
Using Association Metrics to Help Users Navigate API Documentation

Daniel S. Eisenberg, Jeffrey Stylos, Andrew Faulring, Brad A. Myers
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
dsecmu@gmail.com, {jsstylos, faulring, bam}@cs.cmu.edu

http://www.cs.cmu.edu/~apatite

Abstract -- In the past decade there has been spectacular
growth in the number and size of third-party libraries, frame-
works, toolkits and other Application Programming Interfaces
(APIs) available to modern software developers. However, the
time-saving advantages of code re-use are commonly hampered
by the difficulty in finding the correct methods for a given task
among the thousands of irrelevant ones. We have developed a
tool called Apatite that helps address this issue by letting pro-
grammers browse APIs by viewing associations between their
components. Apatite indicates which items of an API are popu-
lar in different contexts and allows browsing by initially select-
ing verbs (methods and actions) in addition to classes and
packages. The associations are calculated by leveraging existing
search engine data and source code, and verbs are identified by
parsing the documentation descriptions. Apatite is available on
the web and is being used by developers worldwide on a regu-
lar basis.

Keywords-API Documentation; Search tool; Browsing;
Visualizations; Web applications.

I. INTRODUCTION
Software development increasingly relies on the use of

Application Programming Interfaces (APIs). Therefore,
learning how to use an unfamiliar API is a key step in writ-
ing code efficiently and effectively. However, this is not a
trivial task. Modern APIs like the Java SDK contain thou-
sands of classes and tens of thousands to hundreds of thou-
sands of methods. Finding the correct class and method to
use is often challenging, even for experienced developers.

Despite the explosive growth of API usage, the many ad-
vancements in programming language design, and the exten-
sive research on locating example source code, API docu-
mentation itself has seen far fewer improvements. After
twenty years of Java development, static Javadoc entries are
still the dominant form of API references. Although modern
programmers often use Google to search for API usage as-
sistance, evidence indicates that this is an imperfect strategy
[15] and is not an option for developers using proprietary or
less-popular platforms [2].

There are several issues that prevent traditional, static
API references from being effective:

1. Conventional documentation requires that users start
browsing API documentation by choosing a package or
class, whereas developers are sometimes searching for a
particular action and do not know which class imple-
ments it.

2. Developers may lack knowledge of which classes and
methods are most often used in practice.

3. Developers using an unfamiliar API may think about
their problems using different terminology than the one
used by the API (the “vocabulary problem” [7]).

Apatite (see Fig. 1), which stands for Associative Perusal
of APIs That Identifies Targets Easily, takes a novel ap-
proach to addressing these issues. Instead of forcing users to
begin by choosing a package or class, Apatite allows users
to search across any level of an API’s hierarchy by travers-
ing associations between items. This is enabled by a unique
interaction technique that displays iterative results in vertical
columns, which contain the most relevant items from each
level of the hierarchy, as we described in our short CHI
2010 note [6]. In the current paper, we describe the imple-
mentation of these features, including techniques for genera-
lizing the system to new APIs by extracting association in-
formation from search engine data and existing source code.

Figure 1. Apatite’s novel multi-column, multi-section interface. The text
boxes support keyword searching, and the “+” icons expand sections in an

accordion-like interface.

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI

23

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI 10.1109/VLHCC.2010.13

23

We also introduce a new feature that associates methods
with verbs.

II. PREVIOUS WORK AND MOTIVATIONS

A. Tools
In the past several years there have been a large number

of tools developed to help make using APIs easier. Most
have focused on automatically locating example code in a
number of different contexts, for example, Sourcerer [1] and
Prospector [10]. This task was also addressed by XSnippet,
a code assistant tool developed by Sahavechaphan and
Claypool [14]. Some tools, such as Strathcona, have at-
tempted to bypass the need for users to construct their own
queries by attempting to infer them automatically from code
currently under development [9]. However, these tools offer
limited help to developers who do not yet know which me-
thods they should be investigating, or who do not have
enough high-level knowledge about an API to construct an
effective context with which to generate examples.

Other projects have aimed to actively detect popular
usage patterns from large corpora of source code. CodeWeb
uses data mining techniques to extract library reuse patterns
and displays usage information to the user [11]. SpotWeb is
a similar tool that detects API “hotspots,” patterns that are
frequently re-used in open source frameworks [18]. The
PopCon prototype calculates popularity statistics about each
item in an API to help programmers and API developers
answer high-level questions about usage [8].

Apatite builds on these tools by introducing new kinds of
API associations and displaying them in a novel interface.

B. Studies of programmers
Many studies have looked at the issues around API

usage. In one, programmers attempting to use an unfamiliar
API were observed going through six distinct phases: initial
design, high-level API understanding, architectural design,
finding methods, finding examples, and integrating exam-
ples [15]. The tools described in the previous section are
targeted towards these last two phases. With Apatite, we
primarily target users who are still in the “finding methods”
stage or earlier.

Recent research reinforces the notion that the problem of
finding examples is often superseded by the issue of not
knowing what exactly to look for [3]. That study of pro-
grammers examined how they used the web to assist in cod-
ing. Three different use intentions were identified: learning,
clarifying, and reminding. The third category encompassed
searching for frequently used code snippets with very exact
and accurate queries. However, for other types of queries,
subjects often searched using terminology from the wrong
programming language, searching for an analogue in the
target platform. This finding mirrors the observation from
our previous study that identifying an API’s standard termi-

nology is an important early step in the process of learning
an API [15].

C. Psychology of searching and retrieving
There is much evidence that people’s memories are based

on associations [5]. Our memories are highly linked, and we
often remember things indirectly, as being related to other
things. A recent study shows that people prefer to find in-
formation on a computer in a similar manner, using associa-
tions to make a series of small steps rather than one single
leap to the destination as in a typical search [17].

Traditional tools for exploring API documentation either
support the “teleport” style of search or support only a li-
mited set of associations, for example the classes contained
in a package or the methods contained in a class. Apatite
adds many other associations to enable new ways of brows-
ing.

D. Design Inspiration
In addition to addressing this previous research, Apatite’s

design draws inspiration from several of our group’s pre-
vious projects.

Mica is a search-based website for exploring API docu-
mentation [15]. Because it allows users to type arbitrary text
queries and bases its results on analysis of the Google result
pages, it is limited to only analyzing the first 10 results so
that it can be fast and responsive. Mica’s user interface
looks very similar to Google’s results pages.

Another inspiration for Apatite was the associative
browsing tool Feldspar [4]. Feldspar’s interface allows users
to browse personal information like email, contacts, and
events by association rather than with keyword search. For
example, using Feldspar you could find people mentioned in
an email about an event last year, without needing to re-
member any of the specifics or enter any text queries.

The Jadeite Java documentation system gives program-
mers more cues about which classes and methods are com-
monly used [16]. Jadeite uses font sizes similar to tag clouds
but in a single alphabetical list. In the user study of Jadeite,
this feature seemed to be very effective in the context of
Javadoc-like documentation, so we adopted this in Apatite.

III. APATITE INTERFACE OVERVIEW
Apatite’s interface was designed iteratively, making ex-

tensive use of user feedback. Many of the features described
here were developed and refined by running a series of for-
mal and informal user studies during prototype stages.

Fig. 2 demonstrates a sample search sequence of the
standard Java 6 API using Apatite. The interface uses ver-
tical columns to display each step of a search. When the tool
is first loaded, a single column (on the far left) is displayed,
showing the four most popular items in five different catego-
ries – Packages, Classes, Methods, Actions, and Properties.
Font size indicates relative popularity, analogous to a tag
cloud. The algorithm for determining popularity is explained

2424

in the next section. The first three categories list components
of the API. Actions are verbs that are carried out by the
API’s methods (this is explained in more detail in Section
V). Properties are anything that can be accessed by “get,”
“set,” or “is” methods (such as getName() or isEmpty()).
Clicking on a category name expands that section and col-
lapses everything else, revealing more entries (see Fig. 1,
right column). Additionally, there is a search box at the top
of the column that instantly filters all entries based on one or
more keywords (Fig. 1 left column).

The user begins browsing by clicking on an item (ja-
va.io in Fig. 2), which generates a new column to the right
of the current one. The new column contains items that are
related to the selected entry in the previous column, and font
sizes indicate the strength of association. For example, the
second column in Fig. 2 indicates that the File class is
highly associated with the java.io package. The kind of
relationship depends on the particular categories involved;
explanation text describes the nature of the relationship
when the cursor hovers over an item. A “Filter” option,
demonstrated in Fig. 3, brings up a list of the kinds of rela-
tionships that are being displayed in a particular category
(for example, subpackages of a selected package or imple-
mentations of a selected method) and allows the user to ex-
clude any of them. Relationships between items in adjacent
columns are described in more detail in the next section.

Clicking on an item in the second column generates a
third column, this time ranking items based on the strength
of association with both of the previously selected items.

The user can continue to browse the API in this fashion,
column-by-column, until the desired item is located. The
browser automatically scrolls horizontally as the search
progresses. All previous columns remain clickable, so users
can inspect their current search and backtrack if desired.
Each entry has a “?” area that, when hovered over, displays
additional documentation information (see Fig. 2, far right);
clicking on the question mark pops up a new browser win-
dow pointed directly at that item’s Javadoc entry. If the en-
try is ambiguous, such as a method implemented by multiple
classes, an intermediate page prompts the user to select a
particular instance.

Our intention with this design is to allow the user to ex-
plore an API in either a top-down or a bottom-up fashion. If
the user is seeking information about an unfamiliar method
or action, it can be selected in the first column to discover
which class has the most commonly used implementation.
Alternatively, if the containing package or class is already
known, the user can select it in the first column to guide the
rest of the search.

Fig. 2 demonstrates a typical use scenario. The user is
looking for a method in java.io that reads data. The java.io
package is selected first, which reveals the top classes, me-
thods, actions, and properties associated with that package.
The user discovers the popular read method, which sounds
promising. After clicking it, the Class category in the next
column reveals which classes implement read and are used
frequently. The Methods category shows us other associated
methods, like write and close. Finally, the user can

Figure 2. A screenshot of the Apatite user interface after several steps. Each column shows one step in the search process.

2525

choose the BufferedReader entry and look in the next
column to find additional relevant methods specific to that
class, like readLine and skip.

IV. CALCULATING COMPONENTS’ ASSOCIATIONS
Apatite is implemented as a web-accessible application

using MooTools, 1

Apatite’s core functionality depends on the associations
that it visualizes between an API’s components. We have
designed and implemented two different techniques for min-
ing API usage data and extracting reasonable popularity and
association metrics. The first method, designed for APIs
with high public exposure, leverages search engine data to
infer widespread usage patterns. The second method collects
similar information from a corpus of source code, to be used
in cases where an API is not heavily documented or dis-
cussed on the public web. These are explained next.

 an open-source framework that extends
JavaScript with object-oriented functionality and cross-
browser visual effect methods. All of the necessary data is
stored on the server in a MySQL database and served on-
demand via AJAX-style requests. Our primary motivation in
using web-based technology was to create a tool that the
general public could easily use without needing to install
any additional software.

A. Collecting Popularity and Association Data from
Search Engine Results

1) Populating the initial column. The first column that
Apatite displays is based on how frequently each API item is
used by programmers. Popularity information for each item
is computed with the same technique used in the Jadeite

1 http://mootools.net

documentation tool [16]: The popularity for each package,
class and method is based on the number of hits returned by
a Google search for each item. For example, the weight for
the InputStream class is computed based on the number of
results returned for the query: “java.io” +InputStream. These
results are computed ahead of time as a batch process and
are cached in Apatite’s database.

Popularity data for API items tends to follow a power law
[16], so within each category a logarithmic function is ap-
plied to each item’s Google hits to derive a corresponding
font size:

)%
loglog

loglog100(%75
minmax

min

ww
ww

Scale

where w is the number of hits for each item, wmax is the
number of hits for the most popular item in the result set,
and wmin is the number of hits for the least popular item the
result set. The scale value is multiplied by a baseline font
size to determine the final size (up to a maximum of 150%).
When a category is expanded to show more items, they are
once again sorted alphabetically, and their font sizes are re-
computed using the new wmax and wmin values.

2) Populating additional columns. When the user clicks
on an item, a new column appears consisting of items that
are associated with the user’s selection. These associations
have been pre-computed using various methods (described
below). Each item in this associated column also has a
numeric score that represents how strong the association is;
this is an analogue to the number of Google hits used in the
first column. With this data, Apatite displays the new
column using the same process that it uses on the initial
column: the strongest associations in each category are
retrieved, sorted alphabetically, and then sized using the
logarithm of their score, as described above.
 The process for computing these associations and their
weights depends on the nature of the association.

For associating a method with other methods, we col-
lected a new set of popularity data that indicates how often
methods are used in conjunction with one another. To de-
termine the metric for associating Method A with Method B,
we counted the number of times the text “.methodB(” ap-
pears in the contents of the first 100 Yahoo! search results
for “methodA”. We switch to Yahoo! search to compute the
method-to-method associations because the Yahoo! search
API allows more queries per day than the Google API al-
lows. The result approximates how often the methods are
used together in actual code.

For associating a method with classes, we include three
different types of relationships: classes that implement the
selected method, classes that are returned by the selected
method, and classes that are arguments to the selected me-
thod. For each of these, the association weight is the sum of
the number of Google hits over all classes and interfaces that
meet the association’s criteria. For example, the weight for

Figure 3. Demonstration of filtering a list of items according to the rela-
tionship with the previously selected item.

2626

associating the read method with the ByteBuffer class is
the total number of Google hits for all read methods which
take a ByteBuffer object as an argument. If a certain class
is associated with a method in more than one way, we use
the maximum weight of these associations.

 For associating a class with other classes, we take the
sum of the association weights between Class A’s methods
and Class B’s methods, multiplied by the logarithm of
Class B’s overall popularity. Using the logarithm of the
popularity in this case avoids overemphasizing extremely
popular classes like Object.

The remaining associations (package to class, class to
package, class to method, etc.) can all be characterized as
having an encapsulation relationship (for example, Buffe-
redReader is contained in the java.io package). For
these, we assign weights by summing the Google popularity
data over all implementations that satisfy the encapsulation
condition. For example, to generate associations between the
read method and various packages, we first group all of the
classes and interfaces that have a read method by their con-
taining packages, and then take the sum of the popularities
over each group.

B. Collecting Popularity and Association Data from
Source Code
Unlike the standard Java SDK API, many other APIs are

not sufficiently indexed by search engines like Google and
Yahoo! because they receive limited use or are proprietary.
In fact, developers using these kinds of APIs must rely even
more heavily on traditional Javadoc-style documentation
due to a lack of effective tutorials and discussion forums. To
support such APIs, we implemented an application that
mines Java API association data using only existing source
code.

Calculations made in this implementation are relatively
straightforward and are based around counting method calls.
The program takes as inputs the implementation of the API
(with Javadoc-style commenting) and a corpus of existing
source code that uses that API. The Javadoc tool2

For the association strength between two methods, we
count the number of times they are called within seven me-
thod calls of each other. To choose this number, we ana-
lyzed how it affected the top associations for each method.
Fig. 4 shows how stable the top 4 and top 8 results were for

 is used to
inspect the API source and extract a list of all its classes and
interfaces. Next, we use the MAPO tool developed by Xie
and Pie [21] to extract all of the method call sequences in
the provided source code, inlining any private method calls
to better judge the frequency with which each API method is
called. The number of occurrences in the source code of
each method from the target API is counted, and this is used
to calculate the absolute popularity of each method, class,
and package.

2 http://java.sun.com/j2se/javadoc/

each method compared to the window of examined code.
For example, for each given method in the API, we calcu-
lated its association to every other method by counting the
number of times each other method was called within six
calls of the target method. After repeating this process and
examining seven calls instead of six, the top four strongest
associations for each method remained the same nearly 90%
of the time. After conducting this analysis, we found that
change among the top 4 and top 8 results for each method
were relatively stable (derivative less than or equal to 1%)
with a window size of seven method calls.

Associations between all remaining categories are calcu-
lated in the same manner as discussed in section IV.A, ag-
gregating the method pair association metrics to infer rela-
tionships between all other types of items.

V. CALCULATING VERB-METHOD ASSOCIATIONS
A fundamental aspect of Apatite’s interface is that it al-

lows users to view and browse different categories of search
results (classes, methods, etc.) in a single session. This fea-
ture allows us to experiment with integrating higher-level
concepts and abstractions into the API browsing experience.

As described in Sections I and II, a previous study [2] in-
dicates that programmers often have in mind a particular
operation or action but do not know which classes or pack-
ages contain these methods. However, methods that achieve
similar tasks in two different APIs are likely to have differ-
ent names, and this vocabulary problem is a significant bar-
rier to switching between APIs efficiently. Although Apatite
allows users to begin queries with method names, users
might not even know what method to look for. To accom-
modate for this use case, we added a new category “Ac-
tions” for associating methods with verbs. Tables I and II
show some sample method-verb associations generated by
our algorithm.

A. Algorithm
We first attempted implementing the verb-method associ-

ations by simply splitting up method names by camel case

Figure 4. Percentage of non-changing associated method sets after incre-
menting the number of adjacent method calls searched.

2727

and identifying whether the first “word” was a verb. Al-
though this did do a somewhat effective job of clustering
methods that represent similar actions, it did not alleviate
issues arising from terminology mismatches.

To generate a better association graph between methods
and actions, we anticipated two properties that a solution
would need to have in order to substantially address the vo-
cabulary problem. First, it would need to associate a single,
common action with several different variations on its mean-
ing. For example, the act of “removing” things from a List
can be accomplished with several distinctly different me-
thods, including remove (to remove the first occurrence of
an item), retainAll (to remove everything except certain
items), and clear (to remove all items). Second, it would
need to associate a single method with a variety of different
actions – essentially, be able to accommodate synonyms.

Our solution to this problem is a new technique that leve-
rages the text of the existing documentation to determine
likely verb-method relationships. Our hypothesis is that,
since method names are often similar across different classes
of the same API, the frequencies of particular verbs used by
API authors in method documentation text provide good
approximations for how strongly each method name is asso-
ciated with particular verbs. For example, if 75% of methods
in the standard Java API called valueOf have the verb
“represents” in their descriptions and 50% of them have the
verb “converts” in their descriptions, then methods in this
API named valueOf in general are strongly associated with
the act of representing and slightly less associated with the
act of converting.

B. Implementation
The process of calculating the association graph between

verbs and methods consists of three stages: tagging, stem-
ming, and aggregating.

After initially extracting each method’s Javadoc descrip-
tion (accomplished with the Javadoc tool mentioned in Sec-
tion IV.B), we need to identify which words are actually
verbs. We identify verbs within the documentation using the
Stanford Log-linear Part-Of-Speech Tagger3

3

 developed by
Toutanova et al. [19], which was configured to use the stan-
dard, pre-trained English model. One caveat we encountered
was that the first sentences of method descriptions are often
technically sentence fragments, with the method as an im-
plied subject (for example, File.delete has the descrip-
tion “Deletes the file or directory…”) The tagger has diffi-
culty recognizing the leading verbs in these situations, pre-
sumably because it fails to locate any obvious subject. To
work around this problem, we add an assumed “This me-
thod” prefix in front of every method description (changing
the above example into “This method deletes the file or di-
rectory”). This correction fixes the half-formed sentences

http://nlp.stanford.edu/software/tagger.shtml

but does not seem to interfere with the tagger’s ability to
recognize verbs in other, fully-formed leading sentences.

Once the verbs in each method description are identified,
each one is mapped to its underlying verb stem. Verb stems
are generated using an implementation of the Porter Stem-
ming Algorithm [12] 4

Finally, the verb instances are grouped by method name
and counted. To avoid universally common verbs from do-
minating the results, we apply the term frequency-inverse
document frequency (tf-idf) formula to determine the
strength of the relationship between a verb and a method
name. Specifically,

. The verb-stem mappings are ex-
amined to identify the most popular concrete form of each
stem, which is chosen as the stem’s “representative.” For
example, if remove, removes, and removing are all used
throughout the documentation and removes is used the most,
all three are represented by removes.

where Amv is the association metric between method m and
verb v, nmv is the number of times verb v appears in descrip-
tions of methods named m, |D| is the total number of descrip-
tions, and {d | v d} is the number of descriptions that have
at least one instance of the verb v [13]. The 1 in the denomi-
nator prevents divide-by-zero errors.

In the final dataset, we manually prune out extremely
common and generic verbs like “is,” “has,” “returns,”
“called,” and “specifies.”

VI. USAGE AND LIMITATIONS
During the final stages of iteratively evaluating Apatite’s

design, a majority of our subjects had positive reactions to
Apatite. Most requested to be notified when it was made
public and felt it would become significantly more useful
after they used it over a longer period of time. Several com-
mented that Apatite would have been useful during introduc-
tory programming courses.

4 http://tartarus.org/~martin/PorterStemmer/

TABLES I AND II. SAMPLE ASSOCIATIONS BETWEEN CLASSES, ACTIONS,
AND METHOD NAMES.

Class Action Top Methods

java.util.List removes remove, clear, add, removeAll
java.lang.String converts toString, hashCode, valueOf, format

java.io.InputStream read read, available, close, skip
javax.swing.JButton resets updateUI, reset, close, clear

Method Name Top Actions

retainAll removes, contains, retains, modified
setEnabled enabled, disabled, prevent, sets
Format format, appends, writes, result
Restart restart, cancels, pending, fired

2828

Various versions of the Apatite interface have been pub-
licly available as a web application since June 2009. Usage
statistics suggest that Apatite’s unique features are being
discovered and utilized. 64% of all visits to the application
have been searches involving at least three columns. 83%
have used at least two columns, and 11% of the remaining
visits have used the rapid text search.

Apatite’s non-linear search style does carry some disad-
vantages. Displaying entity names without their fully-
qualified identities (for example, read instead of Buffere-
dReader.read) allows us to display aggregate information,
but sometimes this makes it difficult to identify which par-
ticular instantiation of a method should be used. Name colli-
sions also preclude Apatite from intuitively displaying re-
sults from more than one API in a single interface.

Our approach of computing popularity and associations
between different API items relies on the existence of a cor-
pus that is representative of how people actually use an API.
For existing APIs that have seen significant usage, we think
this works well, but it does not work for APIs that are com-
pletely new. One possibility is to allow an API designer to
manually designate the expected popularity of each item, but
for reasonably large APIs, this would probably be infeasible.

VII. FUTURE WORK
There are several aspects of Apatite that we believe hold

potential for promising future work.
A commonly requested feature that we plan to explore in

a future version of Apatite is to display the example code
from which associations and popularity measures are com-
puted. However, since there are multiple examples for each
measure, it is not obvious which one or ones should be dis-
played.

Embedding Apatite inside of a programming develop-
ment environment like Eclipse could help programmers ex-
plore APIs without having to leave the code view. This
would also allow the tool to use contextual information
about the code that has already been written to help decide
which items to display.

Apatite was initially envisioned for users who already
know how to program. However, the interface may be appli-
cable to new programmers as well. A version for that au-
dience might use nouns in addition to verbs as the primary
sections and help learners to access example code and tuto-
rials in addition to the standard documentation pages.

We think that Apatite could be a useful tool in helping
API designers create new APIs, by helping them see the
commonly used parts of current APIs and by helping them
anticipate which classes and methods will likely be used
together.

We also envision other new research directions inspired
by our experiences. The approach of letting users browse
information by association could be a useful technique in
domains outside of programming as well. This approach

could allow users to explore many different kinds of large
heterogeneous data sets starting from different directions.

VIII. CONCLUSION
Apatite demonstrates new interaction techniques for

browsing APIs by association. It allows programmers to
browse verb first when needed, letting them discover the
relevant items rather than forcing them to guess which class
to start from. We have developed techniques for extracting
popularity and association statistics from web data and exist-
ing source code, in addition to identifying associations be-
tween methods and verbs from API documentation.

Apatite can be accessed
at http://www.cs.cmu.edu/~apatite, where it is already being
used by users worldwide on a regular basis.

ACKNOWLEDGEMENTS
This work was funded in part by a grant from SAP, and

in part under NSF grants CCF-0811610 and CCR-0324770.
Any opinions, findings and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect those of the NSF.

REFERENCES
[1] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Bal-
di, and C. Lopes. “Sourcerer: a search engine for open source code
supporting structure-based search”, Companion To the 21st ACM
SIGPLAN Symposium on Object-Oriented Programming Systems,
Languages, and Applications. Portland, Oregon, USA, October 22
- 26, 2006.

[2] J. Beaton, S. Y. Jeong, Y. Xie, J. Stylos and B. A. Myers.
“Usability Challenges for Enterprise Service-Oriented Architecture
APIs”, 2008 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC’08, Herrsching am Ammersee, Ger-
many, Sept 15-18, 2008. pp. 193-196.

[3] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S.R.
Klemmer. “Two studies of opportunistic programming: interleav-
ing web foraging, learning, and writing code”, 27th International
Conference on Human Factors in Computing Systems, Boston,
MA, USA, April 04 - 09, 2009.

[4] D. H. Chau and B. Myers. “What to Do When Search Fails:
Finding Information by Association”, Proceedings CHI’08: Hu-
man Factors in Computing Systems, Florence, Italy, April 5-10,
2008. pp. 999-1008.

[5] G. Davies and D. Thomson. Memory in Context: Context in
Memory. Wiley, England, 1988.

[6] D. S. Eisenberg, J. Stylos and B. A. Myers. “Apatite: A New
Interface for Exploring APIs”, CHI'2010: Human Factors in Com-
puting Systems. Atlanta, GA, April 10-15, 2010.

2929

[7] G. W. Furnas, T. K. Landauer, L. M. Gomez and S. T. Dumais.
“The vocabulary problem in human-system communication”,
Commun. ACM. 1987. 30(11). pp. 964-971.

[8] R. Holmes and R. J. Walker. “A newbie's guide to eclipse
APIs”, 2008 International Working Conference on Mining Soft-
ware Repositories, Leipzig, Germany, May 10 - 11, 2008.

[9] R. Holmes, R. J. Walker, and G. C. Murphy. “Strathcona ex-
ample recommendation tool”, SIGSOFT Softw. Eng. Notes 30, 5.
Sep. 2005, 237-240.

[10] D. Mandelin, L. Xu, R. Bodík , D. Kimelman. “Jungloid min-
ing: helping to navigate the API jungle”, Proceedings of the 2005
ACM SIGPLAN conference on Programming language design and
implementation, June 12-15, 2005, Chicago, IL, USA.

[11] A. Michail. “Code web: data mining library reuse patterns”,
23rd international Conference on Software Engineering, Toronto,
Ontario, Canada, May 12 - 19, 2001.

[12] M. F. Porter. “An algorithm for suffix stripping”, Readings in
Information Retrieval, Morgan Kaufmann Publishers, San Francis-
co, CA, 1997, pp. 313-316.

[13] G. Salton and C. Buckley. “Term-weighting approaches in
automatic text retrieval”, Inf. Process. Manage. 24, 5 (Aug. 1988),
513-523.

[14] N. Sahavechaphan and K. Claypool. “XSnippet: mining for
sample code.” SIGPLAN Not. Oct. 2006, pp. 413-430.

[15] J. Stylos and B.A. Myers. “Mica: A Programming Web-
Search Aid”, 2006 IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC'06. Sept 4-8, 2006, Brigh-
ton, UK. pp. 195-202.

[16] J. Stylos, A. Faulring, Z. Yang and B. A. Myers. "Improving
API Documentation Using API Usage Information", 2009 IEEE
Symposium on Visual Languages and Human-Centric Computing,
VL/HCC'09, Corvallis, Oregon, Sept. 20-24, 2009.

[17] J. Teevan, C. Alvarado, M. Ackerman and D. Karger. “The
Perfect Search Engine Is Not Enough: A Study of Orienteering
Behavior in Directed Search”, Proceedings CHI’04: Human Fac-
tors in Computing Systems. pp 415-422.

[18] S. Thummalapenta and T. Xie. “SpotWeb: detecting frame-
work hotspots via mining open source repositories on the web”,
2008 International Working Conference on Mining Software Re-
positories, Leipzig, Germany, May 10 - 11, 2008.

[19] K. Toutanova and C. D. Manning. “Enriching the Knowledge
Sources Used in a Maximum Entropy Part-of-Speech Tagger,”
Proceedings of the Joint SIGDAT Conference on Empirical Me-
thods in Natural Language Processing and Very Large Corpora
(EMNLP/VLC-2000), pp. 63-70.

[20] E. Tulving and D. Thomson. “Encoding specificity and re-
trieval processes in episodic memory”, Psychological Review 80,
1973, pp 352-373.

[21] T. Xie and J. Pei. “MAPO: Mining API usages from open
source repositories”, Proc. International Workshop on Mining
Software Repositories (MSR), pages 54–57, 2006.

3030

