
Mica: A Web-Search Tool for Finding API Components and Examples

Jeffrey Stylos, Brad A. Myers
Computer Science Department, Human-Computer Interaction Institute

Carnegie Mellon University, Pittsburgh PA 15213 USA
{ jsstylos, bam }@cs.cmu.edu
http://www.cs.cmu.edu/~mica

Abstract

Because software libraries are numerous and large,
learning how to use them is a common and problem-
atic task for experienced programmers and novices
alike. Internet search engines such as Google have
emerged as important resources to help programmers
successfully use APIs. However, observations of pro-
grammers using web search have revealed problems
and inefficiencies in their use. We present a new proto-
type search tool called Mica that augments standard
web search results to help programmers find the right
API classes and methods given a description of the
desired functionality, and help programmers find ex-
amples when they already know which methods to use.
Mica works by using the Google Web APIs to find
relevant pages, and then analyzing the content of those
pages to extract the most relevant programming terms
and to classify the type of each result.

1. Introduction

Software libraries, frameworks and application pro-
gramming interfaces (APIs) have grown larger and
more complex, and applications have grown more de-
pendent on them. For example, there are more than
34,000 classes and methods in the Java SDK, and more
than 140,000 classes, methods properties and fields in
Microsoft’s .NET framework. In addition to their large
size, these and other frameworks are changing and
growing every year, making it impossible for even
experienced developers to remember everything.

Because of their size and fluidity, it is no longer
possible, for example, to get a complete printed refer-
ence for Microsoft’s APIs (such a document would
take tens of thousands of pages). Electronic documen-
tation can be similarly unwieldy: a search for “time” on
Microsoft’s MSDN help returns more than 500 sepa-
rate documentation pages.

Learning how to use these APIs presents several
barriers [11]: understanding how the APIs are struc-
tured, selecting the appropriated classes and methods,
figuring out how to use the selected classes, and coor-
dinating the use of different objects together all pose
significant difficulties. Some of the difficulty of the
selection barrier comes from the fundamental vocabu-
lary problem [7]. A particular programming concept
can be described in multiple ways and no one word
will best describe it for all programmers. This is espe-
cially a problem when APIs are too large to easily
browse.

In a formative study, the programmers we observed
found web search especially useful for APIs, and were
often able to use web search to overcome each type of
learning barrier. They were able to do so because of the
wide range of documents that the search engines in-
dexed – documentation, forum discussions, code snip-

Figure 1. The Mica web application. Mica includes
a keyword sidebar on the left, which is generated

from web search results shown on the right. Search
result pages are categorized by their content; the

Java icon indicates that those results contain code.

0-7695-2586-5/06 $20.00 © 2006 IEEE 195

pets and the source code for full programs – and also
because of the effective ranking algorithms that made
the most useful and relevant information in very large
collections most likely to be found. This helped pro-
grammers overcome selection barriers by finding the
right terminology from their naïve phrasing. This
worked because the search engines indexed forums and
other pages on which people had described a problem
or solution using the same, incorrect, terminology.

However, while search engines were a popular and
often a valuable tool for programming help, program-
mers encountered a number of problems and ineffi-
ciencies using them. One challenge was that the docu-
ments that programmers spent their time looking at
were often not relevant. Programmers would get frus-
trated when they scanned long result pages only to find
that they did not contain the source code they were
looking for, or that they contained only source code
and not the higher level documentation they needed.
Sometimes the results had nothing to do with pro-
gramming at all. Even when a search did yield some
relevant results, if the first few documents program-
mers browsed did not seem relevant, they would often
give up and try another path. The less familiar pro-
grammers were with the domain, the less successful
they were at predicting how relevant a document
would be.

The difficulties that programmers experienced are
not surprising given that web search engines were not
designed to specifically support the programming task.
While there are several simple improvements that
could aid programmers, such more control over search-
ing of punctuation marks and other programming syn-
tax, substantially improving programmers’ experience
requires a new type of tool that uses knowledge of pro-
grammers’ behavior to provide more effective online
programming support.

Mica (Making Interfaces Clear and Accessible) is a
prototype tool we designed to help programmers more
effectively and efficiently use web search to learn how
to use APIs (shown in Figure 1 and available at
http://www.cs.cmu.edu/~mica). It does this by provid-
ing the following cues about the information contained
in the result pages: (1) Mica displays relevant API
methods, class and field names that are contained in
the search results. (2) Mica orders the field names
based on their frequency and correlation with the web
results, and by the structural containment of classes
and methods. (3) Mica displays icons that indicate
whether a page contains source code and whether it is
an official documentation page. (4) Mica provides
keyword-relevant result summaries on demand.

The next section presents observations of program-
mers that motivated our work. Section 3 describes
Mica in more detail, and discusses some of the imple-

mentation challenges and solutions. Section 4 presents
early usage log analysis and Section 5 discusses related
research. Section 6 looks at future research opportuni-
ties and Section 7 offers some concluding remarks.

2. Motivating Programmer Observations

Mica’s design was motivated by our observations of
programmers using Internet resources. We studied pro-
gramming projects in various stages of creating new
functionality and observed how the programmers used
Internet resources to support their programming. In
three case studies we found common patterns of usage,
and different situations where the effectiveness of the
tools broke down.

While the information seeking literature includes
some studies of how programmers [2] and others [3,
12] use internet resources, these mostly look at more
formal documentation, with an emphasis on implica-
tions for documentation writers. We were interested in
also looking at how programmers used informal re-
sources, such as forum and Usenet posts and independ-
ent websites with sample applications.

The Information Foraging theory [14] explains peo-
ple’s search behavior in terms of “information scent,”
cues that indicate how useful a path will be. We were
interested in finding out which cues were most helpful
to programmers in finding relevant information.

We observed three small programming projects in
Java by computer science graduate students and a col-
lection of screen-captures of Java programmers col-
lected for another study [10]. The projects involved
creating a new GUI Java application, creating an
Eclipse plug-in, and modifying an existing but unfa-
miliar open source application.

2.1. Observed steps of API learning

In observing the programmers, we noticed several
different stages of API learning and transitions be-
tween these stages (shown in Figure 2).

Figure 2. High-level programming activities ob-

served in our study. Internet resources were used in
steps (B), (D), (E) and (F); Mica is designed to help

with these steps.

Each of the programmers started with an initial idea
of what their application was to do (A). Only after get-

0-7695-2586-5/06 $20.00 © 2006 IEEE 196

ting an overview of the structure of the APIs they
would use (B) did the programmers begin to design
how they would implement their application (C). These
initial design ideas would sometimes require further
high-level API understanding (B). Once they had a
high-level design, they looked for specific methods
that could accomplish their task (D). Once they found
the name of a method in an API, they searched to find
out exactly how to use it, using documentation and
example code (E). They then integrated this example
code into their own program and see if it accomplished
what they wanted (F). If it did not, they would find
new examples of how to use the same methods (E),
look for new methods (D), redesign their architecture
(C) or look for different APIs (B).

2.2. Internet resources used

Each of our observed programmers used Google as
their primary resource for finding programming infor-
mation on the Internet, with one also using Google
Groups, Google’s search engine for Usenet archives.
The programmers found a variety of different types of
resources using Google, including tutorial pages such
as those on http://java.sun.com, documentation such as
the Java SDK Javadoc pages, overviews and articles on
software architectures, webpages with example pro-
grams, and forum posts with questions, answers and
code snippets.

2.3. High-level API understanding (Step B)

Because the programmers we watched already had a
good idea of what program they wanted to create (A),
the first step we observed was that of getting an over-
view of which APIs they needed to use and those
APIs’ overall structure (B). Each programmer’s first
step in this task was to pose a general query to Google.
For example, the programmer writing a Eclipse plug-in
searched for “refactoring plugin eclipse”. Google was
effective at finding tutorials, high-level articles (such
as those provided by IBM and Eclipse.com about
Eclipse) and sample projects with source code and
documentation that the programmers found useful.

One of the reasons that Google was effective at this
task was because it was worked well even with the use
of non-expert terminology. For example, the novice
programmer creating a simple Java application was
able to find information about creating windows and
widgets using the search “creating a form in java,”
even though the word “form,” which the programmer
was familiar with from Visual Basic, is not often used
in Java programming.

2.4. Discovering which methods to use (Step D)

When programmers had begun to understand the
high-level elements of the APIs they were using (B),
they then formed an idea of how they planned to im-
plement their application (C). Their next action was to
determine what specific classes and method calls they
could use to accomplish specific tasks (D). Often this
step was combined with the previous step (B) as the
tutorial or article would include specific method refer-
ences.

Programmers used different strategies in this step,
including searching Google with a description of the
desired functionality and browsing the list of classes in
the JDK’s Javadoc documentation. Because Google
indexes many documentation sources, including the
JDK’s Javadocs, searching with Google could often
double as a search of the official documentation. In
addition, when programmers found a potentially useful
method, they would often look up its official documen-
tation to verify that it did what they thought.

When programmers performed a web search based
on a description of the desired result, they would open
and scan some of the resulting pages. They looked for
code or words that seemed like they might be method
or class names – looking for cues such as a fixed width
font or programming punctuation. Often they spent
time looking at pages that were not related to pro-
gramming or which did not have a specific program-
ming solution. Even when pages contained relevant
information, programmers would often have a hard
time finding it on the page, and sometimes falsely con-
clude that it was not there.

2.5. Finding examples (Step E)

Once programmers had found a method they
thought might be useful (D), they then looked for spe-
cific code examples of how to call the method (E). This
was usually done by searching Google, or Google
Groups, with the name of the specific method, but was
also sometimes combined with the previous step (D),
or the previous two steps (B, D) when the search re-
sults already included code samples.

The Javadoc documentation usually did not provide
examples of code use. Examples were used to answer
such questions as: “How do I instantiate an instance of
this method’s class?”, “How do I get variables of the
appropriate types to pass as arguments?” and “At what
point in my code should I call this method?”

The examples the programmers found were occa-
sionally in the form of complete programs with a few
lines of interesting code, but more often small code
snippets without an accompanying full project.

0-7695-2586-5/06 $20.00 © 2006 IEEE 197

2.6. Observation conclusions

The popularity and effectiveness of search engines
like Google helped convince us that these are impor-
tant sources of information for programming help
tools. The search engines were effective often because
of the wide variety of material they indexed, allowing
for the successful use incorrect terminology to find
correct answers. Because of this, we chose to build
Mica on top of Google rather than have it search its
own index as several other tools do [6, 13].

Where Google failed was in providing appropriate
relevance cues for the information that programmers
needed. Programmers wanted to find examples or
documentation and placed heavy emphasis on the spe-
cific API terms that appeared, but Google’s presenta-
tion of its results did not provide this information.

3. Mica

We designed Mica to provide the cues that the pro-
grammers in our observations needed to more effec-
tively use web search. Mica identifies specific relevant
methods and class names by loading and analyzing the
result pages of a search, identifying the code-related
terms, using frequency-based heuristics to determine
which names are likely to be the most relevant to the
programmer’s specific search, and displaying the re-
sults in a sidebar of the webpage that dynamically up-
dates as result pages are loaded and processed on the
server. When pages are loaded by the server, they are
classified as official documentation or as containing
source code, and results of these types are given ap-
propriate icons to guide the programmer. Mica
currently finds keywords contained in the Java APIs,
but is designed for a range of languages and APIs, for
which we plan to add support in the future.

3.1. Search results

Mica uses the Google Web APIs [8] to generate its
web search results. Doing so allows the same search
options as Google, such as quoted and negated search
terms, and the same quality of results. These search
results are used both for generating the web search
portion of the result page (right part of figure 1) and for
obtaining the addresses of the result pages that are
loaded and processed by Mica to generate the keyword
sidebar.

Mica also uses the spell-check portion of the
Google Web APIs to detect likely misspellings and
suggest corrections (shown in Figure 3). While a pro-
gramming specific spelling correction mechanism

might offer some advantages, Google’s system is based
on its users’ searches and word commonality and usu-
ally performs well for programming searches.

Figure 3. Mica uses the Google API's spelling cor-

rection to catch misspelled words.

3.2. Keyword sidebar

3.2.1. Keyword selection. The keywords Mica shows
(in the left part of figure 1) are selected from all the
words related to programming that are contained in any
of the ten web search result pages. We chose to exam-
ine only the first ten result pages so that we could show
programmers where each of the words came from, and
because in prototypes of Mica we found that looking at
more pages did not significantly improve the quality of
the results. Currently, keywords are considered to be
related to programming if they match any method,
class and interface name from the Java SDK libraries.
The list of Java programming names was generated in
advance from JavaDoc annotations in the Java source
code. However, we plan to expand our approach to
support more languages and APIs, and to implement
keyword selection using other clues (such as fixed
width fonts and other page formatting) to avoid need-
ing a precomputed complete list of known keywords,
and to avoid falsely recognizing keywords that are also
common words when they are used outside of a code
context.

3.2.2. Keyword ranking. Because the search result
pages typically contain hundreds of programming key-
words, one key contribution of Mica is how it ranks the
keywords to determine which to display, and in what
order.

Intuitively, keywords that occur frequently in the
search results but infrequently globally (across the
whole Internet) are the ones most relevant to a pro-
grammer’s specific search. We measure search fre-
quency by the number of unique search result pages
that contain the keyword, and global frequency by us-
ing a precomputed table of how many pages in
Google’s index of more than 8 billion pages contain
each keyword. This table was precomputed for all of
the Java API keywords using Google’s “Google Sug-
gest” feature. However, a simple ranking metric of
search frequency divided by global frequency did not
yield good results in our experimentation. Globally

0-7695-2586-5/06 $20.00 © 2006 IEEE 198

uncommon keywords that happened to occur in one
result would often rank highest. On the other hand,
ranking metrics that more heavily weighted search
result frequency tended to rank highest the common
methods that were not specific to the search.

To compromise between these, we experimented
with a threshold that filters out globally common key-
words, and settled on a threshold value of 250,000.
Words that occur on more than 250,000 of Google’s
more than 8 billion pages indexed are considered glob-
ally common, and are never suggested as answers in
Mica’s keyword sidebar. Using this threshold we found
that ranking based on result frequency first and global
infrequency second (to break ties) worked well. While
a threshold has the disadvantage that common key-
words are never suggested, we have found that to a
surprising extent, the specific questions from pro-
grammers relate to tangible input or output and are
answered by specific, relatively uncommon keywords.
The very common keywords tend to be helper methods
that are used across many different tasks, and specific
task tend not to contain only common helper methods.

3.2.3. Keyword structure. In addition to ranking them
based on frequency, the keywords that are in the same
class are also grouped and indented beneath the enclos-
ing class if the class is included in the results. For ex-
ample, “GraphicsDevice” and “GraphicsEnvironment”
are enclosing classes in Figure 1. To avoid hiding rele-
vance, the higher of the rankings of a method and its
enclosing class is used to determine the ranking of the
aggregate result that contains the class and method(s).

3.2.4. Highlighting. When moused-over, the keywords
in Mica’s sidebar show programmers which results
contain the keywords by highlighting their background
(as shown in the bottom two web search results in fig-
ure 1). Similarly, mousing-over search results high-
lights in the sidebar keywords contained in that result
page. The highlighting of keywords can be used to help
more quickly reveal which of the displayed keywords
are relevant given a search result that seems relevant.
The highlighting of search results can also be used to
quickly observe clusters of results that contain related
solutions and conversely results that contain different
solutions.

In addition to mouse-based highlighting, search re-
sults are displayed with a light grey background until
they are processed by the server. Doing so gives the
programmer feedback on the progress of the server and
also helps reveal dead or unresponsive result pages that
may not be worth clicking.

3.2.5. Keyword links. When a keyword is clicked,
links for that term appear underneath it (the links under
“setFullScreenWindow” in Figure 1).

The three links currently provided are: a new Mica
query on that term, a new Mica query restricted to only
Java source code files, and a link to the Javadoc defini-
tion of that class. These links are based on three com-
monly observed uses of keywords: formulating a new
query with that term, looking for examples of that
term, and looking up the official documentation for
that keyword.

3.3. Summary generation

When a keyword is clicked, in addition to the ap-
pearance of new links, Mica generates new summaries
for the search results that contain that keyword. The
new summaries are displayed without affecting the rest
of the page.

We designed this feature so that programmers could
compare the different uses of a particular method with-
out having to open up the result pages. A design chal-
lenge is selecting the context that makes a short sum-
mary most useful for a particular keyword. We cur-
rently begin a keyword-specific summary at the line
with the first occurrence of the keyword on a page, but
plan to explore other heuristics for choosing which
instance of a keyword to show and choosing how much
text before the keyword to include.

3.4. Icons for result attributes

Mica displays icons next to search results to repre-
sent the type of content some pages contain. For results
that contain source code, it displays a Java icon, and
for official documentation, it displays a Javadoc icon.
The motivation for this feature came from observing
programmers’ use of Google.

Figure 4. Result icons for code and documentation.

When programmers wanted to find source code ex-
amples in our study (stage E in Figure 2), we observed
them spending time opening and scanning result pages
looking for code. For many searches, only two or three
of the first ten results would contain code, and so this
process was relatively slow and did not add to pro-
grammers’ understanding.

0-7695-2586-5/06 $20.00 © 2006 IEEE 199

To decide if a page contains source code, Mica cur-
rently uses a heuristic that if it contains two or more of
the eight code keywords shown in the sidebar, it con-
tains code. While we plan to use a more sophisticated
algorithm, such as the robust code recognition algo-
rithm in [15], this heuristic has worked surprisingly
well. One reason for this is that because of the keyword
ranking, the keywords are known to be globally un-
common, and so this helps avoid the detection of Java
keywords that are also English words.

When programmers wanted to refer to the official
documentation, we observed that they would often use
Google to find the specific Javadoc reference page,
even when the root documentation page was already
bookmarked or open.

Mica decides if a page should be marked with the
icon for official documentation by comparing the URL
to Sun’s API documentation site.

While Mica currently recognizes and displays an
icon only for documentation and source code, we plan
to extend it to recognize tutorials and forum discus-
sions. Forum questions and answers might also be dis-
tinguished, but we feel it would be more useful com-
bine these into one “discussion” category because in
our observations, the questions themselves were often
as useful as answers, and labeling them differently
might unnecessarily discourage programmers from
exploring them.

3.5. Implementation challenges

Mica is implemented as a collection of Java servlets
that use the Google Web-APIs.

While creating a local index of content would have
allowed much faster processing, we use the Google
search results because of their high degree of rele-
vance. Especially when helping programmers solve
vocabulary problems, the effectiveness of any analysis
will be limited by the quality of the initial rankings,
and so dealing with a non-local index, as we do here,
or trying to replicate the quality of Google’s rankings
is an important and difficult tradeoff for a program-
ming web-search engine.

Because waiting for the result pages to download
takes as long as thirty seconds, an architectural chal-
lenge was how to display keywords and result-type
analysis dynamically, as each individual page is
downloaded and processed.

The first implementation strategy that we tried was
to use the XMLHttpRequest JavaScript object used
by many recent dynamic webpages such as Google
Maps and many different web-mail sites. In our cur-
rently implementation however, we instead use a serv-
let that continuously appends JavaScript code to the

HTML page that overwrites earlier results as the page
loads. The two main advantages of this approach are
that it is compatible with more browsers, including
those that do not yet fully support the XMLHttpRe-
quest object, and that because the end result is a sin-
gle regular HTML page, browsers are better able to
cache it. This is particularly an issue when using the
back button to revisit a Mica query in between result
pages.

4. Usage logging and analysis

We have made Mica available for public use and
have advertised its presence on several Java-related
newsgroups. We have used the logs of its usage to help
guide future directions of the tool’s implementation.

Mica logs the queries as well as out going result
clicks and uses of the sidebar. To log outgoing links,
which do not usually involve any communication with
the server of the source page and so are not trivially
loggable, we use JavaScript to trap all click events and
record the ones that correspond to outgoing links.

So far Mica has logged some two hundred queries
from a hundred unique IP addresses.

4.1. Query types

One early finding was that while about half of the
queries submitted to Mica appeared to involve a gen-
eral topic or vocabulary search – for example, “load dll
jar” or “date arithmetic,” most of the remaining
searches were for a specific known Java method or
class name, such as “JSpinner” or “URLEncoder”.

While we had observed programmers using known
method names to search for documentation and exam-
ples, we had not expected the percentage of such
searches to be so high. The usage of Mica in this way
helped motivate the documentation recognition and
links that provide further exploration from keywords.
Figure 4 shows a handful of the searches that external
programmers have posed to Mica since it has been
available.

We would like to know how helpful Mica was for
the programmers who issued the queries, and provided
feedback links (shown in Figure 1), however these
were used very rarely, and so this question may only be
answerable by a lab study.

0-7695-2586-5/06 $20.00 © 2006 IEEE 200

Specific General
toUpperCase concatenating strings
thread weak references
WeakHashMap lazy loading and caching
urlencoder awt events
DeferredOutputStream regular expressions
JTable date arithmetic
JSpinner load dll jar
class.forname iterate array
Figure 4. A sample of the queries that programmers

have posed to Mica.

4.2. Sidebar usage

Users clicked the sidebar in roughly half of all
searches. Since we expected much of the sidebar’s
usefulness to be been in the learning the terms them-
selves, which does not necessarily require explicit user
action, these numbers are not surprising. We have
since expanded the functionality offered by clicking
the keywords in the sidebar, making it easier to use
them as a basis for new queries and providing a direct
link to the documentation for each term.

5. Related Work

The Strathcona system [9] finds and recommends
source code examples based on an IDE’s current con-
text. While it does not find examples from the Internet
or allow explicit queries, it addresses the problem of
discovering how to use APIs to perform a desired task
from examples. Because its example search is implicit
and based on the currently written code statements, it is
unable to help in situations where programmers do not
have any starting point. Mica helps programmers with
the stage of finding the first few methods from which
they could then make use of a tool like Strathcona.

Other related IDE tools such as Team Tracks [5]
help programmers with how to use the internal APIs of
large projects based on other programmers’ IDE usage.
While the learning task that this tool addresses is simi-
lar to Mica’s, it is more suited to learning private code,
about which there might be no information on the
Internet, while Mica is more suited to public APIs or
open source projects large enough to have Internet dis-
cussion sites.

The observation of programmers by Steven Clarke
and the Visual Studio User Experience group at Micro-
soft has yielded several interesting and relevant results,
including three different programming personas [4].
These personas capture the different learning styles and
intents of programmers. For example, “opportunistic”
programmers are much more likely to look for example
code to work from, while “systematic” programmers

are more likely to want to read documentation first.
These personas help motivate Mica’s differentiation of
different types of information so that each persona can
avoid unnecessary browsing of results.

The techniques Mica uses for finding keywords that
are correlated with the top results of a query are similar
to techniques used for query expansion [1] in informa-
tion retrieval systems. While this is often used only for
document retrieval, in interactive search systems, the
expanded terms may be shown to the user. Mica’s
sidebar differs from these systems in that it filters
based on programming relevance and the primary use
of the terms is user understanding.

There are several search engines that search specifi-
cally for code [6, 13]. However, these search only a
limited repository of known good code. They are un-
suitable for solving the vocabulary problem because
they do not search the informal forums and other pages
that help programmers use naïve terminology to find
the correct terminology. They are also limited in their
use in finding examples even when programmers have
a method name to start from, because they have such
small repositories and because the repositories lack the
textual descriptions that let programmers find methods
used with a particular intent.

6. Future work

We plan to refine and revise Mica based on pro-
grammer observations and feedback. While it is often
useful now, we hope to better understand and recog-
nize the cases in which it is not useful.

For example, when the search results fail to find any
relevant pages, Mica does not add any relevant infor-
mation. Automatically recognizing this situation might
allow it to quickly motivate programmers to try new
search terms rather than wasting time browsing the
current results. Programmers would also be aided by a
tool that could recognize when there is no solution
available for their desired search terms, i.e. when the
task is known to be unsolvable with the current APIs,
which is often mentioned in discussion forums.

Using a local index of relevant portions of the web
would enable much faster results and allow other types
of processing. For example, the source code in each of
the pages could be preprocessed to do name resolution,
allowing specific keyword name searches to work bet-
ter when the names are also English words. A local
index could still use Google’s page-rank algorithm, or
could use new ranking algorithms of its own. Such
ranking algorithms could use usage log statistics from
other programmers to help find useful programming
documents.

0-7695-2586-5/06 $20.00 © 2006 IEEE 201

Finding the right APIs and examples is only part of
the programming cycle, as shown in figure 2; integrat-
ing examples is also an important task. We plan to ex-
plore tools that will help programmers copy and paste
code found from web searches into an IDE and suc-
cessfully integrate it into their project. Such a tool
could also automatically record the source URL of
pasted code, making it easier for other programmers to
refer to the original code for understanding or debug-
ging.

Finally, such IDE tools could be extended to feed
back into the online environment. For example, tools
could make it easier to post examples to forums, could
record the customization that was necessary to adapt a
particular copied example, and could manually or
automatically link related problems posted by others to
an eventually found solution.

7. Conclusions

Motivated by our observations of how programmers
use web searches to find API information, Mica is a
tool provides better information cues for programmers
by extracting relevant information from web results
and guiding programmers toward the results that will
be most helpful for their current task.

By focusing on programmers’ needs and behaviors,
Mica shows that tools can offer practical web search
improvements for programmers.

8. Acknowledgements

We would like to thank Andrew Ko for his ideas
and comments on this paper. This work was partially
supported under NSF grant IIS-0329090 and by the
EUSES Consortium via NSF grant ITR-0325273.
Opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the au-
thor(s) and do not necessarily reflect those of the NSF.

9. References

[1] Baeza-Yeats, R., Ribeiro-Neto, B. Modern Information
Retrieval. Addison-Wesley, Reading, MA, 1999.

[2] Berglund, E. Library Communication Among Program-
mers Worldwide. PhD Thesis, Linköping University, 2002.

[3] Choo, CW., Detlor, B., and Turnbull, D. Information
Seeking on the Web - An integrated model of browsing and
searching. ASIS, Washington DC, 1999.

[4] Clarke, S. Weblog. http://blogs.msdn.com/stevencl/.

[5] Deline, R., Czerwinski, M., and Robertson, G. Easing
Program Comprehension by Sharing Navigation Data. IEEE
Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC ’05) (Dallas, TX, USA, Sept. 20-24, 2005).
241-248.

[6] Eakle, P. JExamples. http://www.jexamples.com/.

[7] Furnas, G.W., Gomez, T.K.L.L.M., and Dumais, S.T. The
Vocabulary Problem in Human-System Communication.
Communications of the ACM, 1987. 30(11): pp. 964-971.

[8] Google. The Google Web APIs.
http://www.google.com/apis/.

[9] Holmes, R., Murphy, G. C. Using structural context to
recommend source code examples. In Proceedings of the 27th
international conference on Software engineering (ICSE ’05)
(St. Louis, MO, USA, Sept. 15-21, 2005). ACM Press, New
York, 2005, 117-125.

[10] Ko, A. J., Aung, H., Myers, B. A. Eliciting Design Re-
quirements for Maintenance-Oriented IDEs: A Detailed
Study of Corrective and Perfective Maintenance Tasks. In-
ternational Conference on Software Engineering (St. Louis,
MI, May 15-21, 2005). 126-135.

[11] Ko, A. J., Myers, B. A., and Aung, H. Six Learning
Barriers in End-User Programming Systems. IEEE Sympo-
sium on Visual Languages and Human-Centric Computing
(VL/HCC’04) (Rome, Italy, Sept. 26-29, 2004). 199-206.

[12] Marchionini, G. Information Seeking in Electronic Envi-
ronments. Cambridge University Press, New York, NY,
1995.

[13] Mitchell, N. Hoogle. http://www-
users.cs.york.ac.uk/~ndm/hoogle/.

[14] Pirolli, P., Card, S. Information Foraging in Information
Access Environments. In Proceedings of the Conference on
Human Factors in Computing (CHI ’95) (Denver, Colorado,
USA). ACM Press, New York, 1995, 51-58.

[15] Rha, P. Detecting and Parsing Embedded Lightweight
Structures. Masters thesis, Massachusetts Institute of Tech-
nology. 2005.

0-7695-2586-5/06 $20.00 © 2006 IEEE 202

