little section of code, even just a line or a               
parameter, and wrap it in a “variant box” so that within that            
box, they can switch among multiple versions. Rather than         
shifting through full versions of the whole file, the         
programmer has the code variants that are meaningful to them          
directly in the editor. However, Variolite did not provide any          
support for non-code artifacts, and was highly limited by the          
manually drawn variant box. Variolite only recorded       
snippet-specific history inside the variant box, so the user         
could not move code in and out of the box without losing            
history. If a user did not think to put a variant box around             
everything of interest ​before running code experiments, it was         
not possible to recover snippet-specific history later. To avoid         
these limitations, our new Verdant system automatically       
collects all history so that a data scientist can flexibly inspect           
different parts of their work and always have access to its           
history data. Finally, prior work for fine-grained selective        
undo of code has collected versioning on a token-by-token         
level and visualized this through in-editor menus and an editor          
pane displaying a timeline ​[25]​. Token-level edits are not         
terribly appropriate for data scientists because during       
experimentation, data scientists are more concerned with       
semantically-meaningful units of code like a parameter or        
method, rather than low level syntax edits ​[3]​. 

Behavioral work on navigating versions: Navigating       
corpuses of version data and reusing bits of older versions has           
been shown to be difficult for programmers, from professional         
software engineers to novices ​[8], [15]​. Srinivasa Ragavan et         
al. have modeled how programmers navigate through prior        
versions using Information Foraging Theory (IFT) ​[15] in        
which a programmer searches for the information by        
following clues called “scents”. Scents include features of a         

version like its timestamp, output, and different snippets found         
within the code. To investigate how data science programmers         
specifically mentally formulate what aspect of a prior version         
they are looking for, we ran a brief survey with 45 participants            
[5]​. We found that data scientists recall their work through          
many aspects like libraries used, visual aspects of graphs,         
parameters, results, and code, not all of which are easily          
expressed a textual search query ​[5]​. Given these findings, we          
aim to support foraging and associative memory by providing         
plenty of avenues for a data scientist to navigate back to an            
experiment version based on whatever tidbit or artifact        
attribute they recall. 

III.   VERDANT VERSION MODEL  

Verdant is built as an Electron app that runs a Jupyter            
notebook, and is implemented in HTML/CSS and Node.js.        
Although the interactions of Verdant are language-agnostic,       
since the implementation relies on parsing and AST models         
for code versioning, Verdant relies on a language-specific        
parser. We chose to support Python in this prototype, as it is a             
popular data science language. By substituting in a different         
parser, Verdant can work for any language.  

Verdant uses existing means in Jupyter for displaying         
different types of media in order to capture versions of all           
artifacts in the notebook. For a single version of the notebook,           
(a “commit” using Git terminology), the notebook is captured         
in a tree structure. The root node of the tree is the notebook             
itself, and each cell in the notebook is a child node of the             
notebook. For code cells, their nodes are broken down further          
into versions by their abstract syntax tree (AST) structure,         
such that each syntactically meaningful span of text in the          
code can be recorded with its own versions. For output,          
markdown, and other multimedia cells, the cell is a node with           
no children, which means that a programmer can see versions          
of the output cell as a whole, but not of pieces of output. 

A full version of the notebook is captured each time any cell             
is run. For efficiency, commits only create new nodes for          
whatever has changed, using reference pointers to all of the          
child nodes of the previous commit for whatever is the same.           
Versioning in this tree structure and at the AST level          
addresses many concerns of scale. For instance, imagine a data          
scientist Lucy has iterated on code for 257 different runs, but           
has only changed a certain parameter 3 times. Through AST          
versioning, Lucy does not have to sift through all 257 versions           
of her code with repetitive parameter values, but can instead          
simply retrieve the 3 unique versions of that parameter.         
Although AST versioning provides a great deal of flexibility         
to provide context-specific history, like Lucy’s 3 versions of         
her parameter, it adds algorithmic challenges. Namely, each        
time Lucy runs her code, there is the full version A of the AST              
which is the last recorded version of the program and a new            
full version B of the AST that is the result of all of Lucy’s new               
changes up to the point of the run. Matching two ASTs has            
been done previously, using heuristics like string-distance,       
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type and tree structure properties ​[26]​[27]​, however note that         
this matching has not been used in user-facing edit tracking          
before. Further, what is a correct match from a pure program           
structure perspective may not always match what is “correct”         
to the user. For instance, if Lucy changes a parameter 3 to            
total(“Main St.”), ​Lucy may want to see the history         
of these two AST nodes matched, since both are serving the           
exact same role as her parameter, however since these are far           
in both type and string-distance, a traditional matching        
algorithm would ​not match the two. Refining this matching         
algorithm to match user expectation is an area for future work,           
thus for the purposes of the immediate design exploration,         
Verdant implements a simple Levenshtein string matching       
algorithm: if the token edit distance between two AST nodes          
is less than or equal to 30% of the length of the nodes, Verdant              
considers them a match. 

To collect dependency relationships, we run the Jupyter         
magics command %whos, which returns information from the        
running python kernel on the names and values of variables          
currently present in the notebook’s global environment. When        
one of these global variables changes value, we record which          
code cell ran immediately before the variable change, to         
approximate which code cell set the value of that variable,          
consistent with some prior code execution recording work        
[28]​. For each code node that Verdant versions, Verdant         
inspects the code’s AST structure to identify which if any of           
the global variables that code snippet uses. If the code snippet           
uses a global variable, then a dependency is recorded between          
the code node and that specific version of the global variable,           
including which other code version produced the used value of          
the variable.  

 V.   INTERACTIONS FOR VERSION FORAGING 

Although a notebook may contain many code, output, and          
markdown cells, prior work suggests that data scientist work         
on only a small region of cells at a time for a particular             
exploration ​[5]​. First, we show how Verdant uses inline         
interactions so that users can see versions of the task-related          
artifacts they are interested in, and not be overloaded with          
unrelated version information for the rest of the notebook. 

A.  Ambient Indicators 
Following tried and tested ​[29] usability conventions of         

other tools that support investigating properties of code, like         
“linters,” a version tool should be non-disruptive while the         
user is focused on other tasks, while giving some ambient          
indication of what information is available to investigate        
further. Linters often use squiggly lines under code and         
indicator symbols in the margins next to the line of code the            
warning references. Verdant takes the approach in Figure 2:         
(A) no version information appears when a data scientist is          
reading through their notebook, but (B) when data scientists         
click on a cell to start working with it, they see an indicator in              
the margin that gives the number of versions of that cell (in            
this case 10). If the data scientist selects different spans of           

code, the indicator changes height and label to show the          
number of unique versions of the selected code (in this case 9)            
(C). While a linter conventionally puts an icon on one line, we            
decided instead for the height of the version indicator to          
stretch from the bottom to the top of the text span it is             
referencing to more clearly illustrate which part of the code          
the information is about. Finally, if the programer clicks on          
the indicator, this will open the default active view, the ribbon           
display (D) with buttons for reading and working with the          
versions of that artifact, as described next. 

B.   Navigating Versions 
The “ribbon display” shown in Figure 1D ​is the default way            

Verdant shows all versions for an artifact, lined up side by           
side to the right of the original artifact. Unlike existing code           
interactions like a linter or autocomplete, where a pop-up may          
appear in the active text to supply short static information,          
versioning data is comprised of a long ordered list of          
information and must continuously update as the data scientist         
runs their code. So in the ribbon visualization, because code          

Figure 2. (A) no version information shown, (B) on selecting a cell an margin              
indicator displays how many versions of that artifact there are, (C) on            
selecting specific code the indicator updates to show how many versions of            
that specific snippet there are, (D) upon clicking the indicator, a ribbon            
visualization shows versions of an artifact starting with the most recent 

and cells in the notebook are read from top to bottom, the            
version property of an artifact is visualized left to right, with           
the leftmost version, which is shown in blue (Figure 2D),          
always being the ​active version​. Here “active version” will         
always refer to the version of the artifact that is in the            
notebook interface itself and that is run when the user hits the            
run button in the notebook. Since the ribbon is a horizontal           
display, it can be navigated by horizontal scroll, the right and           
left arrow keys, or by clicking the ellipsis bar at the far right of              
the ribbon which will open a drop-down menu of all versions           
(Figure 2D). For navigating versions, note that Variolite made         
a different design decision, and had users switch between         
versions via tabs. However, as suggested by Variolite’s        
usability study ​[4]​, as well as recent work on tab interfaces in            
general ​[30]​, tab interfaces do not scale well as the number of            
versions increases beyond a handful. On the other hand,         
choosing from a list display is not the most speedy for           
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retrieving an often used version if it is far down on the list.             
The ribbon display always shows the most ​recent versions         
first, making recent work fast to retrieve on the intuition that           
recent work is more likely to be relevant to the user’s current            
task. For non-recent items, bookmarking is a standard        
interaction for fast retrieval of often-used items. Since robust         
history tools currently do not exist, we lack grounded data on           
which history versions a data scientists is likely to use. So to            
probe this question with real data scientists, we added an          
inactive bookmark icon to all versions, indicating that the user          
can bookmark it. We use this during our initial usability test to            
probe potential users on bookmarking, their use cases (if any)          
for it, and on various ways it could be displayed (see below). 

C.    Comparing Versions 
Among many versions, is is important for a data scientist to            

quickly pick out what is important about that version out of           
lots of redundant content. This also helps provide “scents” for          
users to further forage for information. If a data scientist Lucy           
opens a cell’s version and sees that only a certain line has            
changed much over the past month, she can adjust the ribbon           
to show only versions in which that line changed, hiding all           
other versions that are not relevant to that change. 

In Verdant, a diff is shown in the ribbon and timeline views             
by highlighting different parts of a prior version in bright          
yellow (Figure 2D) For code, Verdant runs a textual diff          
algorithm consistent with Git, and for artifacts like tables that          
are rendered through HTML, Verdant runs a textual diff on the           
HTML versions and then highlights the differing HTML        
elements. 

Figure 3. Timeline view. By dragging the top orange bar side to side the user               
can change the version shown. By dragging the lower orange bar, the user can              
set the opacity of the historical version they are viewing, in order to see it               
overlayed on top of the currently active output version. 

Since an “artifact” can be a tiny code snippet or a gigantic             
table or a graph or a large chunk of code, one-size-fits-all is            
not the best strategy for navigation and visualization across all          
these different types. For instance, for visual artifacts like         
tables or images, visualization research ​[31] has found that         
side-by-side displays can make it difficult to “spot the         
difference” between two versions. In the menu bar that         

appears with the default ribbon, a user can select a different           
way of viewing their versions. For visual artifacts, overlaying         
two versions is suggested, so a timeline view can be activated           
(Figure 3), by selecting the symbol. A data scientist can           
navigate the timeline view by dragging along the timeline, or          
by using the right/left arrow keys. 

For visual diffing, Verdant again relies on advice from          
visualization research ​[31] and uses opacity in the timeline         
view where the user can change the opacity of a version they            
are looking at to see it overlayed on top of their currently            
active version.  

For all artifact types, there are multiple kinds of comparisons           
that could be made, each of which optimizes for a different           
(reasonably possible) task goal: 

1. What is different between the active version and a         
given prior version?  

2. What changed in version N from the version        
immediately prior? 

3. What changed in version N from version M, where M          
and N are versions selected by the data scientist from          
a list of versions? 

For an initial prototype of Verdant, we chose to implement           
the first option only, on the hypothesis that spotting the          
difference between the data scientist’s immediate current task        
and any given version will be most useful for spotting useful           
versions of their current task out of a list. We then used            
usability testing to probe through discussion with data        
scientists which kinds of diff they expect to see, and what task            
needs for diffs they find important (see study below).  

D. Searching & Navigating a Notebook’s Full Past 
In-line versioning interactions allow users to quickly retrieve         

versions of artifacts present in their immediate working        
notebook, but has the drawback that some versions cannot be          
retrieved this way. The cell structure of a notebook evolves as           
a data scientist iterates on their ideas and adds, recombines,          
and deletes cells as they work ​[5]​. Suppose that Lucy once had            
a cell in the notebook to plot a certain graph, but later deleted             
it once that cell was no longer needed. To recover versions of            
the graph, Lucy cannot use the in-line versioning discussed         
above, because that artifact no longer exists whatsoever in the          
notebook: she has no cell to point to and indicate to “show me             
versions of this”. So to navigate to versions not in the present            
workspace, and to perform searches, Verdant also represents        
all versions in a list side pane. 

The list pane can be opened by the user with a button, and is               
tightly coupled with the other visualizations such that if the          
user selects an artifact in the notebook, the pane will update to            
list all versions of that artifact, and stay consistent with the           
current selected version. If no artifact is selected, the list          
shows all versions of the notebook itself. With a view of the            
entire notebook’s history, the user can see a chronologically         
ordered change list beginning with the most recent changes         
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across all cells in the notebook. Say Lucy wants to retrieve a            
result she produced last Wednesday that has since been         
deleted from her current notebook. Either by scrolling down         
the list or by using the search bar to filter the list by date, she               
can navigate to versions of her notebook from last Wednesday          
to try to pull out the relevant artifact when it last existed.            
Alternatively, she can use the search bar to look for the result            
by name. Note that Lucy does not need to actually find the            
exact version she is looking for from this list. Using foraging,           
if she can find the old cell in the list that she thinks at some               
point produced the result she is thinking about, she can select           
that cell in the list to pull up all of its versions of code and               
output. From there, she can narrow her view further to only           
show the output produced on Wednesday. This method of         
searching relies on following clues across dates and        
dependency links among artifact versions, rather than       
requiring the data scientist to recall precise information that         
would be needed for a query in a language like Prolog ​[13]​. 

Figure 4. In the list view, the user can select one or more versions to act upon.                 
With the search bar, the user can filter versions using keywords or dates. 

VI.   REMIX, REUSE, & REPRODUCE 

When data scientists produce a series of results, they may later           
be required to recheck how that result was produced. Common          
scenarios include inspecting the code that was used to check          
that the result is trustworthy, or reproducing the same analysis          
on new data ​[5]​. Without history, reproducing results is         
commonly a tedious manual process, where the data scientist         
re-creates the original code from memory ​[5]​. 

A.  Replay older versions 
To replay any older version of an artifact in the notebook, a             

user in Verdant can make that version the ​active ​version and           
then re-run their code. In any of the in-line or list           
visualizations of an artifact’s versions, the data scientist can         
select an older version of an artifact and use the symbol            
button to make that version the active one. The formerly active           
version for that artifact is not lost, since it is recorded and            
added as the most recent version in the version list. If a data             
scientist wants to replay a version of an artifact that no longer            
exists in the current notebook, that artifact will be added as a            
new cell of the current notebook, located as close as possible           
to where it was originally positioned. 

Although this interaction can be used to make any older           
version the active one, it completely ignores dependencies that         
the older version originally had. Our rationale behind this is          
clarity and transparency: if Lucy clicks the symbol on a           
certain version, that changes only the artifact the version         
belongs to. If instead Verdant also updated the rest of the           
notebook, changing other parts of the notebook to be         
consistent with the version dependencies, then Lucy may have         
no understanding of what has changed. In addition, sometimes         
data scientists use versions more as a few different options for           
doing a particular thing (e.g., to try a few different ways for            
computing text-similarity) and are not interested in the last         
context the code-snippet-version was run in, just in reusing the          
specific selected code-snippet-version. To work with prior       
experiment dependencies, Verdant provides a feature called       
“Recipes”, described next. 

B.  Output Recipes 
What code should a data scientist re-run to reproduce a certain           
output? Once the data scientist finds the output they would          
like to reproduce, they can use the symbol button          
(shown at the top of Figure 3). Verdant uses the chain of            
dependency links that it has calculated from the output to          
produce a ​recipe visualization​, shown in Figure 5. The         
“recipe” appears in the side list pane as an ordered list of            
versions labeled “step 1” to “step N”. Consistent with all other            
visualizations, the recipe highlights in yellow any code in the          
steps that is different from the currently showing code in the           
notebook. So, if a code cell is entirely absent from the           
notebook, it will be shown in entirely yellow. If a matching           
code cell already exists in the notebook and perfectly matches          
the active version, it will be shown in entirely grey in the            
recipe with a link to navigate to the existing cell to indicate            
that the data scientist can just run the currently active version           
of that code. Note this dependency information is imperfect,         
because we do not version the underlying data files used, so if            
the dataset itself has changed, the newly produced output may          
be still different than the old one. We discuss several avenues           
for versioning these data structures in Future Work.       
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Figure 5. In the recipe view, a user sees the output they selected first, and then                
an ordered series of code cells that need to be run to recreate that output. 

B.  Trust and Relevancy of versions at scale 
A data scientist will try many attempts during their         
experimentation, many of which may be less successful or         
flawed paths ​[4], [32]​. Thus, especially when collaborating        
with others, it can be important for a data scientist to           
communicate which paths failed ​[5], [8] and how they got to a            
certain solution. “Which path failed” requires a kind of         
storytelling that it unlikely automated methods can capture,        
thus it would be most accurate for the data scientist to label            
certain key versions themselves. However, we know from how         
software engineers use commits (often lacking clear       
organization or naming) that programmers can be reluctant to         
spend any time on organizing or meaningfully labeling their         
history data ​[8]​. Under what circumstances would data        
scientists be motivated to label trustworthiness and relevancy        
of their code? To experiment with interactions for this         
purpose, Verdant uses an interaction metaphor of email in the          
version list. Like in email, the data scientist can select one or            
many of their versions from the list (filtering by date or other            
properties through the search bar) and can “archive” these         
versions so that they are not shown by default in the version            
list. Also, the data scientist can mark the versions as “buggy”           
to more strictly hide the versions and label them as artifacts           
that contain dangerous or poor code that should not be used. If            
an item is archived or marked buggy, it still exists in the full             
list view of versions (so that it can be reopened at any time),             
but it is hidden by being collapsed. If an item is archived or             
marked buggy and has direct output, those outputs will be          
automatically archived or marked buggy as well. A benefit of          
using a familiar metaphor like archiving email for a prototype          
system is that it is much easier to communicate the intent of            
this feature to users. During the usability study, discussed         
below, we showed the archive and “buggy” buttons to data          

scientists to probe how, if, and under what tasks they would           
actively manually tag versions like this. 

VII. INITIAL USABILITY TEST 

Verdant is a prototype that introduces multiple novel types          
of history interaction in a computational notebook editor. Thus         
it is necessary to test both the usability of these interactions           
and also to investigate through interview probes how well         
these interactions seem to or meet real use cases to validate           
that our designs are on the right track.  

For our study setup, we aimed to create semi-realistic data           
analysis tasks and history data. For Verdant to store and show           
data science history at scale and in realistic use, we anticipate           
a later stage field study where data scientists would work on           
their own analysis tasks in the tool over days and weeks. Here            
for an initial study, we avoid participants having to work          
extensively on creating analysis code by instead asking them         
to use Verdant to try to ​navigate and ​comprehend the history           
of a fictitious collaborator’s notebook. To create realism, we         
chose this notebook out of an online repository of         
community-created Jupyter notebooks that are curated for       
quality by the Jupyter project ​[33]​. From this repository we          
searched for notebooks that contained very simple exploratory        
analyses and that needed no domain-specific knowledge to        
ensure the notebook content would not be a learning barrier to           
participants. The notebook we chose does basic visualizations        
of police report data from San Francisco ​[34]​. Since currently          
detailed history data is not available for notebooks, we edited          
and ran different variations of the San Fransisco notebook         
code ourselves to generate a semi-realistic exploration history.  

Next, we recruited individuals who A) had data science          
programming experience, B) were familiar with Python, and        
C) had at least two months experience working with Jupyter          
notebooks. This resulted in five graduate student participants        
(1 female, 4 male) with an average of 12 years of           
programming experience, an average of 6 years of experience         
working with data, and an average of 3 years experience using           
notebooks. In a series of small tasks, participants were asked          
to navigate to different versions of different code, table, and          
plot artifacts using the ribbon visualization, diffs, and timeline         
visualization. The study lasted from 30 to 50 minutes and          
participants were compensated $20 for their time. Participants        
will be referred to as P1 to P5. 

All participants were able to successfully complete the tasks,         
suggesting at least a basic level of usability. Among even a           
small sample, we were surprised by the diverse use cases          
participants expressed that they had for the tool. P1 and P5           
expressed that they would like to use the ribbon visualization          
of their versions about every 1-2 days to reflect on their           
experiment’s progress or backtrack to a prior version. P2 was          
largely uninterested in viewing version history, but instead        
was enthusiastic about using the ribbon visualization to switch         
between 2 to 4 different variants of an idea. P3 was less            
interested in viewing version history of code cells, but greatly          
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valued the ability to view and compare the version history of           
output cells. P3 commonly ran models that took a long time to            
compute (so they only wanted to run a certain version once),           
and currently to compare visual outputs, had to scroll up and           
down their notebook. However, P3 did appreciate the ability to          
version a code cell, as a safe way of keeping their former work             
in case they wanted to backtrack later. Finally P4 primarily          
used notebooks in their classwork, and were very enthusiastic         
about using code artifact history to debug, revert to prior          
versions, and to communicate to a teaching assistant what         
methods they had attempted so far when they went to ask for            
help. P2, P3, and P4 expressed they would like to use the            
inline history visualizations “all the time” when doing a         
specific kind of task they were interested in, whether that be           
comparing outputs or code. 

In this initial study, a participant’s imagined use case          
affected which features of Verdant they cared about most.         
When probed about the use of bookmarking, P2 felt strongly          
that bookmarks would be useful for their use case of switching           
among a few different alternative versions, however the other         
participants who had a more history-based use case were         
neutral about bookmarking. For the probe in which we showed          
email-like buttons for archiving or marking code as buggy,         
participants had very divergent opinions. P1 said they would         
want to mark versions as buggy and said that they would want            
to group a bunch of versions and leave a note about what the             
problem was, but would never use the archive functionality.         
P2 said they would likely mark versions as buggy, but would           
be wary of using the archive button to hide older or           
unsuccessful content. P2 disliked the “archive” metaphor       
because they felt the relevance of different versions was too          
task dependent: a version that seems worth archiving in one          
task context might be very relevant for a future task. All other            
participants were neutral about the two options, and saw         
themselves using them to curate their work occasionally.        
While participants said they would use the inline        
visualizations daily or every other day when working within a          
notebook, they said they would use the list pane or recipe           
visualizations only once a week or once a month. P5 said that            
although they imagined themselves tracing an output’s       
dependency rarely, this feature was extremely valuable to        
them when needed, since currently when P5 must recreate         
output, this was a tedious and error-prone manual process of          
trying to re-code its dependencies from memory. 

In terms of diffing, all five participants were familiar with           
and used Git, and all guessed that the yellow-highlighted diff          
in Verdant, like Git, showed what had changed from one          
version to the next. When we clarified that yellow highlighting          
showed the diff between any version and the ​active version of           
the artifact, two participants said that was actually more         
helpful for them to pick which other versions to work with.           
All participants wanted the option of multiple kinds of diff.          
P3, who primarily wanted to diff output, asked for more kinds           
of visual diffing than the timeline scroll such as setting opacity           

to see two versions overlayed (which we added into the          
current Verdant) and a yellow-highlighting for image diffs.        
Finally, multiple participants disliked horizontal scroll for       
navigating the ribbon visualization (horizontal scroll is not a         
gesture on many mice devices) and prefered the ribbon’s         
dropdown menu to select versions. 

 VIII. FUTURE WORK & CONCLUSION 

There remain many key directions in supporting experiment         
history. Our small user study revealed a high variance of an           
individual’s day-to-day task needs for their history. Thus to         
truly understand the impact of Verdant and future tools in this           
space, a key next step is to conduct a field study across a             
larger number of participants over several weeks in order to          
collect grounded data on how data scientists put history to use           
in practice. There remain many further systems design        
directions as well, particularly to visualize differences and        
comparisons between different kinds of artifacts. While we        
demonstrate Verdant on images and code, different       
visualizations may be more useful and effective to portray the          
history of tables, plots, or notes. Future work is also needed to            
help collect version information about data files, to ensure         
reproducibility without consuming too much memory space.       
In work such as Verdant, we move from considering code          
history only for engineering practice to building       
human-centered history tools for experts and end-user       
programmers to synthesize their ideas, and more responsibly        
conduct experimentation and exploration. 
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