
The Long Tail: Understanding the Discoverability
of API Functionality

Amber Horvath∗, Sachin Grover∗, Sihan Dong∗, Emily Zhou∗, Finn Voichick†, Mary Beth Kery∗,
Shwetha Shinju∗, Daye Nam∗, Mariann Nagy‡, and Brad Myers∗

∗Carnegie Mellon University

{ahorvath,sachingr,sihand,emilyzho,mkery,sshinju,namdy,bam}@cs.cmu.edu
†Washington University in St. Louis

fvoichick@wustl.edu
‡Google Inc.

mknagy@google.com

Abstract—Almost all software development revolves around the
discovery and use of application programming interfaces (APIs).
Once a suitable API is selected, programmers must begin the
process of determining what functionality in the API is relevant
to a programmer’s task and how to use it. Our work aims to
understand how API functionality is discovered by programmers
and where tooling may be appropriate. We employed a mixed-
methods approach to investigate Apache Beam, a distributed data
processing API, by mining Beam client code and running a lab
study to see how people discover Beam’s available functionality.
We found that programmers’ prior experience with similar APIs
significantly impacted their ability to find relevant features in an
API and attempting to form a top-down mental model of an API
resulted in less discovery of features.

Index Terms—API discoverability, API usability, API learn-
ability, API usage analysis

I. INTRODUCTION

Application programming interfaces (APIs) are the

backbone of most modern software development.

Programmableweb.com has registered over 20,000 APIs,

with countless more private APIs existing for private, internal

use. Despite the prevalence of APIs, understanding how they

are used and areas for improvement or tooling support is still

an ongoing effort. One aspect of usage is how users find

available functionality within an API that will aid them in

their tasks.

Previous work in API usage analysis has found that the

frequency distribution of API method calls in the Java Devel-

opment Kit (JDK) follows the Zipf distribution, with over 90%

of the over 5000 analyzed projects using less than 5% of the

methods in the core JDK [1]. Zipf’s Law states that the most

frequently used term in a corpus will appear approximately

twice as often as the second term, and so on.

While the Zipf distribution has been observed in API usage,

it remains unclear what causes it. One possibility may be that

users are not discovering the proper functionality. One API

that may suffer from poor discoverability is Apache Beam [2],

a distributed data processing API available for Python, Java,

Go and other languages, as it is a relatively new API with a

less-established user base.

In this paper, we present a formative study about how

Beam programmers use available functionality and a lab study

to investigate the facets of API discoverability with Apache

Beam.

II. RELATED WORK

A. Studying Learnability and Usability of APIs

Much research effort attempts to understand what con-

stitutes a “usable” API and how to design one. Currently,

apiusability.org has indexed 71 publications over the last 22

years. Despite this ongoing effort, API usability is still seen

as an evolving field tackling multiple important issues such as

methods for evaluating and improving API usability [3]–[6]

and documentation’s affect on API usability [7]. One aspect

of API usability is its learnability [8], [9]. API learnability

and discoverability go hand in hand, as discovery is an integral

aspect of learning. Previous work has investigated what makes

an API learnable, especially with respect to documentation,

through investigating developer’s most pressing questions [10]

and obstacles [11] when learning an API. Some questions

appear to be discoverability issues, such as “which keywords

best describe a functionality provided by the API?” and “which

method from a list of overloaded methods is relevant to

my task?”, questions which are not easily answered through

simply looking at documentation. Stylos and Myers found

that discoverability was significantly hampered if a method or

object was not associated with the user’s chosen “starter” class

[12]. Discoverability through autocomplete has been shown to

help with this by clearly documenting the relationship between

a class and its methods by showing them as options [13], [14].

B. API Usage Analysis

One way of understanding the discoverability of an API’s

functionality is seeing how methods, classes, packages, and

interfaces are used at scale by analyzing the API’s usage.

Qiu et al. performed a large scale analysis across 5000 Java

projects to understand the frequency in which API calls were

made and found that the top 1% of packages make up 80% of978-1-5386-5541-2/18/$31.00 ©2019 IEEE

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

157

all API usage, with a similar pattern emerging for method,

interface, and class usage in the JDK [1]. Thummalapenta

and Xie developed a program which finds the “hotspots” and

“coldspots” of open source frameworks, where hotspots are

heavily reused portions of code and coldspots are API methods

that are rarely used. While the authors emphasize how hotspots

can serve as a fertile ground for tool and documentation usage

by highlighting popular patterns and methods, they do not

discuss where the coldspots come from or if they would be

beneficial to API users if they were to be found and used [15].

III. BACKGROUND

Apache Beam [2] is a distributed data processing API for

creating data pipelining programs. Beam can be configured

to read from streaming data sources and can run jobs on

large-scale processing platforms such as the Google Cloud

Platform. The way Beam programs are typically structured is

that the user defines a processing pipeline where data enters

the pipeline and is operated on, resulting in a new dataset

which is operated on, and so on. In the scope of this work,

we focus on how users find and adapt the built-in PTransforms

(or “transforms”) for their programs, since they provide the

structure for the pipeline.

IV. REPOSITORY MINING

To see how people discovered functionality at scale, we

wrote a script to mine from GitHub the uses of Apache Beam’s

transforms. Since there are fewer help resources available for

Beam, and less client code available as a reference on GitHub,

we hypothesized that this would lead to certain transforms

which are featured in the Programming Guide to be used more

often than other transforms.

1) Method: We used Selenium, an open source web au-

tomation tool (with a headless browser), to extract user-

repository pairs from Github search results pages. The pa-

rameters of the search were set to look for repositories

where Beam’s Python SDK was used. We used string pars-

ing techniques with a global dictionary of Beam transforms

(created from Beam’s documentation) in the corresponding

Python files to count the occurrences of each transform. As a

comparison, the same process was repeated to extract the count

of transforms for PySpark. Due to GitHub’s terms of service,

we were limited to mining the first 100 pages of the GitHub

search results for each API. For the Beam Python SDK, we

found 288 GitHub users with a total of 308 repositories. In

all of the files, a total of 3079 transforms were used. For

PySpark, we found 502 users with 517 repositories. To have a

comparable number of repositories for the 2 APIs we randomly

sampled 310 repositories from this collection (60%) which

contained a total of 3962 PySpark transforms.

2) Analysis and Results: Figure 1a and Figure 1b show the

frequency distribution of transforms in the mined repositories

for Beam and Spark, respectively. As expected, we observe

a long tailed distribution, matching the trend observed in the

JDK [1]. A closer look at the distribution reveals some inter-

esting trends. For example, Map was the most frequently used

transform in Beam (appearing in 65% of the projects) despite

not being included in the Programming Guide’s list of Beam’s

Core Transforms, which represent transforms corresponding

to the main processing paradigms in Beam. The popularity

of Map among users may be attributed to the fact that it is

used as a construct in many data processing APIs. The second

most frequent transform is ParDo, which is a core transform

appearing in 34.4% of the projects. This is not surprising

as it is the most “advertised” transform in the programming

guide. Other common transforms are also the ones which are

either explicitly mentioned in the text (green) or appear in the

examples (red) as shown in Fig 1a.

We observe a similar distribution of transforms in Spark

– most of the frequently used transforms in Spark appear in

the programming guide (green in Figure 1b). In general, more

transforms explicitly appear in the guide but surprisingly quite

a lot of them are rarely used (tail in Figure 1b). We hypothesize

that their long obscure names or very specific functionality

(required for rare use cases) might be reducing the use

of these transforms. Unsurprisingly, across both APIs, more

emphasized functions in the programming guides are more

frequently used. This could either mean that the documentation

team correctly predicted that these are the transforms most

users would want to know or it could be that, since they are

the easiest to learn about, developers adapted their programs

to use them. However, being in the Programming Guide does

not guarantee usage – for example in Beam, FixedWindows, a

helper function for the window transform, is used in a code

example in the programming guide but never appeared in any

of the files we analyzed. Moreover, some transforms which

are never explicitly discussed in the programming guide are

still used. The most frequently used transform in Beam that is

not in the programming guide is Filter (5.6% of client files),

which we speculate is a particularly easy name to guess.

V. LAB STUDY

Since we are interested in understanding how people find

functionality in Beam, make sense of it, and choose to adopt

it into their programs, we developed an exploratory lab study.

We applied pre-existing learning-based models to discover-

ability and learnability of API functions. We chose to look at

familiarity of concepts and robustness of a user’s mental model

[5] and programming learning styles [9] as a framework of

discoverability as these theories impact how the programmers

make sense of an unfamiliar API. This can be summarized in

the following 2 research questions:

• RQ1. How does familiarity with the API’s core concepts
affect the discoverability of API functionality?

• RQ2. How do different learning styles affect the discov-
erability of API functionality?

A. Method

We recruited undergraduate and masters students studying

computer science who had some amount of experience with

Python and a data processing or analysis API such as Apache

Spark, numpy, or pandas. In total, we recruited 10 participants,

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

158

Fig. 1: Distribution of Transforms in (a) Beam and (b) Spark

4 men and 6 women. None were familiar with Beam. We

administered a think-aloud study with two experimenters,

one running the study while the second took notes. The

participant’s computer screen and audio were recorded while

they completed the task. Participants were compensated $10

for their time.

We adapted an existing Python SDK Beam word count

sample program to be the task, as we felt that it served as

a benchmark for what the Beam designers felt were essential

transforms a user should be familiar with. The script includes

a class that must be called with Beam’s ParDo transform to

extract the words, and then uses two Python functions to

count each time a word appears and to format the results.

We refer to this code as ”helper” code. The correct script

had a total of either 6 or 7 possible correct transforms in the

given order, as the grouping keys and summing 1’s may either

be done with two transforms (GroupByKey and Map) or one

(CombinePerKey).

Participants were introduced to Beam, PyCharm, and the

autocomplete tools for 10 minutes. Participants were then

given 30 minutes to complete the word count task followed by

up to 15 minutes for post-task questions, which asked about

the participants problem-solving style in general, where they

looked for information, and the help resources they used.

B. Analysis

Videos of the participants completing the task were coded to

indicate when they used autocomplete, when the users were in

the editor versus looking at the programming guide, every time

they added, deleted or modified code and what the changes to

their code were, and when they ran their code. From this we

analyzed how participants spent their time while they tried to

understand and use the API.

We correlated these data with the success the participants

had on the task, where success was measured based on the

correctness of the user’s chosen transforms. Due to recording

failures, only 8 of the 10 participants were coded for time-

spent during the task and help resources used during the task.

The first, third, and sixth authors completed the analyses of

the videos.

C. Results
None of the participants fully succeeded on the task,

however, all participants were able to get at least 1 correct

transform. The average score was 3 correct transforms out of

a possible 6 or 7, with a mode of 2. The lowest score was

1 correct transform, while the highest score was 5. We are

interested in understanding this large variability in terms of

correct transforms and how the models we adapted for our

RQs are interconnected in the way they characterize discovery.
We began by investigating RQ1 - the extent to which each

participant had familiarity with data processing APIs and

how that impacted discoverability. All participants had some
amount of experience with data processing and analysis APIs,

but there was a divide in terms of type of experience. 3 partic-

ipants had experience using distributed, map-reduce paradigm

APIs (Hadoop, Apache Spark, and MapReduce), while the

remaining 7 only had experience using non-distributed data

analysis APIs (numpy, scipy, and pandas). We found that the

participants who had experience using at least one of the

distributed data processing APIs performed significantly better

on the task with a mode of 5 correct transforms (T-test: p
<.02, Cohen’s d = 2.439751). The participants who only had

experience with non-distributed APIs such as numpy had less

success, with a mode of 2 correct transforms.
Not surprisingly, we saw evidence that familiarity with

similar APIs allowed participants to draw upon their prior

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

159

knowledge. For example, P1, who had prior experience using

Apache Spark, stated in the post task interview that their search

for functionality was driven by “the Spark API in the back of

my head.” Since they were able to draw analogies between

the APIs, they were able to more accurately guess what

functionality the API would and would not provide. However,

this strategy broke down for Beam-specific constructs. For

example, P5, who had experience with Spark and got 5

transforms correct, said that, with autocomplete, they were

able to find and figure out everything except for “ParDo,”

Beam’s “parallel do” function. In contrast, participants without

distributed API processing experience were less likely to know

what the API would be able to do as they made incorrect

assumptions about what functionality the API would provide.

In order to answer RQ2, how differing programming styles

impacted discoverability, we analyzed how programmer’s

spent their time during the task. We characterized these activ-

ities as either enrichment activities such as reading ”helper”

code and the programming guide, versus task-progression

activities such as adding and editing code. We were interested

in how the focus on these different activities would affect how

participants discover and use transforms.

Attempting to discover elements of Beam primarily through

the programming guide was not a successful strategy. P7, the

only participant who spent the majority of her time in the

programming guide, successfully discovered 2 transforms and

gained a comprehensive understanding of ParDo, Beam’s most

discussed transform. She chose to use it for multiple steps of

the pipeline, despite only needing it for the first step. The other

transform she discovered, GroupByKey lacked an example in

the programming guide, leaving her unsure how to use it and

what data type it expected.

The programmers who started off with enrichment activities,

then spent a good amount of time attempting to program

before going back to enrichment activities such as P3, P4,

P5 and P8 were mostly successful. For example, P5 began by

writing code and, through the code completion, discovered that

there was a Map transform, a Filter transform, and a Sample

transform which he felt he could use for nearly every step

of the pipeline until he realized this would not work for the

first step of the task, which requires ParDo, and moved to

the documentation. Our findings are generally consistent with

prior work [9], [16]–[19] that finds that programmers have

different learning styles – some are systematic and prefer

a more top-down approach of reading documentation first,

whereas others are more pragmatic and prefer to focus on

coding until they realize they need to learn something from

the documentation.

VI. DISCUSSION AND IMPLICATIONS

We investigated two facets of discoverability – develop-

ers’ previous API usage and programming styles. We are

interested in how these facets affect one another and result

in a programmer’s ability to discover the functionality they

are interested in. While our evidence supports the claim

that a developer’s past experience best predicts their ability

to discover relevant information in a new, similar API, P4

serves as an interesting counterpoint – despite having no

prior experience with distributed data processing APIs, he

still discovered 5 transforms. One way in which P4 shared

similarity with the other top performers was in programming

style. P3, P4, and P5 all spent some time in the beginning

of the task familiarizing themselves with the programming

guide and ”helper” code prior to writing code with P3 also

spending time looking at autocomplete, and then proceeding

to move into implementation. Those who spent more time

attempting to comprehensively understand everything about

Beam before attempting the task had less success. Essentially,

programmer’s prior experience was the most important factor

in their ability to discover new functionality, but programming

style also benefited or hindered discovery.

We propose some potential implications for API designers

to consider to improve the discoverability of API entities

through modifications to documentation and tooling. One way

in which participants struggled was by attempting to search

for transforms in the programming guide. Both P2 and P10

attempted to search for “pair” or “key/value pair” but were un-

successful. P6 searched for “tuple” in the programming guide

to no avail. These unsuccessful queries hindered discovery of

applicable transforms as they returned irrelevant results. One

possible solution is supplying multiple keywords that relate to

vocabulary from other APIs or the function’s intended purpose.

API designers should ensure that method names are easily

understandable and, for constructs that have naming specific to

their API, provide thorough explanations or analogies relating

these constructs to more well-known concepts.

VII. THREATS TO VALIDITY

We chose to only study Apache Beam’s discoverability,

which may not be representative of other APIs. The task was

also relatively short, so it is unclear that if the task was longer,

the discoverability behavior may have changed over time as

participants grew more familiar with the API. Future studies

may benefit from seeing how growing familiarity with an API

changes how participants discover features.

For our mining study, we are unsure if we looked at a truly

representative sample of Beam repositories – for example it

might be that most production level repositories are either

private or stored outside of GitHub. We also only looked at the

Python SDK Beam usage, which may not be representative of

Java or Go usage.

VIII. FUTURE WORK

In future work, we will attempt to create responsive doc-

umentation, which, based upon the user’s prior knowledge,

recommends potential features to use. Considering prior ex-

perience was the largest influence on how well programmers

were able to discover features, perhaps documentation could

self-adapt by gauging the user’s prior experience in order to

supply differing levels of information to facilitate discovery.

We are also interested in investigating how developer’s inter-

personal networks impact discoverability.

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

160

ACKNOWLEDGEMENT

This work was supported by NSF IIS-1827385 and a grant

from Google.

REFERENCES

[1] D. Qiu, B. Li, and H. Leung, “Understanding the API usage in Java,”
Information and Software Technology, vol. 73, pp. 81–100, 2016.

[2] T. A. S. Foundation, “Apache beam: An advanced unified programming
model,” beam.apache.org, 2018, accessed: 2019-04-30.

[3] B. A. Myers and J. Stylos, “Improving API usability,” Communications
of the ACM, vol. 59, pp. 62–69, 2016.

[4] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon, “Programmers are
users too: Human-centered methods for improving programming tools,”
IEEE Computer, vol. 49, pp. 44–52, 2016.

[5] A. Horvath, M. Nagy, F. Voichick, M. B. Kery, and B. A. Myers,
“Methods for investigating mental models for learners of APIs,” in
Proceedings of the 2019 CHI Conference Extended Abstracts on Human
Factors in Computing Systems, ser. CHI EA ’19.

[6] J. Gerken, H.-C. Jetter, and H. Reiterer, “Using concept maps to evaluate
the usability of APIs,” in Proceedings of the 2016 CHI Conference
Extended Abstracts on Human Factors in Computing Systems, ser. CHI
EA ’16. New York, NY, USA: ACM, pp. 3937–3942.

[7] S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik, “How do API
documentation and static typing affect API usability?” in Proceedings
of the 36th International Conference on Software Engineering, ser.
ICSE ’14. New York, NY, USA: ACM, pp. 632–642. [Online].
Available: https://doi.org/10.1145/2568225.2568299

[8] M. P. Robillard, “What makes APIs hard to learn? answers from
developers,” IEEE Software, vol. 26, pp. 27–34, 2009.

[9] S. Clarke, “Measuring API usability,” Dr. Dobbs Journal, pp. S6–S9,
2004.

[10] E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions
about unfamiliar APIs: an exploratory study,” in Proceedings of the
34th International Conference on Software Engineering, ser. ICSE ’12.
Piscataway, NJ, USA: IEEE Press, pp. 266–276.

[11] M. P. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empircal Software Engineering, vol. 16, pp. 703–732, 2011.

[12] J. Stylos and B. A. Myers, “The implications of method placement
on API learnability,” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, ser.
SIGSOFT ’08. New York, NY, USA: ACM, pp. 105–112. [Online].
Available: https://doi.org/10.1145/1453101.1453117

[13] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers, “Improving API
documentation using API usage information,” in 2009 IEEE Symposium
on Visual Languages and Human-Centric Computing, ser. VLHCC ’08,
pp. 119–126.

[14] A. L. Santos and B. A. Myers, “Design annotations to improve API
discoverability,” Journal of Systems and Software, vol. 126, pp. 17–33,
2017.

[15] S. Thummalapenta and T. Xie, “Spotweb: Detecting framework hotspots
and coldspots via mining open source code on the web,” in 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’08, pp. 15–19.

[16] J. Stylos and S. Clarke, “Usability implications of requiring
parameters in objects’ constructors,” in Proceedings of the 29th
international conference on Software Engineering, ser. ICSE ’07.
Washington, DC, USA: IEEE, pp. 529–539. [Online]. Available:
https://doi.org/10.1109/ICSE.2007.92

[17] L. Beckwith, C. Kissinger, M. Burnett, S. Wiedenbeck, J. Lawrance,
A. Blackwell, and C. Cook, “Tinkering and gender in end-user pro-
grammers debugging,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’06, pp. 231–240.

[18] J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer, “Opportunistic
programming: How rapid ideation and prototyping occur in practice,”
in Proceedings of the 4th international workshop on End-user software
engineering, ser. WEUSE ’08.

[19] V. Grigoreanu, M. Burnett, S. Wiedenbeck, J. Cao, K. Rector, and
I. Kwan, “End-user debugging strategies: A sensemaking perspective,”
Transactions on Computer-Human Interaction, vol. 19, 2012.

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

161

