An Exploratory Study of Backtracking Strategies Used by Developers

YoungSeok Yoon

Institute for Sofiware Research
Carnegie Mellon University
Pittsburgh, PA, USA
youngseok@cs.cmu.edu

Abstract—Developers frequently backtrack while coding.
They go back to an earlier state by removing inserted code or
by restoring removed code for various reasons. However, little
is known about when and how the developers backtrack, and
modern IDEs do not provide much assistance for backtracking.
As a first step towards gathering baseline knowledge about
backtracking and designing more robust backtracking
assistance tools in modern IDEs, we conducted an exploratory
study with 12 professional developers and a follow-up online
survey. Our study revealed several barriers they faced while
backtracking. Subjects often manually commented and
uncommented code, and often had difficulty finding relevant
parts to backtrack. Backtracking was reported to be needed by
3/4 of the developers at least “sometimes”.

Keywords-component; undo; exploratory programming

1. INTRODUCTION

When developers write source code, it is unrealistic to
expect them to complete the whole task on the first attempt
without making any mistakes. Instead, there are various
reasons why developers often have to backtrack while
coding. By “backtrack,” we mean when users go back at
least partially to an earlier state either by removing inserted
code or by restoring removed code, and not an algorithm for
solving constraint satisfaction problems in the artificial
intelligence area. For example, developers fix typos and
correct minor mistakes, and they try out different values for
parameters to methods. At a higher level, when developers
try to learn an unfamiliar API, they often try writing some
code and running it to see if the code works as expected, and
backtrack if it does not. In some situations, developers will
program in an exploratory manner. They quickly build
prototypes that meet the known requirements of the system.
If the prototypes fail in some way or uncover any
fundamental flaws of the requirements, they backtrack and
refine the requirements [1, 2]. Often, the problems
themselves are ill-defined [3, 4, 5]. For these problems, there
is no single correct solution, but there are several alternative
solutions with their own strengths and weaknesses. In order
to evaluate each solution, the developer might implement
one, backtrack, and implement another.

Prior research has shown that developers do backtrack a
significant amount while coding, much more than people do
during the text editing of regular documents [6, 7, 8]. One
way to measure the frequency of backtracking is to count the
text editing commands related to backtracking, such as delete,

978-1-4673-1824-2/12/$31.00 © 2012 IEEE 138

Brad A. Myers

Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA, USA
bam@cs.cmu.edu

undo, and the toggle-comment commands executed in the
code editor. The Eclipse Usage Data Collector (UDC) keeps
track of the usage of commands executed by all the Eclipse
users who have consented to provide their usage data [9].
According to the UDC data collected from Jan. 2009 through
Jan. 2010, the delete command is the most frequently
executed command among all the commands executed in the
code editor (at 15.32% of all commands). The undo
command was 7™ (4.26%). Our own study data also supports
this. We found that the backspace keystrokes were 12.41%
of all the keystrokes made in the code editor [10]. Note that
this is a much higher percentage for backspace compared to
normal document editing (e.g., 7.10% in [8]). Murphy et al.
also reported that delete was the most frequently executed
command in their study [11].

Despite the frequency of backtracking in development
contexts, modern IDEs do not provide much support. For
example, there are no sophisticated undo mechanisms other
than restricted linear undo model [12], which has several
shortcomings. A developer cannot easily undo the changes
that they made some time ago, but only can undo the most
recent changes in the command history. Also, when the
developer undoes several steps backwards and makes a new
change from that point, all the previously undone commands
are discarded and cannot be redone, because the undo model
does not keep the command history tree but only keeps a
linear list. Another way IDEs help with backtracking is to
provide a version control system (VCS), but this is not
always adequate for several reasons. It only works if the user
thought to commit the desired version, which may not
always be the case, and it is often too heavy-weight for small
experiments. And neither Undo nor a VCS helps when the
users undesired and desired changes are intermixed.

As a first step towards supporting more robust
backtracking in modern IDEs, it would be helpful to first
know more about when and how developers backtrack when
they write source code. However, to the best of our
knowledge, there has been no thorough study about
backtracking in the software development context. To gather
baseline knowledge about backtracking, we conducted an
exploratory lab study with 12 developers to see when and
how they backtracked. We observed several backtracking
patterns that the developers used, and what types of barriers
they faced while they backtracked. Then, to gather more
feedback from professional developers in general, we also
conducted a follow-up online survey about the backtracking

CHASE 2012, Zurich, Switzerland

situations they face and what types of strategies they use in
order to solve those problems. A total of 103 developers
provided some information and 48 completed the entire
survey. The survey results confirmed that developers
backtrack frequently and further provided wus with
information on the problems they have while backtracking.

II. RELATED WORK

A. Study of Source Code Editing

There have been general studies about programmers’
code editing strategies, but not for backtracking specifically.
Kim et al. studied copying and pasting in the programming
context [13]. Ko et al. analyzed programmers’ character level
code-editing strategies [14]. In that study, comment edits
were 3% of all edits, and 60% of the comment edits were for
temporarily commenting out code. Empirical studies on
software evolution (e.g. refactoring [15, 16]) also focus on
how developers make changes to code over time, but they
are often limited to revision-level changes.

B. Undo Mechanisms

One way to support backtracking is with undo. Selective
undo has been well studied in the graphical user interface
(GUI) context [12, 17, 18]. These research systems allow
users to undo the last change on a specific object or to select
any command in the command history list. The Emacs editor
adds the undo commands themselves to the end of the
command list, which allows users to backtrack to any
previously visited state. Emacs also supports undo in region,
which selectively undoes the most recent change in the
currently highlighted region, and the command history can
be displayed as a tree [19].

However, these sophisticated undo mechanisms have not
proven popular for code editors. One reason is that it is
difficult to provide a meaningful thumbnail view of source
code so users can determine where to go back to. Also, the
code editing commands are too numerous and complex to be
easily displayed in a command history list box where the
user can choose one of the commands on the list.

C. Variation Management

Backtracking becomes important when trying out
multiple alternative solutions. There exist several tools that
help with variation management. A version control system
(VCS) can be seen as a temporal variation management
system that helps developers to revert a file or a set of files to
an older version whenever something goes wrong with an
experiment. However, there are many cases where a VCS
cannot directly help with backtracking. As mentioned above,
the user must think to commit the desired version, which
may not happen if the developer realizes that backtracking is
needed later. It may not be even possible to use a VCS to
commit a certain variation when that version contains
unstable code, which is likely to be the case during an
exploration. Distributed VCSs such as Git can mitigate this
problem somewhat by allowing users to clone the repository
locally and experiment within the local clone, although
committing is still a fairly heavyweight process. Also, a VCS

139

cannot help the developer to selectively undo a large body of
code grouped not temporally but logically.

There are a few other systems such as Juxtapose [20] and
Parallel Pies [5], which facilitate design exploration by
providing ways of adding alternatives at any time and
moving among the alternatives. However, users must know
in advance when they want to add variations in Juxtapose,
and Parallel Pies works only in the graphical editing context.

Other work has studied ways to manage source code
variations. Choice calculus provides a generalized
representation for software variations at the source code level
and avoids redundancies as much as possible [21]. Barista
[22] had an alternative expressions tool which allows
developers to select an alternative by clicking on one of the
listed choices, but it was restricted to the expression level.

III. LAB STUDY

In order to study when and how developers backtrack
using today’s tools, and to identify barriers that developers
face when they backtrack, we conducted an exploratory
study in a controlled lab environment. We recruited 12
graduate students from Computer Science at Carnegie
Mellon University. The participants were required to 1) have
professional development experience or at least two
internships as a software developer, and 2) be comfortable
programming in Java. Of the 12 participants, 11 were male
and 1 was female. Their average age was 24.8 years, and
they had been programming for 5.5 years on average.

Participants were asked to finish two pairs of feature
adding tasks in about 2 hours and to think aloud. The editing
screens and their voice were recorded for further analyses. In
addition, we developed and used an event logging plug-in for
Eclipse called Fluorite [10] to capture all the low-level
editing events. Subjects used the Eclipse IDE version 3.6.2
(Helios) on a laptop running Windows 7. They were told that
they could use any Internet resources they wanted, and all
the subjects made heavy use of Google and JavaDoc.

After completing the tasks, the participants were asked to
fill out a post-survey questionnaire about their demographics
and some the backtracking situations and strategies. We used
the responses when designing our online survey questions.
The participants were paid $30 for their efforts.

A. The Paint Program

We used a Paint program as the code base of our study,
which has been previously used by other researchers [23, 24].
This is a simple Java Swing based drawing application
composed of 10 Java files and a total of 452 lines of code.

Using the Paint program as our code base had several
advantages. First, GUI development tends to be exploratory
(i.e. involves extensive experiments with code), which
means that the developers would often need to backtrack.
Second, it had been shown by the previous studies that the
code size is small enough to be understood and modified in a
fairly short amount of time.

B. Features

The participants were asked to add new features to the
Paint program. Because we wanted to get as much

TABLE 1. Study settings. Each participant did the tasks from top to
bottom in sequence.

Step Group 1 (7 subjects) | Group 2 (5 subjects)
Begin Introduction
Task1 F1-1 F2-1
Task2 F1-2 F2-2
Task3 Back to F1-1 Back to F2-1
Task4&5 F2-1 & F2-2 F1-1 & F1-2
End Post-study questionnaire

backtracking data as possible in 2-hour lab study, we
designed the tasks so that they would lead the developers to
backtrack regardless of any occurrences of their own
exploration. To achieve this goal, we set up an imaginary
scenario where a whimsical boss first asks the participants to
implement a feature, changes his mind after testing the
feature and asks them to implement the same functionality
using a different user interface element. Because it does not
make much sense to provide two different user interfaces for
the same functionality, the participants were required to
backtrack out of the first implementation to some extent.
Starting over was not a good option however, because the
first and second versions shared some code that the
participants had to write, and only differed in the user
interface part.

There were two different features to implement: thickness
control (F1) and x, y coordinates indicator (F2). Each feature
had two different user interfaces. The thickness control had
to be implemented using a slider widget (F1-1) and then
using a menu of buttons which preview the desired
thicknesses (F1-2). The x, y coordinates indicator had to be
located on a status bar at the bottom of the application
window (F2-1) or in a modeless tool window which can be
moved by the user (F2-2).

The study procedure and group settings are shown in
Table 1. Another issue we wanted to study was whether the
developers would behave differently if they knew they might
need to backtrack later. Therefore, we first asked them to
implement one of the features F,-1, without telling them
they might have to backtrack later. Then, they were asked to
implement F,-2 instead. Next, in order to see how they
would restore the previous version, we asked them to go
back to Fa-1 implementation. Finally, we gave them both Fp-
1 and Fg-2 simultaneously and asked them to implement one
at a time, using any strategy they wanted. We randomized
whether participants used Feature 1 as F, and Feature 2 as Fy
(Group 1) or vice versa (Group 2).

C. FLUORITE Logger for Eclipse

To capture all the low-level code editing events, we
developed and used FLUORITE', our event logging plug-in
for Eclipse [10]. FLUORITE logs every command executed in
the code editor including typing new text, copying and
pasting, undoing and redoing, and logs all of the deleted and
inserted text along with their timestamps. Using this data, we
could detect several code editing patterns composed of
sequences of commands which are closely related to
backtracking.

"http://www.cs.cmu.edu/~fluorite/

140

Having this data has many advantages. Not only does it
reduce the time to inspect the videotapes significantly [13], it
also enables various automatic analyses. And in the future,
we may be able to use the analysis in support of new tools in
the IDE that will directly help the developers.

IV. RESULTS

A. Overview

The study took 96.6 minutes on average. The task
accomplishment varied a great deal across the participants.
Of the 12 participants, only 3 people completed all the five
tasks. 3 people could only complete one task and had to give
up all the others. Overall, the participants completed only
58.3% of all the tasks.

We hoped that the 4 different features would have the
similar difficulties, but it turned out that F1-1 (thickness
control using slider widget) was the easiest. 11 participants
succeeded on F1-1, while each other feature was successfully
completed by about 5 of the participants®. We speculate that
F1-1 was the easiest because there was a working example of
the slider widget right in the code base (the color slider).

Even though some participants were not very successful
in completing the tasks, we did not exclude those data
because the participants still backtracked to some extent
while trying to figure out how to get the tasks completed.

B. Command Statistics & Keystroke Distribution

We counted how frequently each IDE command was
executed and each keyboard key was pressed. Table 2 shows
the top twenty commands executed, and separately, the top
20 keystrokes typed across all the participants. Except for
typing and code navigation commands, the most frequent
commands are the backtracking related commands (inverted
rows). Considering that the navigation commands would be
expected to be large since FLUORITE logs multiple instances
of the same event when the user holds down a key and it
auto-repeats, we can see that backtracking related commands
are very frequently executed. The command statistics are
somewhat different from those of Murphy et al. [11] because
the two logging tools differ in what types of commands are
logged. However, the rank orderings of commands are
consistent if we only compare the main editor commands
such as Delete, Save, Copy, Paste, and Assist.

Table 2 lists two different Assist commands. The first
one counts all the content assist executed automatically (e.g.,
when the user types a dot following a variable name), and the
second one only counts the manually executed content assist
and quick fixes.

V. OBSERVATIONS

A. Deleting vs. Commenting Out

7 of the 12 participants habitually commented out their
code rather than deleting it, whether or not they thought the

2F1-2, F2-1, and F2-2 were successfully completed by 5, 6, and 4 out of 12
participants, respectively.

TABLE 2. Command and keystroke distributions. The top twenty entries
are listed for each. Shaded entries are related to code navigation, and the
inverted entries are related to backtracking.

Commands Keystrokes
Type char. 17092 (31.8%) Down arrow 5797 (12.64%)
Line down 5795 (10.8%) Backspace 5693 (12.41%)
Delete prev. 5692 (10.6%) Up arrow 4495 (9.80%)
Move caret 4686 (8.7%) Right arrow 3586 (7.82%)
Line up 4491 (8.4%) Left arrow 2751 (6.00%)
Col. next 3544 (6.6%) S 1873 (4.08%)
Col. prev. 2715 (5.1%) Ctrl 1854 (4.04%)
Select text 1975 (3.7%) Shift 1652 (3.60%)
Sel. col. next 1035 (1.9%) Enter 1387 (3.02%)
File open 907 (1.7%) T 1289 (2.81%)
Sel. col. prev. 857 (1.6%) E 1250 (2.72%)
Save 852 (1.6%) N 1003 (2.19%)
Delete 576 (1.1%) | 882 (1.92%)
Paste 459 (0.9%) C 871 (1.90%)
Assist(auto) 456 (0.8%) Space 859 (1.87%)
Run 391 (0.7%) A 800 (1.74%)
Copy 314 (0.6%) 0] 750 (1.63%)
Undo 294 (0.5%) v 619 (1.35%)
Assist(manual) 213 (0.4%) L 610 (1.33%)
Sel. line down 212 (0.4%) DEGESE 576 (1.26%)
Others 1113 (2.1%) Others 7275 (15.86%)
Total 53669 Total 45872

code was going to be reused later. However, even the
participants who explicitly said that they usually comment
out code also deleted code during the study, because they
said they did not like messing up the code with lots of
comments. In some cases, those deleted code fragments
turned out to be needed later on.

Some programming languages provide specific ways of
activating and deactivating code. For example, C/C++ has
preprocessor directives such as #ifdef [25], and the NET
Framework provides the Conditional attribute which allows
developers to conditionally activate a certain method
according to the current build configuration. However, since
our study was based on Java, these language specific
methods were not available, so they could only use
conventional comments.

B. Common Reasons for Commenting Out

During the lab study, participants articulated three main
reasons why they commented out the code instead of
deleting it. First, the developers commented out code
because they knew that the code being commented out was
going to be used again. This includes the situation where the
code was one of the variations and the developer wanted to
be able to switch to another variation. Also, when the
developer had implemented two different features
simultaneously and wanted to test one at a time, they left the
code for the feature under test and commented out the other.
This was the most common reason given.

The second common reason for commenting out is to
keep the code snippet as a good example. This situation
differs from the previous one in that the code is not expected
to be used at the moment, but the developer wants to keep
the code anyway. This could happen when the developer
thinks that the code could be used as a structural template for
other similar code. For example, in our study, the
participants had to add different types of listeners to the
graphical widgets. When developers tried out one type of

141

listener but it did not work, they often commented it out
because the listener creating and adding structure is pretty
much the same regardless of the type of the listener they
would use. Also, when it turned out that an example code
snippet they found from the Internet did not quite fit to the
given situation, they often commented out the code rather
than deleting it because they did not want to have to search
for the example again in case it might be needed later on.

Finally, developers occasionally commented out code in
order to remind themselves that the code was not good. They
kept the code there because they wanted to avoid making the
same mistakes afterwards.

C. Problems the Participants Faced while Backtracking

The study participants faced various problems when they
were trying to backtrack. Participants often had problems
finding the right code fragment to be reverted in the source
file. For instance, when implementing F1-1 (thickness
control feature using the slider widget), most participants
copied and pasted the code for the color sliders and modified
it. Because the original code and the pasted code looked very
similar, participants were often confused and looked at or
even edited the wrong code.

When they were trying to backtrack all the code
fragments related to a certain source code level element such
as a variable, method, or class, it took some effort to find all
the relevant code fragments. Although participants rarely
made mistakes at this, occasionally they did miss a few
statements that should have been reverted. Often, this
happened because two or more elements were involved in a
single feature. For example, when restoring the commented-
out slider widget, they often forgot to restore the associated
change-listener code. One participant made this mistake even
though he labeled the related code fragments using
comments. We speculate that it would be even more difficult
for the developers to find all the relevant code fragments
when they are distributed across multiple files, but this did
not happen in our lab study because mostly the participants
implemented all the features in a single file.

The participants often added and removed debug outputs.
Especially when they were implementing F2 (x, y
coordinates indicator) — pretty much all of the participants
added debug outputs using either a console output method
(System.out.println) or a simple message box (JOptionPane.
showMessageDialog) in order to check if the mouse listeners
they had just added was called when the mouse cursor was
moved, and if the x,y values were correct. However, after
they had finished implementing the feature, they sometimes
forgot to remove the debug outputs. All the participants who
used the message dialog did remove it since the message box
was continuously interfering, while many of the ones who
used console output did not.

D. Do the Developers Behave Differently when They Know
In Advance that They Might Need to Backtrack?

Not surprisingly, even the participants who usually just
deleted the code did comment out the code when they
believed that the code was likely to be reused soon. For
example, when they were doing task 3 (getting back to Fu-1

after completing Fa-2), pretty much all of the participants
commented out the code for F5-2 because they thought we
might ask them to go back to F,-2 again.

Only a few participants behaved differently when they
were doing task 4 (implementing Fp-1 & Fp-2
simultaneously). One participant used a flag variable so that
he could select either of the two user interface variations
dynamically. Four other participants marked each code
fragment using comments, and only one of the variations
would be activated (uncommented) at a time. When we
asked the participants to switch to a different variation, they
manually searched for all the currently-activated variation
code fragments using the labels and commented them out,
and then searched for all the code fragments to be activated
and uncommented them. This worked, but it was a tedious
process. Also, when only one of the variations gets accepted
and the others are rejected, one would need to manually
search for all of the rejected variations and delete them.

E. Backtracking as “Restoring” Code

So far, we mostly discussed backtracking as removing /
deactivating code that was recently added. However,
restoring previously removed code is also an important
aspect of backtracking. We observed several problems with
restoring code during our lab study.

For example, one participant had a serious problem with
restoring code. After copying and pasting some code and
testing the program, he meant to delete only the pasted code,
but he accidentally selected the copied and pasted code
together and deleted them, because they happened to be
adjacent and looked very similar. He realized that something
went wrong about 2 minutes later when he tested the
program, and then spent 1 more minute to figure out what
was wrong, and then spent 30 seconds to locate where the
deleted code should be put back. However, he could not
remember how the deleted code looked nor could he restore
the code even after he correctly found where it went. He had
tried to restore the deleted code” from memory for 6 minutes,
but eventually failed to produce correct code and gave up.

Another participant faced a similar problem, but in this
case, he did remember what the code looked like, and he
knew that he had deleted the code quite recently. He
therefore could restore the code by taking advantage of the
linear undo feature of the code editor. He first executed the
undo command multiple times until the desired code
fragment was restored, copied the code fragment, executed
redo command to the end to remove all the other extra
commands that still should be redone, and then pasted the
code into the desired position. This takes advantage of the
feature that undo/redo does not affect the contents of the
clipboard.

For the cases where the developer wanted to restore a
specific code fragment that was recently deleted, they often
remembered one or more features of the deleted code such as
the original location from where the code was deleted (or the
surrounding code), the names of one or more code elements
in the deleted code, or how the code looked. Thus, we

? 6 lines of code, excluding the blank lines and the lines only containing “}”.

142

speculate that in general, even when they could not easily
reproduce the code from scratch, they probably could
recognize the code if it was able to be displayed somehow.

We also observed that participants reproduced the same
code fragments repeatedly from memory. For example, when
implementing F2 (x, y coordinates indicator), participants
wrote complex expressions which would result in the desired
output string*. They used these expressions with the debug
outputs to check if they were getting the correct values, and
then retyped the whole expression when trying to display it
in the desired graphical widget. Reproducing such
expressions was not difficult, but it was very tedious and
inefficient.

VI. ONLINE SURVEY

A. Methodology

In order to get more feedback from general software
developers besides just graduate students at Carnegie Mellon,
we conducted an online survey, which took about 15~20
minutes to complete. The survey was posted on several
online developer forums including reddit.com ° and
dzone.com® and others. A total of 103 developers answered
at least some of the questions, and 48 of them completed the
whole survey. Of the 48 people who finished, 31 were from
dzone.com, 15 were from reddit.com, and the other 2 were
from the Eclipse developer forum. Our analyses of this
survey are based on the responses from these 48 people who
completed the survey so all of the questions would have the
same number of answers.

B. Demographics / Traits of Their Work

The survey was composed of three parts. First, we asked
demographic information including their gender, age, and
prior experience in software development. We also asked if
they do their development work alone or as part of a group,
and to what degree their specifications are flexible and to
what extent they experiment, iterate, and/or explore while
they develop. The demographics of the respondents are
summarized in Table 3. 72.9% of all the respondents had
been programming for more than 5 years and the overall
average was 13 years. This indicates that the respondents
were mostly professional programmers.

The respondents were asked to express if they worked
alone or as part of a group, using a 5-point Likert scale. Each
of the 5 choices received a rating from 12.5% to 27.1%,
which means the respondents had diverse situations. The
next question asked how flexible the developers’ work was
for different activities, and the results are summarized in
Figure 1. We can see that they can experiment, iterate, and/or
explore a lot for the coding details but not much for the user
interface specifications or the desired behaviors.

We speculated that there might be more flexibility if the
developer works alone or as part of relatively small groups.
So, we investigated if there is any correlation between the

4 similar to the following expression: “(X, Y) =" +x + “, ”
3 http://www.reddit.com/r/programming

® http://www.dzone.com/

+y+ 9

TABLE 3. Demographics of the online survey respondents.

value number percentage
Total respondents 48
Gender Male 44 91.7%
Female 4 8.3%
20-30 22 45.8%
30-40 15 31.3%
Age 40-50 6 12.5%
50-60 5 10.4%
Average 32.5 c=9.4
<1 1 2.1%
Programmi 1-3 4 8.3%
Ex é;)iincrre]r?lzglrs) 35 8 16.7%
p Y >=5 35 72.9%
Average 13.0 c=9.9
™ lts that g m Highly specified
€ results that my code _ before | start
achieves . ; T _ | developing
The architecture of the = Specified, but some
code itself ..- opportunity to
[| | | negotiate changes
Which APIs/libraries are » Somewhat flexible,
used -_— | | | within broad
constraints
Which elements of the . .
APl are used -!. : | ' Highly flexible
The details of the
implementation code I..‘ \ Completely

unspecified; | can do

0% 20% 40% 60% 80% 100% whatever | want
Figure 1. The responses for the question "For each of the following,
please specify how often you need to experiment, iterate, and/or explore

while you are developing." The lighter color represents more flexibility.

Typos, mistyping, or other small
mistakes]] 1 1 |

. m All the time
Tuning parameters

Figuring out how to use an API

correctly : : | | | u Frequently

Fixing code just added, because it

is not working] 1 i 1 | mSometimes

Trying out various user interface
designs] | | |
. . . Rarely
Trying to find an appropriate
algorithm | i | | |

Cleaning up the code and making Never

it more readable] | 1 1 |

0% 80% 100%

Figure 2. The backtracking situations shown to the survey respondents.

sizes of the groups in which the developers worked, and the
flexibility of their work, but could not find any statistically
significant correlation. Even when the developer worked
alone, often the work was assigned by the boss or the
customers and we did not find that the developer had much
freedom. Only one of the respondents who always worked
alone expressed that everything is completely unspecified
and he can do whatever he wants.

C. Backtracking Situations and Their Strategies

In the second part of the survey, we presented seven
different situations where the developers might need to
backtrack. For each situation, we first asked how often the

143

respondents faced the given situation. Figure 2 shows the
responses for these questions. We can see that developers
face these backtracking situations quite often. Roughly */, of
the developers face these situations at least “sometimes”.

Next, we asked what types of strategies they use to
backtrack. We showed eight different strategies related to
backtracking, and asked them how often they think they use
each strategy to solve the given situation using a 5-point
Likert scale ranging from “Never (0)” to “Pretty much every
time (4)”. The result showed that only a few strategies are
primarily used for each situation. When fixing typos and
small mistakes, the most frequently used strategies were
using backspace / delete keys, using undo command, and
selecting and overtyping. When tuning parameters, they
usually select the old parameter and overtype the new
parameter. They look up the method list using the code
completion list when they are trying to figure out how to use
an APIL, or they manually replace one method with another.
For debugging or trying out different solutions, they mostly
comment out code, which is consistent with our observations
from the lab study. Finally, when cleaning up code, they
manually select the unnecessary code and delete it or use
refactoring commands to better structure the code.

This information further hints at how we can detect each
backtracking situation. For example, when the developer
invokes the code completion menu and spends a significantly
long time navigating the menu’s items, this situation may
indicate that the developer is learning an API.

D. Open-Ended Responses

The respondents were also asked to provide other
strategies they use for each given situation, if any. We
collected a total of 34 responses for these questions. Two of
the strategies that our participants mentioned were also
observed in our lab study. 2 people mentioned that they use
Boolean flag variables to temporarily turn on or off code
fragments. Another 2 participants said they would write a
small code snippet separated from the main project in order
to try out something.

Two other strategies that were mentioned were not
observed in our lab study. 2 people mentioned that they
move the parameters out of the code and put them in external
configuration files or in databases so that they can change the
values without rebuilding the software, even at runtime. 5
responses mentioned writing unit tests using mock objects to
see how the API works. We speculate that our lab study
participants did not use these strategies because the code
base was fairly small and they had time limitations.

Next, we asked what other backtracking situations they
faced. One respondent mentioned backtracking while writing
a new interface file from scratch, maybe because it is often
not clear what would be the correct interface to be exposed. 2
responses were about reorganizing and simplifying code
structure. Another 2 responses said that they mainly
backtrack because they find new corner cases or missed
input values during testing.

Finally, we solicited ideas on what types of new features
or commands for an IDE could help with experimenting and
backtracking. 2 people wanted a tool where the developers

can type in small code snippets and run them, just as they
can with scripting languages. 2 people wanted an IDE
feature that allows the developers to take snapshots across
multiple files at any point, and switch among those snapshots.
2 other people wanted a lighter version control system that
can keep multiple versions of a method or class and allow
users to select one of them easily. 1 person wanted an undo
tree model instead of the conventional linear undo model.

VII. FUTURE WORK

We plan to conduct a more extensive field study of
backtracking. We will use the FLUORITE tool to monitor the
developers’ coding behaviors and see what types of
backtracking problems they face during their own regular
development. We will also perform a retrospective
contextual inquiry by interviewing selected participants after
analyzing the log data. Ultimately, we plan to provide new
development tools that will help developers backtrack more
easily and accurately.

VIII. CONCLUSION

It is clear that backtracking is prevalent in coding and our
study data provides additional evidence and information
about when and how this happens. Although our study
revealed that there are many different backtracking situations,
none has previously been studied in depth. In both of our
studies, it has been shown that the developers use several
strategies when they face a backtracking situation, and many
of them are still manual and error-prone. From our lab study,
we identified several problems with backtracking which are
common to many developers. There is still much room for
improvement in modern development environments, and the
research reported here provides evidence that more robust
backtracking assistance tools would help developers write
code more correctly and efficiently.

ACKNOWLEDGMENT

We thank all the developers who participated in our lab
study and online survey. We also thank Andrew Ko for
providing us the Paint program that we used in our lab study.

Funding for this research comes in part from the Korea
Foundation for Advanced Studies (KFAS) and in part from
NSF grants CCF-0811610 and IIS-1116724. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect those of KFAS or the National Science Foundation.

REFERENCES

[1] D. W. Sandberg, "Smalltalk and exploratory programming," SIGPLAN
Notices, vol. 23, 1988, pp. 85-92.

[2] J. Sametinger and A. Stritzinger, "Exploratory software development
with class libraries," Proc. 7th Joint Conference of the Austrian
Computer Society, 1992.

[31 W.R. Reitman, Cognition and Thought, John Wiley & Sons, 1965.

[4] H. A. Simon, "The structure of ill structured problems," Artificial
Intelligence, vol. 4, 1973, pp. 181-201.

[51 M. Terry, E. D. Mynatt, K. Nakakoji, and Y. Yamamoto, "Variation in
element and action: supporting simultaneous development of
alternative solutions," CHI'04, Vienna, Austria, 2004, pp. 711-718.

144

(6]

(7]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19

[}

[20]

[24]

[25]

S. K. Card, T. P. Moran, and A. Newell, "Computer text-editing: An
information-processing analysis of a routine cognitive skill," Cognitive
Psychology, vol. 12, 1980, pp. 32-74.

S. K. Card, T. P. Moran, and A. Newell, "The keystroke-level model
for user performance time with interactive systems," Commun. ACM,
vol. 23, 1980, pp. 396-410.

I. S. MacKenzie and R. W. Soukoreff, "Text entry for mobile
computing: Models and methods, theory and practice," Human-
computer interaction, vol. 17,2002, pp. 147-198.

Eclipse Foundation, "Eclipse Usage Data Collector (UDC),"
http://www.eclipse.org/org/usagedata/.

Y. Yoon and B. A. Myers, "Capturing and analyzing low-level events
from the code editor," Proc. 3rd ACM SIGPLAN workshop on
Evaluation and usability of programming languages and tools
(PLATEAU'11), Portland, Oregon, USA, 2011, pp. 25-30.

G. C. Murphy, M. Kersten, and L. Findlater, "How are Java software
developers using the Elipse IDE?," IEEE Software, vol. 23, 2006, pp.
76-83.

T. Berlage, "A selective undo mechanism for graphical user interfaces
based on command objects," ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 1, 1994, pp. 269-294.

M. Kim, L. Bergman, T. Lau, and D. Notkin, "An ethnographic study
of copy and paste programming practices in OOPL," Proc.
International Symposium on Empirical Software Engineering
(ISESE'04), 2004, pp. 83-92.

A. J. Ko, H. H. Aung, and B. A. Myers, "Design requirements for
more flexible structured editors from a study of programmers' text
editing," Extended abstracts CHI'05, Portland, OR, 2005, 1557-1560.

E. Murphy-Hill, C. Pamin, and A. P. Black, "How we refactor, and
how we know it," Proc. 3ist International Conference on Software
Engineering (ICSE'09), 2009, pp. 287-297.

M. Kim, D. Cai, and S. Kim, "An empirical investigation into the role
of API-level refactorings during software evolution," Proc. 33rd
international conference on Software engineering (ICSE'l11), Waikiki,
Honolulu, HI, USA, 2011, pp. 151-160.

B. A. Myers and D. S. Kosbie, "Reusable hierarchical command
objects," Proc. SIGCHI conference on Human factors in computing
systems: common ground (CHI'96), Vancouver, British Columbia,
Canada, 1996, pp. 260-267.

B. A. Myers, "Scripting graphical applications by demonstration,"
CHI'98, Los Angeles, CA, 1998, pp. 534-541.

T. Cubitt, "undo-tree.el version 0.3.1 --- Treat undo history as a tree,"
2010; http://www.dr-qubit.org/emacs.php.

B. Hartmann, L. Yu, A. Allison, Y. Yang, and S. R. Klemmer, "Design
as exploration: creating interface alternatives through parallel auth-
oring and runtime tuning," Proc. 21st ACM Symp. on user interface
software and technology (UIST'08), Monterey, CA, 2008, pp. 91-100.

M. Erwig and E. Walkingshaw, "The Choice Calculus: A
Representation for Software Variation," ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 21, 2011.

A. J. Ko and B. A. Myers, "Barista: An implementation framework for
enabling new tools, interaction techniques and views in code editors,"
CHI'06, Montréal, Québec, Canada, 2006, pp. 387-396.

J. Fogarty, A. J. Ko, H. H. Aung, E. Golden, K. P. Tang, and S. E.
Hudson, "Examining task engagement in sensor-based statistical
models of human interruptibility," CHI'05, Portland, OR, 2005, pp.
331-340.

A.J. Ko, H. Aung, and B. A. Myers, "Eliciting design requirements for
maintenance-oriented IDEs: a detailed study of corrective and
perfective maintenance tasks," Proc. 27th international conference on
Software engineering (ICSE'05), St. Louis, MO, 2005, pp. 126-135.

D. Le, E. Walkingshaw, and M. Erwig, "#ifdef Considered Harmful:
Promoting Understandable Software Variation," Proc. I[EEE

Symposium on Visual Languages and Human-Centric Computing
(VL/HCC'11), Pittsburgh, PA, 2011, pp. 143-150.

