Software Development Practices, Barriers in the Field and
the Relationship to Software Quality

Beth Yost', Michael Coblenz2, Brad Myers?, Joshua Sunshine?, Jonathan Aldrich2, Sam Weber?,
Matthew Patron', Melissa Heeren', Shelley Krueger', Mark Pfaff"

The MITRE Corporation, Bedford, MA, 01730, United States
{bethyost, mpatron, mheeren, sekrueger, mpfaff}@mitre.org

2Carnegie Mellon University, Pittsburgh, PA 15213, United States
{mcoblenz, bam, sunshine, jonathan.aldrich}@cs.cmu.edu, samweber@cert.org

ABSTRACT

Context: Critical software systems developed for the government
continue to be of lower quality than expected, despite extensive
literature describing best practices in sofiware engineering. Goal:
We wanted to better understand the extent of certain issues in the
field and the relationship to software quality. Method: We
surveyed fifty software development professionals and asked about
practices and barriers in the field and the resulting software quality.
Results: There is evidence of certain problematic issues for
developers and specific quality characteristics that seem to be
affected. Conclusions: This motivates future work to address the
most problematic barriers and issues impacting software quality.

CCS Concepts

* Software and its engineering e Sofiware and its engineering~
Software development methods * Sofiware and its engineering~
Software development techniques

Keywords
Software development; software quality; survey.

1. INTRODUCTION

Despite advances in software engineering, software systems being
developed for the government continue to cost more, take longer to
deliver, and be of lower quality than expected [1]. Critical
infrastructure sectors such as healthcare, transportation, and energy
depend on that software. To better understand the issues in practice,
we conducted an exploratory study.

Using a survey, we gathered data on practices in the field for the
requirements, design, build, and test phases of software
development. As improving software quality in practice and
improving the developer experience were key long term objectives,
we asked about the barriers faced by developers and software
quality. The key barriers identified motivate future work to better
understand and address issues with task switching, getting enough
time for development, missing documentation, understanding
design rationale behind a piece of code, and finding code related to

Publication rights licensed to ACM. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor
or affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.

ESEM '16, September 08 - 09, 2016, Ciudad Real, Spain

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-4427-2/16/09...$15.00

DOI: http://dx.doi.org/10.1145/2961111.2962614

bugs and behaviors to be changed. The results provide evidence of
the value of certain practices (e.g., having a clear architecture, unit
testing) on specific software quality characteristics such as
maintainability and evolvability. The results can be used by
researchers to focus their work and managers to improve their
workplaces and the quality of software produced.

2. RELATED WORK

Software quality and productivity of software engineers have been
studied since at least the 1968 NATO conference [2]. Since then,
researchers have attempted to understand the relationships between
sofiware engineering practices and the outcomes of software
projects. In spite of this work, however, large software projects
continue to fail [3, 4].

Dybé et al. argued that the context of software development is
critical when evaluating the success of software development
practices [5]. For example, the US government commonly acquires
software via a contracting process that differs from how companies
buy software. The Software Engineering Institute conducts
independent technical assessments of software projects. One study
of recurring problems across twelve US Air Force acquisition
programs reported inadequate project management office (PMO)
expertise and staff; high PMO staff turnover; requirements scope
creep; inadequate requirements; and lack of functional
requirements baseline [6]. The results of this study report the
relationship of practices for which others have argued such as clear
and stable requirements with specific quality characteristics such as
software maintainability and reliability in the field.

Cleland-Huang argued that often the problem is one of
requirements [7]. On the basis of experience with large software
projects, Jones argued for a large number of best practices in
sofiware engineering in many areas, including requirements,
architecture, and testing [8]. In addition, some experience reports
exist regarding certain software development practices in
government-related contexts. For example, Upender’s experience
report describes the difficulty of using agile methodologies over a
period of time [9]. The results of this study relate practices such as
unit testing with multiple software quality characteristics including
evolvability and maintainability.

Of course, the causes of poor software project outcomes are
typically multifaceted, which is why our survey took a broad
perspective regarding causes of software project outcomes. Rather
than basing recommendations on an individual’s experience, our
work focused on gathering data on practices in the field and
correlating these with the respondents’ subjective ratings of
specific software quality characteristics.

3. METHOD

3.1 Participants

We distributed the survey through software development related
mailing lists and contacts at various companies. Fifty participants
voluntarily responded to the anonymous online survey. Instructions
requested that all participants be over 18 years old and be involved
in software development professionally. Participants had the option
to participate in a raffle for an Amazon Fire tablet upon completion.

The primary job of most respondents was software developer or
project lead (36 out of 50), but also included architects, designers,
managers, and testers. All but one had a college degree and most
had degrees in computer science, electrical engineering, and/or
software engineering. Most were experienced developers, with 19
involved with software development for more than 20 years, and
only 3 less than 5 years.

The participants represented developers of both government and
commercial software. Thirty-seven of the participants currently
work for a federally funded research and development center
(FFRDC), 10 for a commercial company, and 3 for other types of
companies or the government. FFRDCs operate in the public
interest, free from conflicts of interest, providing objective
guidance to U.S. government sponsors. Software developed by
FFRDC:s is often prototype software to show a proof-of-concept.
Many government agencies do little software development of their
own, hiring contractors to develop many software systems.

3.2 Materials

We constructed an online survey that contained 46 main questions,
many with sub-questions. These were organized into three sections:
background (job function, gender, age, education, years involved
with development, number of programming languages, codebases
used in career, category of employer), current project (customer
category, domain, product category, people on project, developers
on project, clear intended architecture, how often requirements
change, process used, tools used, software quality characteristics),
and barriers, described as “barriers or problems that you personally
have in performing your job”. Standard Likert scales were used to
measure the extent to which tools or processes were used and for
rating software quality characteristics. The software quality
characteristics came from ISO/IEC 25010:2011, with evolvability
and overall quality in general added. The survey was piloted with
eight volunteers and updated as appropriate.

3.3 Procedure

The online survey took approximately 30 minutes to complete. The
instructions requested help understanding and assessing how tools
and processes impact project execution and the resultant software.
The participants were instructed to answer questions based on their
current or most recently finished significant software development
project, for which they had good working knowledge and, if
possible, to select a project that was being developed for the
government.

The independent variables were the customer for the current
software project, sofiware category, clarity of requirements and
design, extent of code for testing and error handling, the software
processes used, the software development tools used, and the
barriers. The main dependent variables related to software quality.

4. RESULTS

4.1 Software Quality

We measured quality according to subjective self-reported ratings.
The first question asked: “Considering the code developed as part

of this project by the whole team, please rate the following
attributes:”

o Number of Software Defects (design or code errors, bad fixes)
e Severity of Known Software Defects

The second question asked: “Considering the code developed as
part of this project by the whole team, please rate the following
software quality characteristics:”

Functional Suitability (functionality is complete and correct)
Performance Efficiency (time, resource use, and capacity)
Compatibility (software interoperability)

Usability by users (ease of learning and use, error prevention)
Reliability (maturity, availability, fault tolerance)

Security

Maintainability (modular, re-usable, modifiable, testable)
Portability (ease of migration to new platform)

Evolvability (ease of changing code)

Overall Quality in general

Participants were asked to rate each on a 5-point Likert scale that
went from “Very Low” to “Very High”. There were also options
for “Not relevant to this project” and “Don’t know”. Significant
correlations are shown in Table 1 and are summarized next.

4.1.1 Overall Quality

The overall software quality ratings are shown in Figure 1.
Responses of “Not relevant to this project”, “Don’t know”, and
blank are not shown. Functional suitability had the most “High”
and “Very high” responses (34) while security had the least (13).
The code defect responses are shown in Figure 2.

Functionality] 1a i ey e
Funluatility s 1€ 14
ia 4 2 =
T I 19 3
Mainzainabilizy H 1
Reliabiliny g s 1 11 R
Sertormancs . 17 12
Porabilizy BEN 8 14 1
sSocunty] 1 9
Cverall Quality 3 i T

m ey low Low Madium High mveryhigh

Figure 1. Software quality overall (# responses out of 50)

Soverity of Known Dofocts 218 14 18 |8
Number Defoets B B 15 1%

m ey high High Mediumn Low B Verylow

Figure 2. Code defects overall (# responses out of 50)

4.1.2 Quality by Software Customer

We compared the ratings for software developed specifically for
government customers versus for commercial customers. The
options allowed participants to select all customer classifications
that applied and included: Internal to your company or
organization, commercial company, non-profit company, military,
non-military government, consumers, and other. To compare
between groups, a category for Government (n=27) was created by
combining “military”, “non-military government”, and one “other”
response listing a civilian government agency. A category for
Commercial (n=6) was created by combining “Commercial
company” and “Consumer”. We did not include responses of
internal (n=7) or any that were combinations of categories (r=10).

Number of

Defects

Severity of
Known Defects

Functional
Suitability

Performance
Efficiency

Compatibility

Usability

Security

Maintainability

Portability

Evolvability

Overall

Rgmts

Clear requirements

ig Reliability

,.037,48

Frequently changing requirements

-.32,.025,49

Clear architecture

-.31,.04,45

.33,.033,41

.31,.03,48

.41,.003,49

.38,.012,44

.41,.003,49

Processes

Waterfall

-.35,.034,38

Test-driven development

.32,.035,45

.41,.005,47

.33,.025,47

Code reviews

.31,.048,42

[Unit testing

-.32.,.034,44

.30,.042,47

.39,.005,50

.31,.043,44

.45,.001,49

.35,.02,44

.50,.000,49

.47,.001,49

System testing

.36,.014,47

Iterative design

.32,.041,41

.35,.02,44

Usability evaluations

.45,.003,41

.59,.000,49

.32,.027,48

.31,.042,44

.38,.007,48

QA testing

.33,.035,42

'Writing down design decisions

.31,.039,46

.29,.042,49

.30,.041,48

.32,.026,48

.29,.049,48

Tools

IDEs

.31,.047,43

.40,.005,47

Source version control

.46,.003,40

.36,.019,43

Debuggers

.29,.041,49

.30,.039,48

Bug tracking database

.33,.024,46

.30,.044,47

Project management tools

.35,.019,45

Security assessment tools

.40,.009,41

-.32,.043,41

Static code analysis tools

.35,.015,47

Dynamic analysis tools

.33,.032,44

| Automated testing frameworks

.34,.027,43

Switching tasks often due to other requests

-.32.03 47

Getting enough time for sofiware development

-.42,.004,45

-.30,.038,47

-.38,.009,47

-.31,.033,47

Documentation that is missing information

.50,.001,41

-.48,.001,47

-.42,.004,47

-.34,.023,45

-.39,.007,46

-.40,.01,41

-.41, .005, 46

[Understanding the design rationale behind a piece of code

-.30,.049,44

-.32,.034,45

[Understanding code that I or someone else wrote a while ago

.32,.042,41

-.42,.004,46

-.34,.041,37

-.40,.008,44

-.40,.007,45

Convincing managers that I should spend time refactoring code

-.42,.004,45

-.34,.033,40

-.38,.011,45

Documentation that is out of date

-.40,.005,48

-.33,.042,39

-.31,.034,48

-.35,.023,42

-.33,.022, 47

Finding which code is related to a bug or behavior to be changed|

.45,.003,41

.35,.028,40

-.44,.003,43

-.58,.000,45

-.39,.012,40

-.44,.002,45

-.56, .000,45

[Understanding the impact of changes I make on code elsewhere

.38,.016,40

.33,.039,39

-.33.027,45

-.44,.003,42

-.36,.03,36

-.31,.039,44

Determining when the code has reached sufficient quality

-.43,.003, 45

Being aware of changes to code elsewhere that impact my code

.37,.018,40

-.31,.043,44

Barriers

Finding duplicate code

-.37,.015,42

Turnover - having people important to the project leave

.38,.017,40

-.33,.027,46

-.33,.029,45

Usability of libraries, SDKs, or other APIs

.34,.031,41

.32,.041,42

-.36,.015,46

Finding who is currently responsible for a piece of code

.42,.008,39

-.31,.041,44

Coordinating with developers faraway geographically

.33,.041,39

-.34,.025.43

-.37,.015, 42

Finding the best guidance online for development questions

.31,.047,42

Lack of tools to automate common tagks

.33,.034,42

.56,.000,41

-.36,.015,46

Learnability of debuggers

-.42,.005,44

Getting enough time with developers knowledgeable of code

.47,.005,35

Learnability of programming languages

.42,.006,41

-.37,.01,47

Finding who is currently modifying a piece of code

-.43,.004,44

-.39, .009, 44

Table 1. Statistically significant (p< .05) correlations between design, tools, processes, barriers and software quality characteristics.
Each cell contains Spearman’s correlation coefficient (75), p value (p), and the number of responses ().

Because of the small size of the Commercial group and the
exploratory nature of the study, the p values were relaxed to .2 for
this comparison only. We treated cases where the participant did
not respond to a question as missing data. Given that relaxed
threshold and corresponding tolerance of possible false positives, a
Mann-Whitney test indicated that the: Severity of Known Software
Defects was reported to be lower for software developed for
Government customers (n=24, median= 2/Low) than for
Commercial customers (n=5, median=3/Medium), U=35.0,
p=.162. Portability was higher for software developed for
Government (n=23, median=3, mean=3.14) than for Commercial
(n=6, median=3, mean=2.67), U=94.5, p=.174. Usability was lower
for software developed for Government (n=27, median=3) than
Commercial (n=6, median=4/High), U=52.5, p=.189.

4.1.3 Quality by Software Category

We asked participants, “In which of the following categories does
your product fall (the intended use of your system)?” The options
were prototype, intended to be used, reference implementation, or
other. Twenty-five were intended to be used and 19 were
prototypes. The reference implementation (4) and other (2)
responses were excluded from our analysis. Given the potential for
major difference in quality between these groups, we compared the
reported quality of software between them. A Mann-Whitney test
indicated that the: Security was higher for software that was
intended to be used (n=21, median=3, mean=3.43) than for
prototypes (n=19, median=3, mean=2.44), U=95.0, p=.005.

4.2 Requirements and Architecture
Requirements: The survey asked participants whether their
projects had clear requirements and how often requirements
changed. For having clear requirements, 19 agreed or strongly
agreed, 10 were neutral, and 21 disagreed or strongly disagreed.
Having clearer requitements correlated with higher levels of
software reliability, (s =.30, p=.037). Six said the requirements
rarely, very rarely, or never changed; 19 said they occasionally
changed; and 25 reported requirements frequently or very
frequently changed. Having frequently changing requirements
correlated with lower levels of maintainability (»—-.32, p=.025).

Architecture: The survey asked participants the extent to which
they agreed that: “The codebase for this project has a clear intended
architecture.” As participants more strongly agreed with this, the
number of software defects decreased (r~—-.31, p=.04) and
maintainability (r~—41, p=.003), portability (»~.38, p=.012),
compatibility (r-=.33, p=.033), reliability (»~.31, p=.03), and
overall quality (r—=.41, p=.003) all increased.

4.3 Processes

We asked participants to rate the extent to which they used various
processes on a 5-point Likert scale that we then treated as scalar
variables with values from 1 to 5. The question permitted a
response of “Don’t Know,” which we treated as a missing value.

Overall Processes Used: Iterative design and system testing were
used by more than half of respondents, while the waterfall model
was used the least. The extent to which each type of process was
used in shown in Figure 3.

Correlation with Software Quality: More extensive use of unit
testing correlated with higher quality along eight software quality
characteristics. The strongest correlations were between unit testing
and evolvability and between usability evaluations and usability.

There were no significant correlations between quality and agile
methods, but waterfall resulted in lower levels of compatibility

(r+=-.35, p=.034). There were more people using agile almost every
time or always (22) than waterfall (5).

Other Process-Related Factors: As the number of people on the
project increased, so did the number of software defects (r=.32,
p=.03) and the severity of known defects (r~.38, p=.011), though
the security weakly increased (rs=.31, p=.039). Likewise, we asked
specifically about developers on the project, and as that number
increased, so did the number of software defects (r~.30, p=.043)
and their severity (r+~.35, p=.019).

Given the distribution in lines of code (LOC) responses (<10K n=9,
10K-100K »=22, 100K-1M n=13, IM-10M n=4, >10M »=1), we
regrouped the data into <100K (#=31) and >100K (n=17); we
omitted the single >10M response as an anomaly. In comparing
groups, there was a significant difference at p<.05 using the Mann
Whitney U test: portability was higher when there were less than
100K LOC (=29, median=3/Medium) compared to >100K LOC
(n=13, median=2/Low), U=99.0, p=.014.

Iz alive desipn = 1 % .
Sysiern Lesling EE 74 s
Hnil r L] E
Wriling thwn design der B ow 2 W R
[20 3 i 4 ESTER
[3 + ISV
. + Em
[2 B et} - |
= [1 B =) JER
Test-driven tevelopmen [_1: BEE 3¢ i]
Immutability [11 B =t} B
Waterfall mocel IS u a1
oyt uze @ Amcsineve Outsssivmally © Almostevery e @ Always use

Figure 3. Extent of process use.

4.4 Developer Tools

Although adoption of version control was nearly universal, security
assessment tools and program analysis tools were used
infrequently. The extent to which each type of tool was used is
shown in Figure 4. We also analyzed the correlation between tool
usage and software quality (significant correlations are in Table 1).
The strongest relationships were: use of source control was
positively correlated with compatibility (r—.46, p=.003); use of
IDEs was positively correlated with overall quality (r~.40,
p=-005). Use of security assessment tools was positively correlated
with severity of known software defects (7s—-.40, p=.009). Perhaps
these tools result in more knowledge of defects or these tools are
being applied to systems that are known to have defects.

We asked about the criteria for selecting tools, who selected them,
and how well they worked. To the extent that respondents more
strongly agreed that their tools were modern and up-to-date, that
significantly correlated with increases in functional suitability
(r=.40, p=.004), usability (r~.38, p=.006), portability (r=—=.42,
p=-005), and overall quality (»~.35, p=.014).

Sowr e versiun conaol | B

third pary librarics, H 3 &
U tracking catabase a5 i T
Tebugzers Bh U
Auild taols 7 EET—
INFs [CERESTaNES -]
Project ranagement wols N 1 oo]
fururnated Lesting ramevorks [B - -
Cantinuous int; 7 ==
“rogram l W 10 T
Uynamic analysis tools {run time} 19 |
Static. analys TR E
T 11 m
Avthitecturs or mudelirg sollvare TSN 12 I
W Ncverust ®AImost nover - Cecassionally 0 Almestevery ime WARKmys use

Figure 4. Extent of tool use

4.5 Testing and Error Handling
We asked, “Approximately what percent of the code is for error
handling and recovery?” and “If there is extra code to test this

project, for example a separate test harness or unit test,
approximately what percent of the code is for that?”

On average 11% of code was for error handling and recovery, with
a range from 1%-60%. On average, 14% of code was extra code to
test, ranging from 0%-50% of total code. As the percent of code for
error handling and recovery increased, so did the performance
(r=32, p=.045). As the percent of code to test the project
increased, so did the maintainability (»~.35, p=.023).

4.6 Barriers
Participants rated how serious a problem each of the following was
for them when performing their job. Figure 5 shows a sorted list of
barriers across all survey respondents.

i
u 2 12 T
Bocurnenlation thalis mmissing inf 74
Undersanding the deslgn raticnale behind a plece of code B 5] T
Understanding code that | or somecne else wrote a while e ‘ % 10 |
Specikaticns lack Intc abcut what the producst should de 5 17 ELa 10]
Mocumentadzn that ls sut of date . 1 ® wm
Convincing managers that | should spend dme retactering code a 11
bug ar kehaviar=n s SL I 1]
Changlng requirements abaut what tha produ 3 EEn 5]
Underssanding the impact of rhanzes | make nn cade 1 12 .
Working with rode written by nthe n 5 EA
Natarmining whan tha rade has raarhad sofficians quality 7 SLE 2
Raing aware nf changes tacade alsawhare thas impart my eads £ b =
Lzamability =f libraric {s, or cther AFls 12 " S L= |
Cenvindng odiers wmioke chanse sdu | depend on B 15 noEEm
vy 14 2 . |
s 5 e 2 3 EN
£ 1 =R 2]
Usabilit G i |
Usaliility ol integrated dewelepimens eowi n 13 =
Tumaover - having pecple Important to the project le; W wa
Usability of deby 2u e
nding whols crrently responsible 7or a plece of code 14 =]
| Inding the best gerson totalk to sbout 2 development question =3 a3 -]
Time spent tralning new t2am members 1 13 LE
Coordinating with developers taraway geograghlically 18 15 25
Lisahliiry ot an arelnn ennol systeme EH u
| ack of tocl 2 commnn tasks iz 1 (-
Findinz ~he bes puidance anlina for develapment questione EES & =
Le 7y of debupzers > 15 5
| earnahility of the saure cnnml syatems k 4 s
Learnakbilivy o ruing funpuases 21 » 5
Gatting enough time with developers knowdedgeakle of code 1 15 W
Usabilivy of programmniimg languases 4 & 4
Finding who is currently modifying a pizce of code 25 1
Cusrdingling with developers whe are neanby geesraphically
Noula problern Minur problan Muederule moblern ®Serious preblem

Figure 5. Barriers.

4.6.1 Barriers by Software Customer

The top four barriers for the government-only participants (n=27)
were: getting enough time for software development, switching
tasks often due to other requests from my manager or teammates,
documentation that is missing information, and specifications that
lacked information about what the product should do.

4.6.2 Correlation with Software Quality

Table 1 shows statistically significant correlations between barriers
and software quality. The strongest relationships were between
challenges with finding which code was related to a bug or behavior
and low maintainability and overall quality.

A Mann-Whitney test was done to compare the groups that were
and were not experiencing each barrier. We eliminated from the
analysis the groups that were lopsided, where there were more than
twice as many in the not/minor problem group or the
moderate/serious problem group. For the remaining quality
characteristics, there were three barriers where multiple
characteristics were significantly different between groups:

Finding code related to a bug or behavior to be changed:
e Overall reported quality was higher when this was a minor
problem (n=13, median=4) than when it was a serious
problem (n=16, median=3), U=41.0, p=.008, effect size r=.55.

e Maintainability was higher when this was a minor problem
(n=13, median=4) than when it was a serious problem (n=16,
median=3), U=40.50, p=.004, r=.54.

o Evolvability was higher when this was a minor problem
(n=13, median=4) than when it was a serious problem (n=16,
median=4), U=44.00, p=.008, »=.51.

Understanding code that I or someone else wrote a while ago.

o Maintainability was higher when this was a minor problem
(n=14, median=4) than when it was a serious problem (n=15,
median=3), U=51.50, p=.02, r=.46.

o Functional suitability was higher when this was a minor
problem (n=14, median=4) then when it was a serious
problem (n=15, median=3), U=54.50, p=.03, r=.43.

o Reliability was higher when this was a minor problem (n=14,
median=4) than when it was a serious problem (n=15,
median=3), U=57.50, p=.04, r=.40.

Understanding the design rationale behind a piece of code.

o Maintainability was higher when this was a minor problem
(n=15, median=4) than when it was a serious problem (n=14,
median=3), U=55.00, p=.03, r=.43.

o Evolvability was higher when this was a minor problem
(n=15, median=4) than when it was a serious problem (n=14,
median=3), U=59.00, p=.046, r=.39.

Given that maintainability is impacted by all of these barriers, it
appears that it is the characteristic that is most vulnerable overall.

5. DISCUSSION

The goal of taking a broad approach in this study was to identify
promising areas on which to focus future research to improve the
quality of government software, based on practices in the field and
barriers faced. Follow-on studies should address specific barriers
or measure increased adoption of certain best practices. The most
problematic barriers require future work to address them. The
results can be used by researchers to focus their work and by
managers to identify changes to processes and tools that could
improve the lives of developers and the quality of software being
produced.

The data provide an indication of which of the many barriers we
should focus on if we want to improve sofiware quality: those
problematic for the most developers or correlated most strongly
with specific quality characteristics we want to improve. The most
problematic barriers can generally be grouped into two categories:
task-switching and getting enough time for software development;
and documentation-related issues. Task-switching occurs when
developers must switch among development tasks or when they
work on multiple projects in an interlaced fashion. Task switching
should be avoided where practical. Where not practical, switching
tasks often can lead to difficulty in schedule estimates and lost time
due to getting back into the zone [10]. Tools that help developers
pick up where they left off and better deal with task switching may
help mitigate these issues. Further study is needed to understand
how to address time requirements for development. The second
group of barriers had to do with missing documentation,
understanding design rationale in code, or understanding code
written a while ago. Tools that can generate documentation for
legacy code, that encourage developers to document design
rationale especially for unusual or complex modules, and that can
keep the architecture models up to date as code is being written
could prove particularly Dbeneficial. Addressing these
documentation-related barriers would address some of the largest
reported problems and could help improve maintainability,
functionality, reliability, and evolvability of the software.

We also saw the extent to which certain practices are used in the
field. These correspond to opportunities to improve practice and the
resulting sofiware quality. While factors such as clarity and
stability of requirements and architecture have long been known to
be beneficial, our survey has tied these practices to the extent to
which they are problematic in the field. We also tied them to the
specific quality characteristics that may benefit from improvements
in practice. Similarly, we saw the average amount of code dedicated
to error handling and recovery and that the greater the percentage
of code for that, the better the performance of the sofiware, and the
greater the percent of code for testing, the more maintainable. We
found evidence of a move away from waterfall, especially for the
development of government software: waterfall was the least-used
process. Though agile methods did not appear to correlate with any
increases in quality characteristics in this study, waterfall had a
negative impact on quality.

We did not find evidence in favor of the hypothesis that commercial
software would be rated higher quality than government software;
in fact, government software was reported to have fewer known
severe defects and be more portable. Commercial software was
reported to be more usable. This may be because commercial
companies have recognized the importance of usable systems while
the government is only starting to recognize the importance. The
government likely has greater need for enhanced security. In
software intended for public use, there may also be greater need for
more portable software given the variety of platforms used by the
public. In general, the perception that government software is lower
quality than commercial may not be accurate and may be a
reflection of increased transparency and publicity when
government software fails. Further study is needed to investigate.

6. LIMITATIONS

The study was a relatively small survey with only fifty participants.
The large number of FFRDC participants may pose a threat to
validity, which may be mitigated somewhat by the variety of
domains represented.

Due to the small number who had a primary job function other than
developer, no analysis was done to compare based on job function.
While most of the responses would likely remain the same across
groups (e.g., software quality), it is possible an architect or tester
may use different tools or encounter slightly different barriers.

The software quality ratings were subjective and therefore may not
agree with objective quality assessments. Further study should
compare developers’ subjective assessments to objective software
quality measurements to evaluate these possibilities.

We performed a large number of statistical tests. With correlations
there is no need to correct alpha because the correlation coefficient
itself is an effect size. For comparisons between two groups, no
correction is needed. Given the significance threshold of p<.05,
however, it is likely that some of the results are random
occurrences. These tests do not account for the interaction between
factors. While we did exploratory regression and multi-factor
analysis, we do not report the results here because more responses
would be needed to produce a reliable model.

Conceptually, it is likely that development practices and barriers
precede and therefore affect the software quality. However,
inferring causality becomes a problem in cases where software
quality may have caused the developers to use a particular approach
or encounter a barrier.

For the exploratory comparison between government and
commercial sofiware quality, the small number of commercial
product developers may cause a failure to detect important

differences. Related, each group may have a systematic bias in how
they see software quality. Further comparison between groups
should include more developers and objective measures.

7. CONCLUSION

Our survey gathered data on development practices, barriers in the
field, and their relationship to software quality. These results
provide motivation for future research to address the key barriers
and evidence of the extent of use and value of certain practices and
tools in the field.

8. ACKNOWLEDGEMENTS

The authors would like to thank the respondents to the survey.
Funding for this work comes from grants from MITRE, NSF under
grant CNS-1423054 and the Air Force under Contract #FA8750-
15-2-0075. This material is based upon work funded and supported
by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect those of the US Government.

Approved for Public Release; Distribution Unlimited. MITRE Case
Number 16-1649. SEI Document Marking Number DM-0003591.

9. REFERENCES

[1] U.S. Government Accountability Office. (2013). Major
automated information systems: Selected defense programs
need to implement key acquisitions practices. (GAO
Publication No. 13-311). Washington, D.C.: U.S.
Government Printing Office.

[2] Software Engineering: Report of a Conference Sponsored by
the NATO Science Committee, Garmisch, Germany, 7-11
Oct. 1968, Brussels, Scientific Affairs Division, NATO.
Peter Naur and Brian Randell (Eds.).

[3] Goldstein, Harry. "Who killed the virtual case file?" JEEE
SPECTRUM 42(9) (2005):18.

[4] Ford, Paul. The Obamacare Website Didn't Have to Fail.
How to Do Better Next Time. Bloomberg Businessweek.
October 17, 2013.

[S] Tore Dyb4, Dag K. Sjaberg, and Daniela S. Cruzes. What
works for whom, where, when, and why? on the role of
context in empirical software engineering. In Proceedings of
the ACM-IEEE international symposium on Empirical
software engineering and measurement (ESEM '12). ACM,
New York, NY, USA, 19-28.

[6] Novak, William and Williams, Ray. We Have All Been Here
Before: Recurring Patterns Across 12 U.S. Air Force
Acquisition Programs. Presentation at 2010 Systems and
Software Technology Conference (SSTC). April 29, 2010.

[7] Cleland-Huang, Jane. IEEE Software. Don’t Fire the
Architect! Where Were the Requirements? IEEE Software

[8] IJones, Capers. Software Engineering Best Practices.
McGraw-Hill, 2010.

[9] Upender, Barg. Staying agile in government software
projects. Agile Conference, 2005, pp. 153-159.

[10] Parnin, Chris and Rugaber, Spencer. “Resumption strategies
for interrupted programming tasks.” Software Quality
Journal, 2011. 19(1): pp. 5-34.

	1_Page_1
	1_Page_2
	1_Page_3
	1_Page_4
	1_Page_5
	1_Page_6

