

Interactions for Untangling Messy History in a
Computational Notebook

Mary Beth Kery
Human-Computer Interaction Institute, CMU

mkery@cs.cmu.edu

Brad A. Myers
Human-Computer Interaction Institute, CMU

bam@cs.cmu.edu

Abstract​—Experimentation through code is central to data
scientists’ work. Prior work has identified the need for
interaction techniques for quickly exploring multiple
versions of the code and the associated outputs. Yet
previous approaches that provide history information have
been challenging to scale: real use produces a high number
of versions of different code and non-code artifacts with
dependency relationships and a convoluted mix of
different analysis intents. Prior work has found that
navigating these records to pick out the ​relevant
information for a given task is difficult and time
consuming. We introduce Verdant, a new system with a
novel versioning model to support fast retrieval and
sensemaking of messy version data. Verdant provides
light-weight interactions for comparing, replaying, and
tracing relationships among many versions of different
code and non-code artifacts in the editor. We implemented
Verdant into Jupyter Notebooks, and validated the
usability of Verdant’s interactions through a usability
study.

Keywords—exploratory programming, versioning, data
science

I. INTRODUCTION

In data science, exploratory programming is essential to
determining which data manipulations yield the best results
[1] ​[2], [3]​. It can be highly helpful to record what iterations
were run under what conditions and under what assumptions
about the data. This gives data scientists better certainty in
their work, the ability to reproduce it, and a more effective
understanding about where to focus their efforts next. Today,
most of this experimental history is lost. Our studies ​[4] ​[5]​, as
well as those by Rule et al ​[6] and a 2015 survey from Jupyter
of over 1000 data science users ​[7] have all found task needs
as well as strong direct requests from data scientists for
improved version support.

In terms of versioning, where does data science
programming diverge from any other form of code
development? Typically in regular code development, the
primary artifact that a programmer works with is code ​[8]​.
Data science programming relies on working with a broader
range of artifacts: the code itself, important details within the
code ​[4]​, parameters or data used to run the code ​[9]​,
visualizations, tables, and text output from the code, as well as

Figure 1. Verdant in-line history interactions. For the top code cell, a ribbon
visualization shows the versions of the third line of code. In the output cell
below, a margin indicator on the right shows that there are 5 versions of the
output.

notes the data scientist jots down during their ​experimentation
[10]​. The conditions under which code was run and under
which data was processed gives meaning to a version of code
[9]​. Data scientists need to ask questions that require
knowledge of history about specific artifacts, specific code
snippets, and the relationships among those artifacts over time:
“What code on what data produced this graph?”, “What was
the performance of this model under these assumptions?”,
“How did this code perform on this dataset versus this other
dataset?”, etc. Seeing relationships among artifacts allows a
data scientist to answer cause-and-effect questions and
evaluate the results and the progress of their experimentation.

To achieve this level of history support, we aim to A) store a
rich relational history for all artifacts, B) allow data scientists
to pull out history specifically relevant to a given task, and C)
clearly communicate how versions of different artifacts have
combined together during experimentation.

Several related areas of tooling offer promising avenues
towards these goals. Computational notebook development
environments, such as Jupyter notebooks, have become highly
popular for data science programming because a notebook
allows a data scientist to see all their input, output, formatted
notes, and code artifacts in one place, and thus more easily
work with and communicate context ​[11]​. Meanwhile, our
prior research prototype called Variolite demonstrated several
in-editor interactions for creating and manipulating versions of
specific code snippets ​[4]​. Only working with code snippets,

978-1-5386-4235-1/18/$31.00 ©2018 IEEE

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

147

Variolite did not treat the issue of a mix of code and non-code
artifacts or issues of scalability, thus further exploration of this
form of lightweight in-editor interactions is needed to adapt
these ideas to more complex situations. Finally, the field of
provenance research, meaning “origin or history of
ownership” ​[12]​, has argued for and developed methods for
automatically collecting input, code, and output each time a
programmer runs their code, in order to capture a complete
history ​[13], [14]​. Currently the best solutions available to data
scientists are manually making Git commits at very frequent
intervals, manually making copies of their code files, or
manually writing logging code for parameter and output
artifacts they want to record ​[4]​. Besides lessening the burden
on the programmer to manually version their artifacts,
automated approaches can detect and store dependency
relationships among artifacts ​[13]​.

Unfortunately, just collecting the appropriate history data is
not enough. Prior provenance research illustrates that in real
use, capturing history data produces a large number of
versions with complex dependency relationships and a
convoluted mix of different analysis intents that can become
overwhelming for a human to interpret ​[13]​. Behavioral
research has found that it is both a challenging and tedious
task for human programmers to pick out and adapt relevant
version data from long logs of code history ​[15]​. Even when
using standard version control like Git, software developers
often struggle with information overload from many versions,
all of which are rarely labeled or organized in a clear enough
way to easily navigate ​[8]​.

In this work, we explore the design space of new
interactions for providing easy-to-use history support for data
scientists in their day-to-day tasks. Untangling messy history
logs to deliver them in a useful form requires both advances in
how edit history is modeled, and active testing of potential
user interactions on actual log data from realistic data science
tasks. To facilitate this, we developed a prototype tool called
Verdant ​(from the meaning “an abundance of growing plants”
[16]​) as an extension for Jupyter notebooks. By relying on
existing Jupyter interactions to display code and non-code
artifacts, Verdant adds a layer of history interactions on top of
Jupyter’s interactions that are likely to be familiar to data
scientists and already have been established to be usable even
to novices ​[17]​. Underlying Verdant, we develop a novel
approach to version collection to model versions of all
artifacts in the notebook along with dependency relationships
among them. Using this gathered history data, we then explore
the design space of lightweight interactions for:

1. Quickly retrieving versions of a specific artifact out
of an abundance of versions of the entire document.

2. Comparing multiple versions of different artifacts
including code, tables, and images, which benefit
from different diff-ing techniques.

3. Walking the data scientist through how to reproduce
a specific version of an artifact.

Finally, we validate the real life task-fit of these interactions
in an initial usability study with five experienced data science
programmers. All participants were successfully able to
complete small tasks using the tool and discussed use cases for
Verdant specific to their own day-to-day work. With feedback
from these use case walkthroughs from participants, we
discuss next steps in his design space.

 II. RELATED WORK

Computational Notebooks: ​Computational notebook
programming dates back to early ideas of “literate
programming” by Knuth ​[18] in 1984. Although there are
many examples today of computational notebooks like
Databricks ​[19] or Colab ​[20]​, Jupyter is a highly popular and
representative example with millions of users. Therefore, we
chose to use it in this work, particularly since it is open-source
and thus easy to extend. Computational notebooks show many
different artifacts together in-line. Each artifact, like code or
markdown, has its own “cell” in the notebook, and the
programmer is free to execute individual cells in any order,
thus avoiding needing to re-run computationally expensive
steps. The cell structure is an important consideration for
versioning tools. Since the cell is a discrete structure, it can be
tempting to version a notebook by cells so that the user can
browse all history specific to one cell. However, we caution
against overly relying on cell structure, because prior
behavioral work ​[5], [6] shows that notebook users commonly
add lots of new cells, then reduce or recombine them into
different cell structures as they iterate. Users also reorder and
move around cells ​[5], [6]​. Finally, Jupyter notebooks support
“magic” commands, which are commands that start with “​%​”
that a user can run in the notebook environment to inspect the
environment itself. This includes a ​%history command that
outputs a list of all code run in the current session. While prior
history work in Jupyter notebooks ​[13] has relied on
%history​, we take a different approach since this ​%history
prints only the plaintext code run in a tangle of different
analysis tasks, and we aim to collect more specific context
across all artifacts involved.

Provenance work: Provenance, tracking how a result was
produced, has many different levels of granularity, all the way
down to the operating system-level of the runtime
environment ​[14]​. In this work, we do not collect ​absolute
provenance, since we only collect reasonably fine-grained
runtime information about code, input, and output that is
accessible from inside the computational notebook
environment. The focus of our research is how to make
provenance data ​usable ​to data scientists, and thus we focus on
recording the history metadata most useful for data scientists
at the cost of some precision. Pimentel et al. in 2015 created
an extension to Jupyter notebooks that collects Abstract
Syntax Tree (AST) information to record the execution order

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

148

and the function calls used to produce a result ​[13]​. However,
to retrieve this history, users must write SQL or Prolog queries
into their notebook to retrieve either a list of metadata or a
graph visualization of the resulting dependencies ​[13]​. Instead
of having users write more code to retrieve history, our focus
in this work is to provide direct manipulation interactions
which require far less skill from the user. Extensive prior
provenance work has used graph visualizations to
communicate provenance relationships to users ​[21]​, however
graph visualizations are well known to be difficult for
end-users to use ​[22]​, thus we avoid them.

Version History Interaction Techniques: ​In standard code
versioning tools like Git, versions are shown as a list of
commits, or a tree visualization to show different branches in a
series of commits ​[23]​. In tools like R Studio ​[24] a data
scientist can see a list of code they have run so far. However
just like Jupyter’s ​%history list, a list of code lacks any
context to tell which code went with which analysis tasks or
artifact context like input/outputs/notes needed to return to a
prior version. Variolite tackles more specific version context
by structuring in tool form the informal copy-paste versioning
that data scientists already use ​[4]​. In Variolite, programmers
are able to select a little section of code, even just a line or a
parameter, and wrap it in a “variant box” so that within that
box, they can switch among multiple versions. Rather than
shifting through full versions of the whole file, the
programmer has the code variants that are meaningful to them
directly in the editor. However, Variolite did not provide any
support for non-code artifacts, and was highly limited by the
manually drawn variant box. Variolite only recorded
snippet-specific history inside the variant box, so the user
could not move code in and out of the box without losing
history. If a user did not think to put a variant box around
everything of interest ​before running code experiments, it was
not possible to recover snippet-specific history later. To avoid
these limitations, our new Verdant system automatically
collects all history so that a data scientist can flexibly inspect
different parts of their work and always have access to its
history data. Finally, prior work for fine-grained selective
undo of code has collected versioning on a token-by-token
level and visualized this through in-editor menus and an editor
pane displaying a timeline ​[25]​. Token-level edits are not
terribly appropriate for data scientists because during
experimentation, data scientists are more concerned with
semantically-meaningful units of code like a parameter or
method, rather than low level syntax edits ​[3]​.

Behavioral work on navigating versions: Navigating
corpuses of version data and reusing bits of older versions has
been shown to be difficult for programmers, from professional
software engineers to novices ​[8], [15]​. Srinivasa Ragavan et
al. have modeled how programmers navigate through prior
versions using Information Foraging Theory (IFT) ​[15] in
which a programmer searches for the information by
following clues called “scents”. Scents include features of a

version like its timestamp, output, and different snippets found
within the code. To investigate how data science programmers
specifically mentally formulate what aspect of a prior version
they are looking for, we ran a brief survey with 45 participants
[5]​. We found that data scientists recall their work through
many aspects like libraries used, visual aspects of graphs,
parameters, results, and code, not all of which are easily
expressed a textual search query ​[5]​. Given these findings, we
aim to support foraging and associative memory by providing
plenty of avenues for a data scientist to navigate back to an
experiment version based on whatever tidbit or artifact
attribute they recall.

III. VERDANT VERSION MODEL

Verdant is built as an Electron app that runs a Jupyter
notebook, and is implemented in HTML/CSS and Node.js.
Although the interactions of Verdant are language-agnostic,
since the implementation relies on parsing and AST models
for code versioning, Verdant relies on a language-specific
parser. We chose to support Python in this prototype, as it is a
popular data science language. By substituting in a different
parser, Verdant can work for any language.

Verdant uses existing means in Jupyter for displaying
different types of media in order to capture versions of all
artifacts in the notebook. For a single version of the notebook,
(a “commit” using Git terminology), the notebook is captured
in a tree structure. The root node of the tree is the notebook
itself, and each cell in the notebook is a child node of the
notebook. For code cells, their nodes are broken down further
into versions by their abstract syntax tree (AST) structure,
such that each syntactically meaningful span of text in the
code can be recorded with its own versions. For output,
markdown, and other multimedia cells, the cell is a node with
no children, which means that a programmer can see versions
of the output cell as a whole, but not of pieces of output.

A full version of the notebook is captured each time any cell
is run. For efficiency, commits only create new nodes for
whatever has changed, using reference pointers to all of the
child nodes of the previous commit for whatever is the same.
Versioning in this tree structure and at the AST level
addresses many concerns of scale. For instance, imagine a data
scientist Lucy has iterated on code for 257 different runs, but
has only changed a certain parameter 3 times. Through AST
versioning, Lucy does not have to sift through all 257 versions
of her code with repetitive parameter values, but can instead
simply retrieve the 3 unique versions of that parameter.
Although AST versioning provides a great deal of flexibility
to provide context-specific history, like Lucy’s 3 versions of
her parameter, it adds algorithmic challenges. Namely, each
time Lucy runs her code, there is the full version A of the AST
which is the last recorded version of the program and a new
full version B of the AST that is the result of all of Lucy’s new
changes up to the point of the run. Matching two ASTs has
been done previously, using heuristics like string-distance,

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

149

type and tree structure properties ​[26]​[27]​, however note that
this matching has not been used in user-facing edit tracking
before. Further, what is a correct match from a pure program
structure perspective may not always match what is “correct”
to the user. For instance, if Lucy changes a parameter 3 to
total(“Main St.”), ​Lucy may want to see the history
of these two AST nodes matched, since both are serving the
exact same role as her parameter, however since these are far
in both type and string-distance, a traditional matching
algorithm would ​not match the two. Refining this matching
algorithm to match user expectation is an area for future work,
thus for the purposes of the immediate design exploration,
Verdant implements a simple Levenshtein string matching
algorithm: if the token edit distance between two AST nodes
is less than or equal to 30% of the length of the nodes, Verdant
considers them a match.

To collect dependency relationships, we run the Jupyter
magics command %whos, which returns information from the
running python kernel on the names and values of variables
currently present in the notebook’s global environment. When
one of these global variables changes value, we record which
code cell ran immediately before the variable change, to
approximate which code cell set the value of that variable,
consistent with some prior code execution recording work
[28]​. For each code node that Verdant versions, Verdant
inspects the code’s AST structure to identify which if any of
the global variables that code snippet uses. If the code snippet
uses a global variable, then a dependency is recorded between
the code node and that specific version of the global variable,
including which other code version produced the used value of
the variable.

 V. INTERACTIONS FOR VERSION FORAGING

Although a notebook may contain many code, output, and
markdown cells, prior work suggests that data scientist work
on only a small region of cells at a time for a particular
exploration ​[5]​. First, we show how Verdant uses inline
interactions so that users can see versions of the task-related
artifacts they are interested in, and not be overloaded with
unrelated version information for the rest of the notebook.

A. Ambient Indicators
Following tried and tested ​[29] usability conventions of

other tools that support investigating properties of code, like
“linters,” a version tool should be non-disruptive while the
user is focused on other tasks, while giving some ambient
indication of what information is available to investigate
further. Linters often use squiggly lines under code and
indicator symbols in the margins next to the line of code the
warning references. Verdant takes the approach in Figure 2:
(A) no version information appears when a data scientist is
reading through their notebook, but (B) when data scientists
click on a cell to start working with it, they see an indicator in
the margin that gives the number of versions of that cell (in
this case 10). If the data scientist selects different spans of

code, the indicator changes height and label to show the
number of unique versions of the selected code (in this case 9)
(C). While a linter conventionally puts an icon on one line, we
decided instead for the height of the version indicator to
stretch from the bottom to the top of the text span it is
referencing to more clearly illustrate which part of the code
the information is about. Finally, if the programer clicks on
the indicator, this will open the default active view, the ribbon
display (D) with buttons for reading and working with the
versions of that artifact, as described next.

B. Navigating Versions
The “ribbon display” shown in Figure 1D ​is the default way

Verdant shows all versions for an artifact, lined up side by
side to the right of the original artifact. Unlike existing code
interactions like a linter or autocomplete, where a pop-up may
appear in the active text to supply short static information,
versioning data is comprised of a long ordered list of
information and must continuously update as the data scientist
runs their code. So in the ribbon visualization, because code

Figure 2. (A) no version information shown, (B) on selecting a cell an margin
indicator displays how many versions of that artifact there are, (C) on
selecting specific code the indicator updates to show how many versions of
that specific snippet there are, (D) upon clicking the indicator, a ribbon
visualization shows versions of an artifact starting with the most recent

and cells in the notebook are read from top to bottom, the
version property of an artifact is visualized left to right, with
the leftmost version, which is shown in blue (Figure 2D),
always being the ​active version​. Here “active version” will
always refer to the version of the artifact that is in the
notebook interface itself and that is run when the user hits the
run button in the notebook. Since the ribbon is a horizontal
display, it can be navigated by horizontal scroll, the right and
left arrow keys, or by clicking the ellipsis bar at the far right of
the ribbon which will open a drop-down menu of all versions
(Figure 2D). For navigating versions, note that Variolite made
a different design decision, and had users switch between
versions via tabs. However, as suggested by Variolite’s
usability study ​[4]​, as well as recent work on tab interfaces in
general ​[30]​, tab interfaces do not scale well as the number of
versions increases beyond a handful. On the other hand,
choosing from a list display is not the most speedy for

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

150

retrieving an often used version if it is far down on the list.
The ribbon display always shows the most ​recent versions
first, making recent work fast to retrieve on the intuition that
recent work is more likely to be relevant to the user’s current
task. For non-recent items, bookmarking is a standard
interaction for fast retrieval of often-used items. Since robust
history tools currently do not exist, we lack grounded data on
which history versions a data scientists is likely to use. So to
probe this question with real data scientists, we added an
inactive bookmark icon to all versions, indicating that the user
can bookmark it. We use this during our initial usability test to
probe potential users on bookmarking, their use cases (if any)
for it, and on various ways it could be displayed (see below).

C. Comparing Versions
Among many versions, is is important for a data scientist to

quickly pick out what is important about that version out of
lots of redundant content. This also helps provide “scents” for
users to further forage for information. If a data scientist Lucy
opens a cell’s version and sees that only a certain line has
changed much over the past month, she can adjust the ribbon
to show only versions in which that line changed, hiding all
other versions that are not relevant to that change.

In Verdant, a diff is shown in the ribbon and timeline views
by highlighting different parts of a prior version in bright
yellow (Figure 2D) For code, Verdant runs a textual diff
algorithm consistent with Git, and for artifacts like tables that
are rendered through HTML, Verdant runs a textual diff on the
HTML versions and then highlights the differing HTML
elements.

Figure 3. Timeline view. By dragging the top orange bar side to side the user
can change the version shown. By dragging the lower orange bar, the user can
set the opacity of the historical version they are viewing, in order to see it
overlayed on top of the currently active output version.

Since an “artifact” can be a tiny code snippet or a gigantic
table or a graph or a large chunk of code, one-size-fits-all is
not the best strategy for navigation and visualization across all
these different types. For instance, for visual artifacts like
tables or images, visualization research ​[31] has found that
side-by-side displays can make it difficult to “spot the
difference” between two versions. In the menu bar that

appears with the default ribbon, a user can select a different
way of viewing their versions. For visual artifacts, overlaying
two versions is suggested, so a timeline view can be activated
(Figure 3), by selecting the symbol. A data scientist can
navigate the timeline view by dragging along the timeline, or
by using the right/left arrow keys.

For visual diffing, Verdant again relies on advice from
visualization research ​[31] and uses opacity in the timeline
view where the user can change the opacity of a version they
are looking at to see it overlayed on top of their currently
active version.

For all artifact types, there are multiple kinds of comparisons
that could be made, each of which optimizes for a different
(reasonably possible) task goal:

1. What is different between the active version and a
given prior version?

2. What changed in version N from the version
immediately prior?

3. What changed in version N from version M, where M
and N are versions selected by the data scientist from
a list of versions?

For an initial prototype of Verdant, we chose to implement
the first option only, on the hypothesis that spotting the
difference between the data scientist’s immediate current task
and any given version will be most useful for spotting useful
versions of their current task out of a list. We then used
usability testing to probe through discussion with data
scientists which kinds of diff they expect to see, and what task
needs for diffs they find important (see study below).

D. Searching & Navigating a Notebook’s Full Past
In-line versioning interactions allow users to quickly retrieve

versions of artifacts present in their immediate working
notebook, but has the drawback that some versions cannot be
retrieved this way. The cell structure of a notebook evolves as
a data scientist iterates on their ideas and adds, recombines,
and deletes cells as they work ​[5]​. Suppose that Lucy once had
a cell in the notebook to plot a certain graph, but later deleted
it once that cell was no longer needed. To recover versions of
the graph, Lucy cannot use the in-line versioning discussed
above, because that artifact no longer exists whatsoever in the
notebook: she has no cell to point to and indicate to “show me
versions of this”. So to navigate to versions not in the present
workspace, and to perform searches, Verdant also represents
all versions in a list side pane.

The list pane can be opened by the user with a button, and is
tightly coupled with the other visualizations such that if the
user selects an artifact in the notebook, the pane will update to
list all versions of that artifact, and stay consistent with the
current selected version. If no artifact is selected, the list
shows all versions of the notebook itself. With a view of the
entire notebook’s history, the user can see a chronologically
ordered change list beginning with the most recent changes

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

151

across all cells in the notebook. Say Lucy wants to retrieve a
result she produced last Wednesday that has since been
deleted from her current notebook. Either by scrolling down
the list or by using the search bar to filter the list by date, she
can navigate to versions of her notebook from last Wednesday
to try to pull out the relevant artifact when it last existed.
Alternatively, she can use the search bar to look for the result
by name. Note that Lucy does not need to actually find the
exact version she is looking for from this list. Using foraging,
if she can find the old cell in the list that she thinks at some
point produced the result she is thinking about, she can select
that cell in the list to pull up all of its versions of code and
output. From there, she can narrow her view further to only
show the output produced on Wednesday. This method of
searching relies on following clues across dates and
dependency links among artifact versions, rather than
requiring the data scientist to recall precise information that
would be needed for a query in a language like Prolog ​[13]​.

Figure 4. In the list view, the user can select one or more versions to act upon.
With the search bar, the user can filter versions using keywords or dates.

VI. REMIX, REUSE, & REPRODUCE

When data scientists produce a series of results, they may later
be required to recheck how that result was produced. Common
scenarios include inspecting the code that was used to check
that the result is trustworthy, or reproducing the same analysis
on new data ​[5]​. Without history, reproducing results is
commonly a tedious manual process, where the data scientist
re-creates the original code from memory ​[5]​.

A. Replay older versions
To replay any older version of an artifact in the notebook, a

user in Verdant can make that version the ​active ​version and
then re-run their code. In any of the in-line or list
visualizations of an artifact’s versions, the data scientist can
select an older version of an artifact and use the symbol
button to make that version the active one. The formerly active
version for that artifact is not lost, since it is recorded and
added as the most recent version in the version list. If a data
scientist wants to replay a version of an artifact that no longer
exists in the current notebook, that artifact will be added as a
new cell of the current notebook, located as close as possible
to where it was originally positioned.

Although this interaction can be used to make any older
version the active one, it completely ignores dependencies that
the older version originally had. Our rationale behind this is
clarity and transparency: if Lucy clicks the symbol on a
certain version, that changes only the artifact the version
belongs to. If instead Verdant also updated the rest of the
notebook, changing other parts of the notebook to be
consistent with the version dependencies, then Lucy may have
no understanding of what has changed. In addition, sometimes
data scientists use versions more as a few different options for
doing a particular thing (e.g., to try a few different ways for
computing text-similarity) and are not interested in the last
context the code-snippet-version was run in, just in reusing the
specific selected code-snippet-version. To work with prior
experiment dependencies, Verdant provides a feature called
“Recipes”, described next.

B. Output Recipes
What code should a data scientist re-run to reproduce a certain
output? Once the data scientist finds the output they would
like to reproduce, they can use the symbol button
(shown at the top of Figure 3). Verdant uses the chain of
dependency links that it has calculated from the output to
produce a ​recipe visualization​, shown in Figure 5. The
“recipe” appears in the side list pane as an ordered list of
versions labeled “step 1” to “step N”. Consistent with all other
visualizations, the recipe highlights in yellow any code in the
steps that is different from the currently showing code in the
notebook. So, if a code cell is entirely absent from the
notebook, it will be shown in entirely yellow. If a matching
code cell already exists in the notebook and perfectly matches
the active version, it will be shown in entirely grey in the
recipe with a link to navigate to the existing cell to indicate
that the data scientist can just run the currently active version
of that code. Note this dependency information is imperfect,
because we do not version the underlying data files used, so if
the dataset itself has changed, the newly produced output may
be still different than the old one. We discuss several avenues
for versioning these data structures in Future Work.

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

152

Figure 5. In the recipe view, a user sees the output they selected first, and then
an ordered series of code cells that need to be run to recreate that output.

B. Trust and Relevancy of versions at scale
A data scientist will try many attempts during their
experimentation, many of which may be less successful or
flawed paths ​[4], [32]​. Thus, especially when collaborating
with others, it can be important for a data scientist to
communicate which paths failed ​[5], [8] and how they got to a
certain solution. “Which path failed” requires a kind of
storytelling that it unlikely automated methods can capture,
thus it would be most accurate for the data scientist to label
certain key versions themselves. However, we know from how
software engineers use commits (often lacking clear
organization or naming) that programmers can be reluctant to
spend any time on organizing or meaningfully labeling their
history data ​[8]​. Under what circumstances would data
scientists be motivated to label trustworthiness and relevancy
of their code? To experiment with interactions for this
purpose, Verdant uses an interaction metaphor of email in the
version list. Like in email, the data scientist can select one or
many of their versions from the list (filtering by date or other
properties through the search bar) and can “archive” these
versions so that they are not shown by default in the version
list. Also, the data scientist can mark the versions as “buggy”
to more strictly hide the versions and label them as artifacts
that contain dangerous or poor code that should not be used. If
an item is archived or marked buggy, it still exists in the full
list view of versions (so that it can be reopened at any time),
but it is hidden by being collapsed. If an item is archived or
marked buggy and has direct output, those outputs will be
automatically archived or marked buggy as well. A benefit of
using a familiar metaphor like archiving email for a prototype
system is that it is much easier to communicate the intent of
this feature to users. During the usability study, discussed
below, we showed the archive and “buggy” buttons to data

scientists to probe how, if, and under what tasks they would
actively manually tag versions like this.

VII. INITIAL USABILITY TEST

Verdant is a prototype that introduces multiple novel types
of history interaction in a computational notebook editor. Thus
it is necessary to test both the usability of these interactions
and also to investigate through interview probes how well
these interactions seem to or meet real use cases to validate
that our designs are on the right track.

For our study setup, we aimed to create semi-realistic data
analysis tasks and history data. For Verdant to store and show
data science history at scale and in realistic use, we anticipate
a later stage field study where data scientists would work on
their own analysis tasks in the tool over days and weeks. Here
for an initial study, we avoid participants having to work
extensively on creating analysis code by instead asking them
to use Verdant to try to ​navigate and ​comprehend the history
of a fictitious collaborator’s notebook. To create realism, we
chose this notebook out of an online repository of
community-created Jupyter notebooks that are curated for
quality by the Jupyter project ​[33]​. From this repository we
searched for notebooks that contained very simple exploratory
analyses and that needed no domain-specific knowledge to
ensure the notebook content would not be a learning barrier to
participants. The notebook we chose does basic visualizations
of police report data from San Francisco ​[34]​. Since currently
detailed history data is not available for notebooks, we edited
and ran different variations of the San Fransisco notebook
code ourselves to generate a semi-realistic exploration history.

Next, we recruited individuals who A) had data science
programming experience, B) were familiar with Python, and
C) had at least two months experience working with Jupyter
notebooks. This resulted in five graduate student participants
(1 female, 4 male) with an average of 12 years of
programming experience, an average of 6 years of experience
working with data, and an average of 3 years experience using
notebooks. In a series of small tasks, participants were asked
to navigate to different versions of different code, table, and
plot artifacts using the ribbon visualization, diffs, and timeline
visualization. The study lasted from 30 to 50 minutes and
participants were compensated $20 for their time. Participants
will be referred to as P1 to P5.

All participants were able to successfully complete the tasks,
suggesting at least a basic level of usability. Among even a
small sample, we were surprised by the diverse use cases
participants expressed that they had for the tool. P1 and P5
expressed that they would like to use the ribbon visualization
of their versions about every 1-2 days to reflect on their
experiment’s progress or backtrack to a prior version. P2 was
largely uninterested in viewing version history, but instead
was enthusiastic about using the ribbon visualization to switch
between 2 to 4 different variants of an idea. P3 was less
interested in viewing version history of code cells, but greatly

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

153

valued the ability to view and compare the version history of
output cells. P3 commonly ran models that took a long time to
compute (so they only wanted to run a certain version once),
and currently to compare visual outputs, had to scroll up and
down their notebook. However, P3 did appreciate the ability to
version a code cell, as a safe way of keeping their former work
in case they wanted to backtrack later. Finally P4 primarily
used notebooks in their classwork, and were very enthusiastic
about using code artifact history to debug, revert to prior
versions, and to communicate to a teaching assistant what
methods they had attempted so far when they went to ask for
help. P2, P3, and P4 expressed they would like to use the
inline history visualizations “all the time” when doing a
specific kind of task they were interested in, whether that be
comparing outputs or code.

In this initial study, a participant’s imagined use case
affected which features of Verdant they cared about most.
When probed about the use of bookmarking, P2 felt strongly
that bookmarks would be useful for their use case of switching
among a few different alternative versions, however the other
participants who had a more history-based use case were
neutral about bookmarking. For the probe in which we showed
email-like buttons for archiving or marking code as buggy,
participants had very divergent opinions. P1 said they would
want to mark versions as buggy and said that they would want
to group a bunch of versions and leave a note about what the
problem was, but would never use the archive functionality.
P2 said they would likely mark versions as buggy, but would
be wary of using the archive button to hide older or
unsuccessful content. P2 disliked the “archive” metaphor
because they felt the relevance of different versions was too
task dependent: a version that seems worth archiving in one
task context might be very relevant for a future task. All other
participants were neutral about the two options, and saw
themselves using them to curate their work occasionally.
While participants said they would use the inline
visualizations daily or every other day when working within a
notebook, they said they would use the list pane or recipe
visualizations only once a week or once a month. P5 said that
although they imagined themselves tracing an output’s
dependency rarely, this feature was extremely valuable to
them when needed, since currently when P5 must recreate
output, this was a tedious and error-prone manual process of
trying to re-code its dependencies from memory.

In terms of diffing, all five participants were familiar with
and used Git, and all guessed that the yellow-highlighted diff
in Verdant, like Git, showed what had changed from one
version to the next. When we clarified that yellow highlighting
showed the diff between any version and the ​active version of
the artifact, two participants said that was actually more
helpful for them to pick which other versions to work with.
All participants wanted the option of multiple kinds of diff.
P3, who primarily wanted to diff output, asked for more kinds
of visual diffing than the timeline scroll such as setting opacity

to see two versions overlayed (which we added into the
current Verdant) and a yellow-highlighting for image diffs.
Finally, multiple participants disliked horizontal scroll for
navigating the ribbon visualization (horizontal scroll is not a
gesture on many mice devices) and prefered the ribbon’s
dropdown menu to select versions.

 VIII. FUTURE WORK & CONCLUSION

There remain many key directions in supporting experiment
history. Our small user study revealed a high variance of an
individual’s day-to-day task needs for their history. Thus to
truly understand the impact of Verdant and future tools in this
space, a key next step is to conduct a field study across a
larger number of participants over several weeks in order to
collect grounded data on how data scientists put history to use
in practice. There remain many further systems design
directions as well, particularly to visualize differences and
comparisons between different kinds of artifacts. While we
demonstrate Verdant on images and code, different
visualizations may be more useful and effective to portray the
history of tables, plots, or notes. Future work is also needed to
help collect version information about data files, to ensure
reproducibility without consuming too much memory space.
In work such as Verdant, we move from considering code
history only for engineering practice to building
human-centered history tools for experts and end-user
programmers to synthesize their ideas, and more responsibly
conduct experimentation and exploration.

ACKNOWLEDGMENTS

We thank our pilot participants. This research was supported
in part by a grant from Bloomberg L.P., and in part by NSF
grant IIS-1314356. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the funders.

REFERENCES

[1] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker,
“Interactions with big data analytics,” ​Interactions​, vol.
19, no. 3, pp. 50–59, 2012.

[2] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer,
“Enterprise Data Analysis and Visualization: An
Interview Study,” ​IEEE Trans. Vis. Comput. Graph.​, vol.
18, no. 12, pp. 2917–2926, Dec. 2012.

[3] P. J. Guo, “Software tools to facilitate research
programming,” Doctor of Philosophy, Stanford
University, 2012.

[4] M. B. Kery, A. Horvath, and B. A. Myers, “Variolite:
Supporting Exploratory Programming by Data
Scientists,” in ​ACM CHI Conference on Human Factors
in Computing Systems​, 2017, pp. 1265–1276.

[5] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B.
A. Myers, “The Story in the Notebook: Exploratory Data
Science using a Literate Programming Tool,” in ​ACM
CHI Conference on Human Factors in Computing

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

154

Systems​, 2018, p. 174.
[6] A. Rule, A. Tabard, and J. Hollan, “Exploration and

Explanation in Computational Notebooks,” in ​ACM CHI
Conference on Human Factors in Computing Systems​,
2018, p. 32.

[7] “Jupyter Notebook 2015 UX Survey Results,” ​Jupyter
Project Github Repository​, 12/2015. [Online]. Available:
https://github.com/jupyter/surveys/blob/master/surveys/2
015-12-notebook-ux/analysis/report_dashboard.ipynb​.

[8] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey,
“Software history under the lens: a study on why and
how developers examine it,” in ​Software Maintenance
and Evolution (ICSME), 2015 IEEE International
Conference on​, 2015, pp. 1–10.

[9] K. Patel, “Lowering the barrier to applying machine
learning,” in ​Adjunct proceedings of the 23nd annual
ACM symposium on User interface software and
technology​, 2010, pp. 355–358.

[10] A. Tabard, W. E. Mackay, and E. Eastmond, “From
Individual to Collaborative: The Evolution of Prism, a
Hybrid Laboratory Notebook,” in ​Proceedings of the
2008 ACM Conference on Computer Supported
Cooperative Work​, San Diego, CA, USA, 2008, pp.
569–578.

[11] F. Pérez and B. E. Granger, “IPython: a System for
Interactive Scientific Computing,” ​Computing in Science
and Engineering​, vol. 9, no. 3, pp. 21–29, May 2007.

[12] “provenance - Wiktionary.” [Online]. Available:
https://en.wiktionary.org/wiki/provenance​. [Accessed:
22-Apr-2018].

[13] J. F. N. Pimentel, V. Braganholo, L. Murta, and J. Freire,
“Collecting and analyzing provenance on interactive
notebooks: when IPython meets noWorkflow,” in
Workshop on the Theory and Practice of Provenance
(TaPP), Edinburgh, Scotland​, 2015, pp. 155–167.

[14] P. J. Guo and M. I. Seltzer, “Burrito: Wrapping your lab
notebook in computational infrastructure,” in ​4th
UNSENIX Workshop on Theory and Practice of
Provenance​, 2012.

[15] S. Srinivasa Ragavan, S. K. Kuttal, C. Hill, A. Sarma, D.
Piorkowski, and M. Burnett, “Foraging Among an
Overabundance of Similar Variants,” in ​Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems​, San Jose, California, USA, 2016,
pp. 3509–3521.

[16] “verdant - Wiktionary.” [Online]. Available:
https://en.wiktionary.org/wiki/verdant​. [Accessed:
22-Apr-2018].

[17] R. J. Brunner and E. J. Kim, “Teaching Data Science,”
Procedia Comput. Sci.​, vol. 80, pp. 1947–1956, Jan.
2016.

[18] D. E. Knuth, “Literate programming,” ​Comput. J.​, vol.
27, no. 2, pp. 97–111, 1984.

[19] “Databricks,” 2013. [Online]. Available:
https://databricks.com/​.

[20] “Colaboratory,” 2018. [Online]. Available:
https://colab.research.google.com/​. [Accessed:
22-Apr-2018].

[21] K. Cheung and J. Hunter, “Provenance
explorer--customized provenance views using semantic
inferencing,” in ​International Semantic Web Conference​,
2006, pp. 215–227.

[22] I. Herman, G. Melançon, and M. S. Marshall, “Graph
visualization and navigation in information visualization:
A survey,” ​IEEE Trans. Vis. Comput. Graph.​, vol. 6, no.
1, pp. 24–43, 2000.

[23] S. Chacon and B. Straub, “Git and Other Systems,” in
Pro Git​, S. Chacon and B. Straub, Eds. Berkeley, CA:
Apress, 2014, pp. 307–356.

[24] R. Team and Others, “RStudio: integrated development
for R,” ​RStudio, Inc. , Boston, MA URL http://www.
rstudio. com​, 2015.

[25] Y. Yoon, B. A. Myers, and S. Koo, “Visualization of
fine-grained code change history,” in ​2013 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC)​, 2013, pp. 119–126.

[26] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding
source code evolution using abstract syntax tree
matching,” ​ACM SIGSOFT Software Engineering Notes​,
vol. 30, no. 4, pp. 1–5, 2005.

[27] R. Koschke, R. Falke, and P. Frenzel, “Clone Detection
Using Abstract Syntax Suffix Trees,” in ​2006 13th
Working Conference on Reverse Engineering​, 2006.

[28] S. Oney and B. Myers, “FireCrystal: Understanding
interactive behaviors in dynamic web pages,” in ​2009
IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC)​, 2009, pp.
105–108.

[29] “IntelliJ IDEA,” ​IntelliJ IDEA​. [Online]. Available:
https://www.jetbrains.com/idea/​. [Accessed: Apr-2017].

[30] Nathan Hahn, Joseph Chee Chang, Aniket Kittur, “Bento
Browser: Complex Mobile Search Without Tabs,” in
2018 CHI Conference on Human Factors in Computing
Systems​, 2018, p. 251.

[31] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D.
Hansen, and J. C. Roberts, “Visual comparison for
information visualization,” ​Information Visualization;
Thousand Oaks​, vol. 10, no. 4, pp. 289–309, Oct. 2011.

[32] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison,
“Investigating statistical machine learning as a tool for
software development,” in ​Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems​,
2008, pp. 667–676.

[33] “A gallery of interesting Jupyter Notebooks.” [Online].
https://github.com/jupyter/jupyter/wiki/A-gallery-of-inter
esting-Jupyter-Notebooks​. [Accessed: 24-Apr-2018].

[34] lmart, “SF GIS CRIME,” ​GitHub​. [Online]. Available:
https://github.com/lmart999/GIS​. [Accessed:
27-Apr-2018]

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

155

