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Abstract

Cross-spectral imaging provides strong benefits for
recognition and detection tasks. Often, multiple cameras
are used for cross-spectral imaging, thus requiring image
alignment, or disparity estimation in a stereo setting. In-
creasingly, multi-camera cross-spectral systems are embed-
ded in active RGBD devices (e.g. RGB-NIR cameras in
Kinect and iPhone X). Hence, stereo matching also provides
an opportunity to obtain depth without an active projector
source. However, matching images from different spectral
bands is challenging because of large appearance varia-
tions. We develop a novel deep learning framework to si-
multaneously transform images across spectral bands and
estimate disparity. A material-aware loss function is in-
corporated within the disparity prediction network to han-
dle regions with unreliable matching such as light sources,
glass windshields and glossy surfaces. No depth supervi-
sion is required by our method. To evaluate our method,
we used a vehicle-mounted RGB-NIR stereo system to col-
lect 13.7 hours of video data across a range of areas in and
around a city. Experiments show that our method achieves
strong performance and reaches real-time speed.

1. Introduction
Cross-spectral imaging is broadly used in computer vi-

sion and image processing. Near infrared (NIR), short-wave
infrared (SWIR) and mid-wave infrared (MWIR) images
assist RGB images in face recognition [1, 16, 23, 29]. RGB-
NIR pairs are utilized for shadow detection [35], scene
recognition [2] and scene parsing [5]. NIR images also help
color image enhancement [42] and dehazing [11]. Blue
fluorescence and ultraviolet images assist skin appearance
modeling [24]. Color-thermal images help pedestrian de-
tection [19, 40].

As multi-camera multi-spectral systems become more
common in modern devices (e.g. RGB-NIR cameras in
iPhone X and Kinect), the cross-spectral alignment problem
is becoming critical since most cross-spectral algorithms re-
quire aligned images as input. Aligning images in hardware
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Figure 1. A challenging case for RGB-NIR stereo match-
ing and our result. Red box: The light source is visible in
RGB but not in NIR. Yellow box: The transmittance and
reflectance of the windshield are different in RGB and NIR.
Cyan box (brightened): Some light sources reflected by the
specular car surface are only visible in RGB. Our approach
uses a deep learning based simultaneous disparity predic-
tion and spectral translation technique with material-aware
confidence assessment to perform this challenging task.

with a beam splitter is often impractical as it leads to sig-
nificant light loss and thus needs longer exposure, resulting
in motion blur. Stereo matching handles this problem by
estimating disparity from a rectified image pair. Aligned
images are obtained by image warping according to dispar-
ity. Stereo matching also provides an opportunity to obtain
depth without an active projector source (as is done in the
Kinect), helping tasks like detection [14] and tracking [37].

Cross-spectral stereo matching is challenging because of
large appearance changes in different spectra. Figure 1 is an
example of RGB-NIR stereo. Headlights have different ap-
parent sizes or intensities in RGB and NIR. LED tail-lights
are not visible in NIR. Glass often shows different light
transmittance and reflectance in RGB and NIR. Glossy sur-
faces have different specular reflectance. Additionally, veg-



etation and clothing often show large spectral difference.
In this paper, we propose a deep learning based RGB-

NIR stereo matching method without depth supervision. We
use two networks to simultaneously predict disparity and
remove the spectral difference. A disparity prediction net-
work (DPN) estimates disparity maps based on a RGB-NIR
stereo pair, and a spectral translation network (STN) con-
verts a RGB image into a pseudo-NIR image. The losses are
constructed by reprojecting and matching the NIR and the
pseudo-NIR images, thus both the geometric and spectral
differences are encoded. To make sure the disparity is only
learned by the DPN, we use a symmetric network design to
prevent the STN from learning geometric differences.

Though the DPN and STN work well in many cases,
certain materials cannot be handled correctly due to unre-
liable matching. ‘Unreliable’ means it is hard to find good
matches due to large spectral difference, or the matches
found correspond to incorrect disparities (e.g. matches on
reflections). As shown in Figure 1 and 4, light sources in
RGB may be absent in NIR, or show different apparent
sizes resulting in incorrect matches. The transmitted and
reflected scenes on glass and specular reflection on glossy
surfaces may be matched but do not represent the real dis-
parity. These are fundamental problems occurring often and
cannot be ignored. We address the problems by using a ma-
terial recognition network to identify unreliable regions and
inferring their disparities from the context. The DPN loss
assesses pixel confidence according to the material proba-
bility and the predicted disparity, and utilizes a confidence-
weighted smoothing technique to backpropagate more gra-
dients to lower confidence pixels. This method significantly
improves results in unreliable regions.

We have collected 13.7 hours of RGB-NIR stereo frames
covering different scenes, lighting conditions and materi-
als. The images were captured from a vehicle driven in and
around a city. Challenging cases for matching appear very
frequently, including lights, windshields, glossy surfaces,
clothing and vegetation. We labeled material segments on
a subset of the images to train the aforementioned mate-
rial recognition network. Additionally, we labeled sparse
disparities on a test subset for evaluation. To our knowl-
edge, this is the first outdoor RGB-NIR stereo dataset with
a large range of challenging materials at this scale. We ex-
perimented on this specific but important domain of driv-
ing in an urban environment and will extend it to indoor or
other outdoor domains in the future. Experimental results
show that the proposed method outperforms other compa-
rable methods and reaches real-time speed. This method
could be extended to other spectra like SWIR or thermal.

2. Related Work
Cross-modal Stereo Matching: The key to cross-modal
stereo matching is to compute an invariant between different

imaging modalities. Chiu et al. [4] proposed a cross-modal
adaptation method via linear channel combination. Heo
et al. [17] presented a similarity measure robust to vary-
ing illumination and color. Heo et al. [18] also proposed
a method to jointly produce color consistent stereo images
and disparity under radiometric variation. Pinggera et al.
[34] showed that the HOG [7] feature helps visible-thermal
matching. Shen et al. [36] proposed a two-phase scheme
with robust selective normalized cross correlation. Kim et
al. [25] designed a descriptor based on self-similarity and
extended it into a deep learning version [26]. Jeon et al.
[22] presented a color-monochrome matching method in
low-light conditions by compensating for the radiometric
differences. These methods are based on feature or region
matching without material awareness and are unreliable for
materials such as lights, glass or glossy surfaces.
Unsupervised Deep Depth Estimation: Unsupervised
depth estimation CNNs are usually trained with a smooth-
ness prior and reprojection error. Garg et al. [12] proposed
a monocular method with Taylor expansion and coarse-
to-fine training. Godard et al. [13] presented a monocu-
lar depth network with left-right consistency. Zhou et al.
[44] proposed a structure from motion network to predict
depth and camera pose. Zhou et al. [43] presented a stereo
matching method by selecting confident matches and train-
ing data. Tonioni et al. [38] showed that deep stereo match-
ing models can be fine-tuned with the output of conven-
tional stereo algorithms. All these methods deal with only
RGB images rather than cross-spectral images, with no con-
sideration for difficult non-Lambertian materials.

3. Simultaneous Disparity Prediction and
Spectral Translation

To compensate for appearance differences between RGB
and NIR and extract disparity, we present an unsupervised
scheme that trains two networks simultaneously to respec-
tively learn disparity and spectral translation with reprojec-
tion error (Figure 2).

3.1. Model Overview

Our approach consists of a disparity prediction network
(DPN) and a spectral translation network (STN). The DPN
design follows Godard et al. [13] but the input is replaced
with a RGB-NIR stereo pair {I lC , IrN}, where superscripts
l and r refer to left and right images. Left-right disparity
maps {dl, dr} are predicted by DPN. STN translates a RGB
image I lC into a pseudo-NIR image I lpN . Translation from
NIR to RGB is not used because it is hard to add informa-
tion to a 1-channel image to create a 3-channel image.

Both networks use reprojection error as main loss. Given
the right NIR image IrN and the left disparity dl, we re-
project the left NIR image Ĩ lN via differentiable warp-
ing [21], similar to previous works [13, 28, 44]. Let
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Figure 2. Model overview. The disparity prediction network (DPN) predicts left-right disparity for a RGB-NIR stereo input.
The spectral translation network (STN) converts the left RGB image into a pseudo-NIR image. The two networks are trained
simultaneously with reprojection error. The symmetric CNN in (b) prevents the STN learning disparity.

ω(I, d) be the operator warping I according to disparity
d, i.e., ω(I, d)(x, y) = I(x + d(x, y), y). Then Ĩ lN =
ω(IrN ,−dl). Symmetrically, the warped pseudo-NIR im-
age ĨrpN = ω(I lpN , d

r). Error is calculated between the
warped NIR image Ĩ lN and the pseudo-NIR image I lpN , and
the warped pseudo-NIR image ĨrpN and the NIR image IrN .

3.2. Disparity Prediction Network

The DPN predicts left-right disparities {dl, dr} based on
a RGB-NIR stereo pair {I lC , IrN}. The network structure
proposed by Godard et al. [13] is adopted. Convolutional
layers are followed by batch normalization [20] (except for
output layers) and ELU [6] activation. The output disparity
is scaled by factor η for a good initialization. The loss has
a view consistency term Lv , an alignment term La and a
smoothness term Ls following Godard et al. [13].

LDPN = λv(Ll
v +Lr

v)+λa(Ll
a +Lr

a)+λs(L
l
s +Lr

s) (1)

For simplicity, only the left terms are described below and
the right ones can be derived similarly. Multi-scale predic-
tion is done by adding similar loss functions at four scales.

The view consistency term Ll
v describes the consistency

of left-right disparity maps. Let N be the number of the
pixels in one image, and Ω be the pixel coordinate space.

Ll
v =

1

N

∑
p∈Ω

|dl(p)− ω(dr,−dl)(p)| (2)

The alignment term Ll
a compares intensity and structure

between aligned NIR and pseudo-NIR images. Let δ(I1, I2)
be the structural dissimilarity function [39]. Then,

Ll
a =

1

N

∑
p∈Ω

(αδ(I lpN , Ĩ
l
N )(p)+(1−α)|I lpN (p)− Ĩ lN (p)|)

(3)
where α is set to be 0.85 as suggested by Godard et al. [13].

The smoothness term Ll
s is edge-aware to allow noncon-

tinuous disparity at image edges:

Ll
s =

1

N

∑
p∈Ω

((

∣∣∣∣∂dl∂x

∣∣∣∣ e−|Sx∗IlC | + ∣∣∣∣∂dl∂y

∣∣∣∣ e−|Sy∗IlC |)(p))

(4)
where Sx and Sy are Sobel operators and the filtered RGB
channels are averaged into one channel.

3.3. Spectral Translation Network

The RGB-NIR cameras are radiometrically calibrated
and their varying white balancing gains (gR for red and gB
for blue) and exposure times ∆tC and ∆tN are known. The
spectral translation network (STN) converts a RGB image
I lC into a pseudo-NIR image I lpN via local filtering, white
balancing, and exposure correction (Figure 2). Let Gθ1 be
the white balancing operator with learnable parameter θ1,
and F (p)

θ2
be the filtering operation with predicted parame-

ter θ2 for each position p. The pseudo-NIR image is:

I lpN (p) =
∆tN
∆tC

Gθ1(gR, gB)F (p)
θ2

(I lC(p)) (5)

Gθ1 is a one-layer neural network learning parameters
θ1 = (θ11, θ12, θ13) with a sigmoid activation h,

Gθ1
(gR, gB) = βh

(
θ11

gR
+
θ12

gB
+ θ13

)
(6)

where, β = 2 is the maximum white balancing gain.
F (p)

θ2
calculates a weighted sum of R,G,B channels. The

weights are different for each position p. Formally,

F (p)
θ2

(I lC(p)) =

θ21(p)I lR(p) + θ22(p)I lG(p) + θ23(p)I lB(p)
(7)

where I lR, I lG, I lB are the three channels of I lC , and the
weights θ2(p) = (θ21(p), θ22(p), θ23(p)) are predicted by
a filter generating network (FGN) [8].



(a) Left RGB (b) Predicted material (c) RGB-to-NIR filter (d) Right NIR (e) Warped pseudo-NIR (f) Error b/t (d) and (e)

Common BagClothingSkinVegetationGlossyGlassLight

Figure 3. Intermediate results. (b) is the material recognition result from DeepLab [3] (explained in Section 4.2). (c)
shows the RGB-to-NIR filters corrected by exposure and white balancing. The R,G,B values represent the weights of R,G,B
channels. Some clothing fails in spectral translation because the relationship between its RGB and NIR intensities is low. The
structural similarity term in alignment loss (Equation 3) can partially solve this problem as long as the structure is preserved.

To prevent the STN from learning disparity, we use a
CNN with left-right symmetric filtering kernels (symmetric
CNN) as the FGN. Thus the FGN treats the left and right
parts around each pixel equally and does not shift the input
and therefore learns no disparity. The structure of the FGN
is the same as the DPN. The FGN accepts a RGB image and
predicts a RGB-to-NIR filter (Figure 3 (c)). Yeh et al. [41]
also proposed a symmetric filter CNN for recognition but
their filters are radial symmetric while ours are reflection
symmetric.

The STN loss matches the NIR and pseudo-NIR images:

LSTN =
1

N

∑
p∈Ω

(|I lpN (p)− Ĩ lN (p)|+ |IrN (p)− ĨrpN (p)|)

(8)
where I lpN , Ĩ lN , IrN and ĨrpN are, respectively, the pseudo-
NIR image, the warped NIR image, the NIR image, and the
warped pseudo-NIR image as defined in Section 3.1.

4. Incorporating Material-aware Confidence
into Disparity Prediction Network

Though the DPN and STN work well in many cases, they
cannot handle certain materials including lights, glass and
glossy surfaces due to unreliable matching. Matching on
these materials is hard due to large spectral change (Fig-
ure 1) and not trustworthy because it does not represent the
correct disparity (Figure 4). Such materials are common
but difficult to identify without external knowledge. As-
sessing reliability by matching score or view consistency
[32, 43] fails because unreliable regions may show high
matching scores (Figure 4) and strong view consistency. A
light source may show a different size in RGB and NIR and
thus match at its edge instead of the center. Transmitted or
reflected scenes may match perfectly but the predicted dis-
parities do not correspond to the physical surfaces.

(a) RGB patch (b) NIR patch (c) Wrong disparity

Figure 4. Unreliable matching with high matching score.
(c) is predicted by DPN without material awareness. Row 1:
the light sources showing different sizes in RGB and NIR,
and incorrectly match at the edges instead of the centers.
Row 2: matching of transmitted scene does not represent
the correct windshield disparity. Row 3: disparity of the
reflected scene does not correspond to the car surface.

Our goal is to incorporate material-aware confidence into
DPN loss (Equation 1) to solve this problem. We propose
two novel techniques: (1) Propagate the disparity from the
reliable to the unreliable regions using a new confidence-
weighted smoothing technique (Section 4.1) and (2) Ex-
tend the DPN loss function to be material-aware by creating
material-specific alignment and smoothness losses (Section
4.2). Section 4.3 discusses how to combine those two tech-
niques to solve specific unreliable materials.

4.1. Confidence-weighted Disparity Smoothing

Smoothing is a common technique to infer disparity in
unreliable regions. However, a smoothness loss allows un-
reliable regions to mislead the reliable parts by forcing them
to share similar disparity. As shown in Figure 5 (c), this re-



sults in the disparity at the side of the car to be misled by
the wrong prediction on the windshield.

Confidence-weighted disparity smoothing uses confident
disparities to “supervise” non-confident ones. Instead of
fine-tuning [38] or bootstrapping [43], we change the back-
propagation behavior of the smoothness loss so that it can
be embedded in the DPN loss (Equation 12). Consider two
neighbor pixels p1 and p2 with predicted disparities d1 and
d2. A L1 smoothness loss is L = |d1 − d2|. Let W be all
the parameters in the DPN, then ∂L

∂W = ∂L
∂d1

∂d1

∂W + ∂L
∂d2

∂d2

∂W .
Assume that p1 is confident while p2 is unreliable. We
want d2 to follow d1 without harming d1. Let χ(·) be
the stopping gradient operator (a.k.a. ‘detach’ in PyTorch
[33]) that acts as an identity mapping in the forward pass
but stops gradients from being backpropagated through it
in the backward pass. A confidence-aware loss is L =
|χ(d1) − d2|, preventing gradients being backpropagated
through d1. ∂L

∂d1
is set to be zero during backpropaga-

tion, i.e., ∂L
∂W = ∂L

∂d2

∂d2

∂W . This can be extended into a
“soft” version. Generally, let p1 and p2 have confidences
c1 and c2. We define relative confidences as r1 = c1

c1+c2
and r2 = 1 − r1, and the confidence-weighted loss as
L = r1|χ(d1)− d2|+ r2|d1 − χ(d2)|.

In practice, we consider a disparity map d(x, y) and its
known confidence c(x, y) (defined in Section 4.3 using ma-
terial). We present detailed expressions for the confidences
by defining pixel neighborhood in x and y directions. The
relative confidences r+ and r− in x−direction are:

r+(x, y) = χ

(
c(x+ 1, y)

c(x+ 1, y) + c(x− 1, y)

)
(9)

and r− = 1 − r+, where the χ(·) prevents gradients to be
backpropagted to the confidence. The confidence-weighted
L1 smoothness loss along x−direction is:

Lx(d, c)(x, y) =r+(x, y)

∣∣∣∣χ(d(x+ 1, y))− d(x− 1, y)

2

∣∣∣∣
+r−(x, y)

∣∣∣∣d(x+ 1, y)− χ(d(x− 1, y))

2

∣∣∣∣
(10)

Ly(d, c) is defined similarly for the y−direction. Then the
complete confidence-weighted smoothness loss is:

Lcs(d, c) = Lx(d, c) + Ly(d, c) (11)

As shown in Figure 5, the use of the confidence-weighted
loss leads to better results than traditional smoothing.

4.2. Material-aware Loss Function

A DeepLab [3] network is used to identify unreliable re-
gions. It is trained separately and before the training of
the DPN and STN networks. A set of 8 material classes

(a) RGB (b) No material awareness

(c) Smoothing w/o confidence (d) Smoothing w/ confidence
Figure 5. Comparison of smoothing with and without con-
fidence. Smoothing without confidence makes the reliable
matching around the car sides be misled by the unreliable
matching on glass, which causes the predicted disparity (or-
ange) to be smaller than the correct one (red). Introducing
confidence addresses this issue.

M = {‘light’, ‘glass’, ‘glossy’, ‘vegetation’, ‘skin’, ‘cloth-
ing’, ‘bag’, ‘common’} are predicted (Figure 3). ‘Common’
refers to any material not in the other classes. LetMU be
the subset of unreliable materials inM. The DeepLab net-
work takes a stereo pair as input and predicts left-right prob-
abilities {µl

m(p), µr
m(p)} of each pixel p being materialm.

To make the original DPN loss in Equation 1 material-
aware, we introduce material-specific alignment and
smoothness losses Ll

a,m and Ll
s,m respectively (similarly

for the right terms). Thus, we re-write Equation 1 as:

LDPN =λv(Ll
v + Lr

v)

+
∑

m∈M
λa,m(

1

N

∑
p∈Ω

(µl
m(p)Ll

a,m(p) + µr
m(p)Lr

a,m(p)))

+
∑

m∈M
λs,m(

1

N

∑
p∈Ω

(µl
m(p)Ll

s,m(p) + µr
m(p)Lr

s,m(p)))

(12)

For the reliable materials we use the same alignment and
smoothness terms as in Equation 3 and 4, where the def-
inition of confidence c is not required. For the unreliable
materials, we use the confidence-weighted smoothness loss
proposed in Section 4.1. We next describe how µl

m and µr
m

are used to compute the confidence c in Equation 11.

4.3. Example Loss Terms of Unreliable Materials

Here we define the unreliable materialsMU = {‘light’,
‘glass’, ‘glossy’} and present their loss terms.
Light Sources: Light sources like tail-lights, brake lights,
bus route indicators and headlights result in unreliable
matching. Thus the alignment term is Ll

a,light = 0. We
assume that the light source shares the same disparity with



Method Common Light Glass Glossy Vegetation Skin Clothing Bag Mean Time (s)
CMA [4] 1.60 5.17 2.55 3.86 4.42 3.39 6.42 4.63 4.00 227

ANCC [17] 1.36 2.43 2.27 2.41 4.82 2.32 2.85 2.57 2.63 119
DASC [25] 0.82 1.24 1.50 1.82 1.09 1.59 0.80 1.33 1.28 44.7
Proposed 0.53 0.69 0.65 0.70 0.72 1.15 1.15 0.80 0.80 0.0152

Table 1. Quantitative results. Disparity RMSE in pixels is reported for each material. CMA [4] with searching step 0.01,
ANCC [17] and DASC [25] with guided filtering [15] are tested on an Intel Core i7 6700HQ CPU. The proposed method is
tested on a single NVIDIA TITAN X (Pascal) GPU. Our method outperforms the others and reaches real-time speed.

Real Depth
Transmitted Depth

Reflected Depth

Glass CameraImage
A’

Object
B

Object
A

Figure 6. Transmitted and reflected scenes look farther than
the real glass position.

non-light neighbors. The confidence cl is computed using
1− µl

light. Then Equation 11 (smoothness term) becomes:

Ll
s,light = Lcs(d

l, 1− µl
light) (13)

Glass: Glass surfaces reflect and transmit light. We define
the alignment loss Ll

a,glass = 0 considering its unreliable
matching. But the dominated alignment term of common
materials still forces DPN to match the appearance on glass.
As illustrated in Figure 6, both the reflected and transmitted
scenes appear farther than the real position of glass. There-
fore, we assign higher confidence to closer scenes with
larger disparities. Assuming that glass can only be physi-
cally supported by ‘common’, ‘glass’, and ‘glossy’ materi-
als, we define the confidence cl = (µl

common + µl
glass +

µl
glossy)e

dl

σ . Thus the smoothness loss Ll
s,glass is:

Ll
s,glass = Lcs(d

l, (µl
common+µl

glass+µl
glossy)e

dl

σ ) (14)

where, σ is a constant parameter (details in Section 6).
Glossy Surfaces: Glossy surfaces exhibit complex specular
reflection. We adopt the alignment term of common materi-
als (Equation 3), considering that it still contains some reli-
able matching, and the smoothness term of glass (Equation
14), because the reflected scene has smaller disparity.

5. RGB-NIR Stereo Dataset
The dataset was captured by a RGB camera and a NIR

camera mounted with 56mm baseline on a vehicle, alter-
nating among short, middle and long exposures adapted
by an auto-exposure algorithm at 20Hz. Close to 1 mil-
lion 1164×858 rectified stereo frames equally distributed

amongst the three exposure levels were collected. They
were split into 12 videos, with total length of 13.7 hours.
The dataset covers campus roads, highways, downtown,
parks and residential areas captured under sunny, overcast
and dark conditions and includes materials such as lights,
glass, glossy surfaces, vegetation, skin, clothing and bags.
Reliable GPS and vehicle states (speed, vehicle pose, steer-
ing radius and traveled distance) are available for 70% of the
data. Images are resized into 582×429 in all experiments.

Material and disparity labels are added to a subset of the
middle-exposure images. The videos are split into two sets
for training (8 videos) and testing (4 videos). 3600 frames
are labeled with material segments in 8 classes (common,
light, glass, glossy, vegetation, skin, clothing, bag). 5030
sparse points on 2000 testing images across the 8 materials
are annotated with disparity. Depth sensors are not used
because they often fail on glass and light sources.

6. Experimental Results
Parameters: DPN predicts the ratio between disparity and
image width. The scaling factor η is 0.008 for the DPN
and 1/3 for the STN. The view consistency and alignment
weights are λv = 2 and λa = 1 for all materials. The
smoothness weights λs are 3000, 1000, and 80 for lights,
glass and glossy surfaces, and 25 for other materials. The
parameter in glass and glossy smoothness loss is σ = 0.005.
Training and Testing: The DeepLab [3] net is fine-tuned
from a model pre-trained on ImageNet [9], COCO [30]
and Pascal VOC [10]. DPN and STN are trained on
40, 000 sampled middle-exposure images with Adam op-
timizer [27] (batch size=16, learning rate=0.00005). They
are trained with material awareness for at least 12 epochs
after 4 warmup epochs without it, taking about 18 hours
on two TITAN X GPUs with PyTorch [33] implementation.
Only the DPN is required for testing. Negative disparities
are clamped to zero.
Comparison: We have compared with Cross-Modal Adap-
tation (CMA) [4], ANCC [17] and DASC [25]. SIFT flow
[31] search is constrained by epipolar geometry to obtain
whole image disparity in DASC. Disparity RMSE (Table
1), execution times (Table 1) and qualitative results (Figure
7) are presented. Our method outperforms the others, espe-
cially on lights, glass and glossy surfaces. Our method also
provides cleaner disparity maps and clearer object contours.



(a) Left RGB (b) Right NIR (c) CMA [4] (d) ANCC [17] (e) DASC [25] (f) Proposed

Figure 7. Qualitative results on our dataset. Image contrast is adjusted for visualization. The proposed method provides less
noisy disparity maps and performs better on lights (row 3, 5, 6, 7, 10), glass (row 3, 5, 7) and glossy surfaces (row 5, 7, 10).



Method Common Light Glass Glossy Vegetation Skin Clothing Bag Mean
Only RGB as DPN input 0.66 1.12 0.89 1.10 0.92 1.61 1.24 0.95 1.06
Averaging RGB as STN 0.52 0.80 0.74 0.78 0.76 1.30 1.21 1.04 0.89

Asymmetric CNN in STN 0.53 0.88 0.82 0.88 0.77 1.13 1.17 0.94 0.89
No material awareness 0.51 1.08 1.05 1.57 0.69 1.01 1.22 0.90 1.00

Ignore light sources 0.54 0.81 0.74 0.71 0.76 1.37 1.17 1.10 0.90
Ignore glass 0.56 0.74 0.97 1.08 0.75 1.06 1.02 0.86 0.88

Ignore glossy surfaces 0.63 0.71 0.71 1.23 0.79 1.12 1.09 0.94 0.90
Smoothing w/o confidence 0.53 0.69 0.71 1.20 0.85 1.06 1.12 0.81 0.87

Full proposed method 0.53 0.69 0.65 0.70 0.72 1.15 1.15 0.80 0.80
Table 2. Ablation study. Network structure changes (row 1-3) result in the increase of error generally. Removing material
awareness (row 4-7) leads to failure on corresponding materials. Smoothing without confidence (row 8) results in perfor-
mance drop. There are small fluctuations but the full method performs better in general.

(a) Left RGB (b) Right NIR (c) No material (d) Ignore lights (e) Ignore glass (f) Ignore glossy (g) Full method
Figure 8. Qualitative material ablation study. Ignoring lights results in artifacts at light sources. Ignoring glass leads to wrong
disparity predictions at windshields. Ignoring glossy surfaces causes failure at the specular top surfaces of cars.

DASC performs better on clothing, possibly due to the weak
relationship between its RGB and NIR appearances. Addi-
tionally, our real-time method is much faster than the others.
Ablation Study: We have tested three network structure
choices: “Only RGB as DPN input”, “Averaging RGB as
STN” averaging R, G and B channels as pseudo-NIR, and
“Asymmetric CNN in STN”. Table 2 shows that overall
the full method outperforms the other choices. We have
also studied fully or partially removing material awareness.
Table 2 and Figure 8 show that ignoring lights, glass or
glossy surfaces fails on corresponding materials with small
fluctuations on other materials. It means that the proposed
material-specific loss functions as designed. Table 2 also
shows that smoothing with confidence is useful.

7. Conclusion and Discussion
We presented a deep learning based cross-spectral stereo

matching method without depth supervision. The proposed
method simultaneously predicts disparity and translates a
RGB image to a NIR image. A symmetric CNN is utilized
to separate geometric and spectral differences. Material-
awareness and confidence-weighted smoothness are intro-
duced to handle problems caused by lights, glass and glossy
surfaces. We build a large RGB-NIR stereo dataset with
challenging cases for evaluation.

Our method outperforms compared methods, especially
on challenging materials, although it fails on some clothing

(a) Left RGB (b) Right NIR (c) Predicted disparity

Figure 9. Failure cases. Row 1-3: failing to handle large
spectral difference of clothing, treating shadow edge as ob-
ject edge, and mismatching noise.

with large spectral difference, shadow edges and dark noisy
regions (Figure 9). Redesigning the loss function might
help address those problems. In the future, we will extend
our work to other spectra (SWIR, MWIR, thermal) and to
data obtained from mobile consumer devices.
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