
On Using Coplanar Shadowgrams for Visual Hull
Reconstruction

Shuntaro Yamazaki
shuntaro@ni.aist.go.jp

Srinivasa Narasimhan
srinivas@cs.cmu.edu

Simon Baker
sbaker@microsoft.com

Takeo Kanade
tk@cs.cmu.edu

CMU-RI-TR-07-29



Abstract

Acquiring 3D models of intricate objects (like tree branches, bicycles and insects) is a hard
problem due to severe self-occlusions, repeated thin structures and surface discontinuities.
In theory, a shape-from-silhouettes (SFS) approach can overcome these difficulties and
use many views to reconstruct visual hulls that are close to the actual shapes. In prac-
tice, however, SFS is highly sensitive to errors in silhouette contours and the calibration
of the imaging system, and therefore not suitable for obtaining reliable shapes with a large
number of views. We present a practical approach to SFS using a novel technique called
coplanar shadowgram imaging, that allows us to use dozens to even hundreds of views for
visual hull reconstruction. Here, a point light source is moved around an object and the
shadows (silhouettes) cast onto a single background plane are observed. We characterize
this imaging system in terms of image projection, reconstruction ambiguity, epipolar ge-
ometry, and shape and source recovery. The coplanarity of the shadowgrams yields novel
geometric properties that are not possible in traditional multi-view camera-based imaging
systems. These properties allow us to derive a robust and automatic algorithm to recover
the visual hull of an object and the 3D positions of light source simultaneously, regardless
of the complexity of the object. We demonstrate the acquisition of several intricate shapes
with severe occlusions and thin structures, using 50 to 120 views.
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(a) An intricate object (b) Our reconstruction

Figure 1: Obtaining 3D models of intricate shapes such as in (a) is hard due to severe
occlusions and correspondence ambiguities. (b) By moving a point source in front of the
object, we capture a large number of shadows cast on a single fixed planar screen (122
views for this object). Applying our techniques to suchcoplanar shadowgramsresults in
accurate recovery of intricate shapes.

1 Introduction

Acquiring 3D shapes of objects that have numerous occlusions, discontinuities and re-
peated thin structures is challenging for vision algorithms. For instance, the wreath object
shown in Figure 1(a) contains over 300 branch-lets each 1-3mm in diameter and 20-25mm
in length. Covering the entire surface area of such objects requires a large number (dozens
or even a hundred) of views. Thus, finding correspondences between views as parts of the
object get occluded and “dis-occluded” becomes virtually impossible, often resulting in
erroneous and incomplete 3D models.

If we only use the silhouettes of an object obtained from different views, it is possible
to avoid the issues of correspondence and occlusion in the object, and reconstruct itsvisual
hull [1]. The top row of Figure 2 illustrates the visual hulls estimated using our technique
from different numbers of silhouettes. While the visual hull computed using a few (5 or
10) silhouettes is too coarse, the visual hull estimated from a large number of views (50)
is an excellent model of the original shape.

In practice, however, SFS algorithms are highly sensitive to errors in the geometric
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Figure 2: Sensitivity of SFS reconstruction. (Top) The visual hulls reconstructed using
the light source positions estimated by our method. As the number of silhouettes increases,
the visual hull gets closer to the actual shape. (Bottom) The reconstructions obtained from
slightly erroneous source positions. As the number of views increases, the error worsens
significantly.

parameters of the imaging system (camera calibration) [19]. This sensitivity worsens as the
number of views increases, resulting in poor quality models. The bottom row in Figure 2
shows the visual hulls of the wreath object obtained using a naı̈ve SFS algorithm. This
drawback must be addressed in order to acquire intricate shapes reliably.

In traditional SFS, a camera observes the object, and the silhouette is extracted from
obtained images by matting [20]. Multiple viewpoints are captured by moving either the
camera or the object (see Figure 3(a)). For each view, the relative pose between the object
and the camera is described by six parameters (3D translation and 3D rotation). Savarese
et al. [15] proposed a system that avoids silhouette matting. When an object is illuminated
by a single point light source, the shadow cast onto a background plane (also known as
a shadowgram [18]) is sharp and can be directly used as its silhouette. Silhouettes from
multiple views are obtained by rotating the object. In terms of multi-view geometry, this
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camera [R|t]

object O

(a) Traditional multi-view camera-based imaging

light source L=(u,v,w)

camera

shadowgram screen Π

projection P
homography H

object O

Z-axis

(b) Coplanar shadowgram imaging

Figure 3: (a) The object of interest is observed directly by a projective camera. The sil-
houette of the object is extracted from the captured image. Multiple views are obtained by
moving the camera or the object. (b) A point source illuminates the object and its shadow
cast on a planar rear-projection screen represents the silhouette of the object. Coplanar
shadowgrams from multiple viewpoints are obtained by translating the light source. Note
that the relative transformation between the object and the screen remains fixed across
different views. This is the key difference between the systems in (a) and (b).

is equivalent to traditional SFS, requiring six parameters per view.

In this paper, we present a novel approach to SFS calledcoplanar shadowgram imag-
ing. We use a setup similar in spirit to that proposed by Savareseet al. [15] The key
difference here is that the point source is moved, while the object, the camera and the
background screen all remain stationary. The central focus of this work is the acquisition
of visual hulls for intricate and opaque objects from a large number of coplanar shadow-
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grams. Our main contributions are described below.

Multi-view geometry of coplanar shadowgram imaging:

Figure 3 shows the difference between the traditional camera-based and coplanar
shadowgram imaging systems. Observe that the relative transformation between the
object and screen remains fixed across different views. The image projection model
is described by only three parameters per view (3D translation of the source) instead
of six in the traditional system. Our geometry is similar in spirit to the parallax
geometry [16, 4] where the homography between image planes is known to be an
identity, which allows us to derive novel geometric properties that are not possible in
the traditional multi-view camera-based imaging system. For instance, we show that
epipolar geometry can be uniquely estimated from only the shadowgrams, without
requiring any correspondences, and independent of the object’s shape.

Recovery of light source positions:

When the shape of the object is unknown, the locations of all the point sources can
be recovered from coplanar shadowgrams, only up to a four parameter linear trans-
formation. We show how this transformation relates to the well-knownGeneralized
Perspective Bas-Relief(GPBR) ambiguity [11] that is derived for a single viewpoint
system. We break this ambiguity by simultaneously capturing the shadowgrams of
two spheres.

Robust reconstruction of visual hull:

Even a small amount of blurring in the shadow contours may result in erroneous esti-
mates of source positions that in turn can lead to erroneous visual hulls. We propose
a two-step optimization of the light source positions that can robustly reconstruct the
visual hulls of intricate shapes. First, the error in light source positions is corrected
by enforcing the reconstructed epipolar geometry. This step achieves significant im-
provement over the initial shape. Second, we minimize the mismatch between the
convex polygonsof the acquired shadowgrams and those obtained by reprojecting
the estimated visual hull. The source positions obtained serve as a good initial guess
to the final step that minimizes the mismatch between the actual shadowgrams. In
practice, the convex polygon step also leads to faster convergence.

For the analogous camera-based imaging, a number of algorithms have been proposed
to make SFS robust to errors in camera position and orientation. These techniques opti-
mize camera parameters by exploiting either epipolar tangency [19, 3, 21] or silhouette
consistency [23, 10], or assume orthographic projection [8]. However, they all require
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non-trivial parameter initializations and the knowledge of silhouette feature correspon-
dences (known as frontier points [9]). This restricts the types of objects that one can
reconstruct using these methods; silhouettes of simple objects such as spheres do not have
enough features and intricate objects like branches have too many, making it hard to find
correspondences automatically. As a result, previous approaches have succeeded in only
acquiring the 3D shape ofreasonably complexshapes like people and statues that can be
modeled using a small number of views.

In contrast, our algorithm is effective for a large number of views (dozens to a hun-
dred), does not require any feature correspondences and does not place any restriction on
the shapes of the objects. The minimization of silhouette mismatch is also easier requiring
optimization of source translation (3 DOF per view), instead of the harder (and sometimes
ambiguous [9]) joint estimation of camera rotation and translation (6 DOF per view) in
the traditional system. As a result, we achieve good quality reconstructions of real objects
such as wreaths, wiry balls and palm trees, that show numerous occlusions, discontinuities
and thin structures. In addition, we have also evaluated our techniques quantitatively using
simulations with objects such as corals, branches, bicycles whose ground truth shapes are
known beforehand.

Despite significant progress in optical scanning hardware [5, 12] and multi-view geom-
etry [9, 17], reconstruction of intricate shapes remains an open problem. We believe this
work is an initial step in the right direction. In the future, we will extend our techniques
to include multiple screens covering 360◦ × 360◦ views of the objects, and combine our
techniques with stereo and photometric stereo, to obtain reconstructions that are smoother
than visual hulls, including concavities.

2 Coplanar Shadowgrams

We define shadowgrams as the shadows cast on a background plane by an object that
occludes a point source. If the object is opaque, the shadowgram accurately represents
the silhouette of the object. Henceforth, we shall use shadowgrams and silhouettes inter-
changeably. Coplanar shadowgram imaging is the process of acquiring several shadow-
grams ona single planeby moving the light source. Our setup shown in Figure 4 includes
a 6M pixel Canon EOS-20D digital camera, a 250 watt 4mm incandescent bulb, and a 4ft
× 4ft translucent rear-projection screen.

Figure 3(b) illustrates the viewing and illumination geometry of coplanar shadowgram
imaging. Without loss of generality, let the shadowgram planeΠ be located atZ = 0 in
the world coordinate systemW. TheZ−direction is defined so that it is aligned with the
optical axis of the camera. Suppose a point light source is atL = (u, v,w)T andL be a
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Figure 4: The setup used to capture coplanar shadowgrams includes a digital camera, a
single point light source, and a rear-projection screen. The object is placed close to the
screen to cover a large field of view. Two or more spheres are used to estimate the initial
light source positions. (Inset) An example shadowgram obtained using the setup.

translated coordinate system whose origin is atL. Then, the resulting shadowgramS is
obtained by applying a source dependent projective transformationP(L) to the objectO
as:

S = P(L)O (1)
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where the projective transformationP(L) from 3D space to the 2D screen is:

P(L) =

 1 0 0 u
0 1 0 v
0 0 0 1

︸             ︷︷             ︸
L to W onΠ

(
−wI3 03

(0, 0,1) 0

)
︸             ︷︷             ︸
projection toΠ

(
I3 −L
0T

3 1

)
︸        ︷︷        ︸

W to L

(2)

=

 −w 0 u 0
0 −w v 0
0 0 1 −w

 . (3)

I3 is a 3× 3 identity matrix and03 = (0,0,0)T .
In Equation (1),S represents the set of 2D points (in homogeneous coordinates) within

the shadowgram on the planeΠ, andO represents the 3D points on the object surface. The
imageI captured by the camera is related to the shadowgramS on the planeΠ by a 2D
homography:I = H S. This homographyH is independent of the light source position
and can be estimated separately using any computer vision algorithm (such as the four-
point method [9]). In the following, we assume that the shadowgramS has been estimated
usingS = H−1 I .

Now let a set of shadowgrams{Sk} be captured by moving the source ton different
locations{Lk} (k = 1, · · · ,n). Then, the visual hullV of the object is obtained by the
intersection:

V =
⋂

k

P(Lk)
−1 Sk (4)

Thus, given the 3D locationsLk of the light sources, the visual hull of the object can be
estimated using Equation (3) and Equation (4). Table 1 summarizes and contrasts the
geometric parameters that appear in the traditional multi-view camera-based and coplanar
shadowgram imaging systems.

3 Source Recovery using two Spheres

When the shape of the object is unknown, it is not possible to uniquely recover the 3D
source positions using only the coplanar shadowgrams. In the technical report [22], we
discuss the nature of this ambiguity and show that the visual hull and the source posi-
tions can be computed up to a 4 parameter linear transformation. This transformation
is similar in spirit to the 4 parameterGeneralized Perspective Bas-Relief(GPBR) trans-
formation [11] with one difference: in the context of coplanar shadowgrams, the GPBR
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Table 1: Comparison between the geometric parameters of silhouette projection. Forn
views, the traditional multi-view system is described by 5+6n parameters. In comparison,
the coplanar imaging system requires only 8+ 3n parameters.

View independent View dependent
Projective cameras 1 (focal length) 3 (rotation)

1 (aspect ratio) 3 (translation)
1 (skew)
2 (image center)

Coplanar shadowgrams8 (homographyH) 3 (translationL)

transformation is separately defined with respect to the local coordinate frame defined
at each source location, whereas our transformation is defined with respect to a global
coordinate frame defined on the screen. We also derive a relationship between the two
transformations.

3.1 Geometric Solution to 3D Source Recovery

We now present a simple calibration technique to break this ambiguity. The 3D location
L = (u, v,w)T of a light source is directly estimated by capturing shadowgrams of two
additional spheres that are placed adjacent to the object of interest.

Two (out of three) coordinatesL′ = (u, v)T of the light source can be estimated by
analyzing the shadowgrams of two spheres. Figure 5 illustrates the coplanar elliptical
shadowgrams cast by the two spheres.1 The ellipses are localized using a constrained
least squares approach [6]. The intersection of the major axesA1B1 andA2B2 of the two
ellipses directly yieldsL′ = (u, v)T .

The third coordinatew is obtained as the intersection of hyperbolae in 3D space as
shown below. Without loss of generality, consider the 3D coordinate system whose origin
is at the center of the ellipse, andX andY axes are respectively the major and minor axes
of the ellipse. Then, the ellipse is represented in the following form.

x2

a2
+

y2

b2
= 1 (a > b) (5)

In 3D space, there exists an inscribed sphere tangent to the conical surface and the
plane, regardless of the position or the radius ofS. The cross section of the inscribed

1Each sphere is placed so that the minimum distance between a light source and the rear-projection screen
is larger than the distance between the center of the sphere and the screen. Under this configuration, the cast
shadow of the sphere is always an ellipse [2].
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Figure 5: Source positionL = (u, v,w)T is recovered using the elliptical shadowgrams
of two spheres. The radii and positions of the spheres are unknown. The major axes
of the ellipses intersect the screen atL′ = (u, v)T . The w component is obtained using
Equation (8).

sphere by the plane that includes the apex of the cone and the major axis of the ellipse is
shown in Figure 6. The center of the inscribed sphere is shown byR. The other symbols
are corresponding to those in Figure 5. The center of the ellipseC is the origin of the
coordinate system.

The inscribed sphere is tangent toXY-plane at a focus of the ellipseR′, hence

CR′ =
√

a2 − b2. (6)

Using the symmetry of triangles,

LA− AR′ = LB− BR′. (7)

Let the position of the apex beL = (t,0,w) in this coordinate system, then we can solvew
with respect tot as:

w =

√
b2t2

a2 − b2
− b2, (8)

wherea andb are the semimajor and semiminor axes of one of the ellipses, andt is the
length betweenL′ and the center of the ellipse.
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Figure 6: The cross section of a right circular conical surface formed by the light rays
emanating from a point light source L and tangent to a calibration sphere.

Note that more than two spheres may be used for a robust estimate of the source po-
sition. The above method is completely automatic and does not require the knowledge of
the radii of the spheres, the exact locations at which they are placed in the scene, or point
correspondences.

3.2 Sensitivity to Silhouette Blurring

This technique for estimating the source position can be sensitive to errors in measured sil-
houettes. Due to the finite size of the light bulb, the shadowgram formed may be blurred,
making it hard to localize the boundary of the silhouette. The extent of blurring depends
on the relative distances of the screen and source from the object. To show the sensitivity
of the technique, we performed simulations with spheres. We blurred the simulated silhou-
ettes (effective resolution 480× 360 pixels) with 5× 5 and 10× 10 averaging kernels, and
estimated the 3D coordinates of the light source. Figure 7 presentsu andw components
of the source positions reconstructed using three spheres. Observe that the estimation be-
comes poor when the shadowgram is close to a right circle. In turn, the visual hull of a tree
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Figure 7: Source positions (u,w) are estimated using three calibration spheres. The sizes
and positions of the spheres and screen are shown in the plot. Each plot shows 11 source
positions obtained from (a) ground truth, (b) accurate shadowgrams, and (c)-(d) shadow-
grams blurred using 5× 5 and 10× 10 averaging filters. On the right is the visual hull of
a branch reconstructed from 50 light sources. The poor result demonstrates the need for
better algorithms for reconstructing intricate shapes.

branch computed from the erroneous source positions is woefully inadequate. Thus, better
algorithms for improving the accuracy of light source positions are crucial for obtaining
3D models of intricate shapes.

4 Epipolar Geometry

Analogous to the scenario of binocular stereo, we define the epipolar geometry between
a pair of shadowgrams that are generated by placing the point source in two locations (L1

andL2 in Figure 8). Here, the locations of the point source are analogous to the centers-
of-projection of the stereo cameras. The baseline connecting the two light sourcesL1

and L2 intersects the shadowgram planeΠ at the epipoleE12. When the light sources
are equidistant from the shadowgram planeΠ, the epipole is at infinity. Based on these
definitions, we make two key observations that do not hold for binocular stereo: since the
shadowgrams are coplanar, (a) they share thesame epipoleand (b) the points on the two
shadowgrams corresponding to the same scene point lie on thesame epipolar line.
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Let Li= (ui , vi ,wi)T andL j= (uj , vj ,w j)T be the 3D coordinates of the two light sources,
andEi j be the homogeneous coordinate of the epipole on the planeΠ, defined byLi and
L j. Then, the observations (a) and (b) are written as:

M i j Ei j = 0 (9)

mT
i F i j mj = 0 (10)

In Equation (9),M i j is a 2× 3 matrix composed of two plane equations in the rows

M i j =

(
−∆v ∆u uivj − ujvi

−∆u∆w −∆v∆w (ui∆u+vi∆v)∆w−wi(∆u2+∆v2)

)
(11)

where,∆u = uj−ui, ∆v = vj−vi, and∆w = w j−wi. In Equation (10),

F i j = [Ei j ]× (12)

is thefundamental matrixthat relates two corresponding pointsmi andmj between shad-
owgrams. [Ei j ]× is the 3× 3 skew symmetric matrix for which [Ei j ]×x = Ei j × x for any
3D vectorx.

The camera geometry in coplanar shadowgram is a special case of the parallax geom-
etry [16, 4] where the image deformation is decomposed into a planar homography and a
residual image parallax vector. In our system, however, the homography is exactly known
to be an identity, which allows us to recover the epipolar geometryonly from acquired
images accurately regardless of the number of views or the complexity of the shadowgram
contours.

4.1 Algorithm for estimating epipolar geometry

Consider the plane in Figure 8 that includes the baseline and is tangent to the surface
of an object at afrontier point F. The intersection of this plane and the shadowgram
planeΠ forms an epipolar line that can be estimated as one that is cotangent to the two
shadowgrams (atT1 andT2 in Figure 8). Two such epipolar lines can then be intersected
to localize the epipole [4].

Figure 9(a) illustrates the simplest case of two convex shadowgrams overlapping each
other. There are only two cotangent lines that touch the shadowgrams at the top and bottom
region, resulting in a unique epipoleE. When the convex shadowgrams do not overlap
each other, four distinct cotangent lines are possible, generating six candidate epipoles,
as shown by dots in Figure 9(b). Only two of these four cotangent lines pass through
the actual epipole, hence, the other two are false detections. Indeed, the false detections
correspond to infeasible cases where the light source is located between the object and the
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epipolar line

baseline
frontier point   F

TT

1
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12

shadowgrams

shadowgram plane Π
12

Figure 8: Epipolar geometry of two shadowgrams. The baseline connecting the two
sourcesL1 and L2 intersects the shadowgram planeΠ at an epipoleE12. Suppose an
epipolar plane that is tangent to the surface of an object at a frontier pointF, then the
intersection of the epipolar plane and the shadowgram planeΠ is an epipolar line. The
epipolar line can be estimated as a line that is co-tangent to the shadowgrams atT1 andT2.

screen, or behind the screen. We can detect actual epipolar lines by choosing the cotangent
lines where the epipole does not appear between the two points of shadowgram tangency.

When shadowgrams are non-convex, the number of cotangent lines can be arbitrarily
large depending on the complexity of the shadowgram contours. Figure 9(c) illustrates the
multiple candidates of cotangent lines at the point of tangencyT. In this case, we compute
the convex polygon surrounding the silhouette contour as shown in Figure 9(d) and prove
the following proposition (see Appendix A for the proof):

Proposition 1 If silhouette contours are consistent in that they can be generated from a
physical 3D object, then the convex polygons obtained from the silhouette contours are
also consistent.

Using Proposition 1, the problem of estimating epipolar lines is reduced to the case of
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epipolar line
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Π
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Π
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Figure 9: Localization of the epipole. (a),(b) If two shadowgrams are convex, a maximum
of four co-tangent lines and six intersections are possible. Considering that the object
and the light source are on the same side with respect to the screen, the epipole can be
chosen uniquely out of the six intersections. (c),(d) If the shadowgrams are non-convex,
the epipole is localized by applying the technique in (a) or (b) to the convex polygons of
the original shadowgrams.

either (a) or (b). Thus, epipolar geometry can be reconstructed uniquely and automatically
from only the shadowgrams. This capability of recovering epipolar geometry is indepen-
dent of the shape of silhouette, and hence, the 3D shape of the object. Even when the object
is a sphere, we can recover the epipolar geometry without any ambiguity. In traditional
multi-view camera-based imaging, epipolar reconstruction requires at least seven pairs of
correspondences [9]. Table 2 summarizes the differences between traditional imaging and
coplanar shadowgrams in terms of recovering epipolar geometry.
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Figure 10: Initial light source positions in Figure 7 were improved by epipolar constraints
in Equation (13). On the right is the visual hull reconstructed from the improved source
positions.

4.2 Improving accuracy of source locations

The error in the light source positions reconstructed using spheres can be arbitrarily large
depending on the localization of the elliptical shadowgram for each sphere. This error can
be reduced by relating different light source positions through the epipolar geometry. Let
the set of epipolesEi j be estimated from all the source pairsLi andL j. The locations of the
sources are improved by minimizing the expression in Equation (9) for each pair of light
sources using least squares:

{L∗k} = argmin
Lk

∑
i, j

∥∥∥M i j Ei j

∥∥∥2

2
(13)

where|| · ||2 is the L2-norm of a vector. The source positions reconstructed from the shad-
owgrams of spheres are used as initial estimates. We evaluate this approach using the
simulated silhouettes described in Figure 7. Figure 10 shows considerable improvement
in accuracy obtained by enforcing the epipolar constraint in Equation (9). Compared to
the result in Figure 7, collinearity in the positions of light sources is better recovered in
this example.
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Figure 11: The light source positions reconstructed using epipolar constraint in Figure 10
were optimized by maximizing the shadowgram consistency in Equation (18). On the right
is the visual hull reconstructed from the optimized source positions.

5 Using Shadowgram Consistency

While the epipolar geometry improves the estimation of the light source positions, the
accuracy of estimate can still be insufficient for the reconstruction of intricate shapes (Fig-
ure 10). In this section, we present an optimization algorithm that improves the accuracy
of all the source positions even more significantly.

5.1 Optimizing light source positions

Let V be the visual-hull obtained from the set of captured shadowgrams{Sk} and the
estimated projection matrices{P(Lk)}. WhenV is re-projected back onto the shadowgram
plane, we obtain the silhouettesSV

k :

SV
k = P(Lk) V . (14)

Due to the nature of the intersection operator, the re-projected silhouettesSV
k always sat-

isfy:
∀k : SV

k ⊆ Sk . (15)

Only when the source positions are perfect, will the reprojected silhouettes match the
acquired silhouettes. Thus, we can define a measure of silhouette mismatch by the sum of
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Table 2: Differences between traditional multi-view camera-based imaging and coplanar
shadowgrams in epipolar reconstruction. The traditional multi-view images require at
least 7 point correspondences between the silhouette contours. Coplanar shadowgrams
allow unique epipolar reconstruction irrespective of the shape of the 3D object.

Silhouette complexity Convex Non-convex
#correspondences 2 < 7 ≥ 7 ≫ 7

Traditional multi-camera impossible impossible not always hard
Coplanar shadowgrams possible possible possible possible
possible — The epipolar geometry can be reconstructed uniquely.
not always — Possible if seven correspondences are found.
hard — Hard to find the correct correspondences in practice.
impossible — Impossible because of the insufficient constraints.

(a) Initial (b) Epipolar (c) Consistency(d) Photo

Figure 12: Reconstructed shape of a thin wire-frame object is improved with each it-
eration from left to right. (Top) Reconstructed visuals hull at the end of each iteration.
(Bottom) The reprojection of the reconstructed visual hulls onto one of captured silhouette
images. The reprojection and silhouettes are consistent at yellow pixels, and inconsistent
at green. The boxed figures show the reconstruction from the light source positions (a)
estimated from spheres, (b) improved by epipolar geometry, and (c) optimized by maxi-
mizing shadowgram consistency.

squared difference:
E2

repro jection=
∑

k

∑
x

∣∣∣SV
k (x) − Sk(x)

∣∣∣2 (16)

wherex is a pixel coordinate in silhouette image. We minimize the above mismatch by
optimizing for the locations of the light sources. Unfortunately, optimizing Equation (16)
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solely is known to be inherently ambiguous owing to 4 DOF transformation mentioned in
Section 3. To alleviate this issue, we simultaneously minimize the discrepancy between
the optimized light source positionsLk and the initial source positionsL∗k estimated from
the spheres (Section 3) and epipolar geometry (Section 4):

E2
initial =

∑
k

∥∥∥Lk − L∗k
∥∥∥2

2
(17)

The final objective function is obtained by a linear combination of the two errors:

Etotal = E2
repro jection+ αE2

initial . (18)

where,α is a user-defined weight. While the idea of minimizing silhouette discrepancy
is well known in the traditional multi-view camera-based SFS [19, 23, 21, 10], the key
advantage over prior work is the reduced number of parameters our algorithm needs to
optimize (three per view for the light source position, instead of six per view for rotation
and translation of the camera). In turn, this allows us to apply our technique to a much
larger number of views than possible before.

5.2 Implementation

We use the signed Euclidean distances as the scalar-valued functionsSV
k (x) andSk(x) in

Equation (16). The intersection of silhouettes is computed for each 3D ray defined by
a pixel in Sk, and then projected back to the silhouette to obtainSV

k . This is a simpli-
fied version of image-based visual hull [13] and has been used in silhouette registration
methods [10]. Equation (18) is minimized using Powell’s gradient-free technique [14].

Due to the intricate shapes of the silhouettes, the error function in Equation (18) can be
complex and may have numerous local minima. We alleviate this issue using the convex
polygons of the silhouette contours described in Section 4. Given Proposition 1, we mini-
mize Equation (18) using the convex silhouettes with{L∗k} as initial parameters. The result-
ing light source positions are in turn used as starting values to minimize Equation (18) with
the original silhouettes. Using convex silhouettes, in practice, also speeds up convergence.

We evaluate this approach using the simulated silhouettes described in Figure 7 and 10.
Compare the results in Figure 7 (using spheres to estimate source positions) and Figure 10
(enforcing epipolar constraints) with those in Figure 11. The final reconstruction of the
tree branch is visually accurate highlighting the performance for our technique.
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Table 3: The models used in our experiment. The detail of each experiment is shown
in the corresponding figure. The size of the shadowgram indicates the average size of
shadowgrams. The mismatch between the input shadowgrams and those generated by
reprojecting the estimated visual hull is shown in reprojection error. For simulation data,
the ratio between the volumes of the ground truth and the reconstructed visual hulls is
shown in volumetric error.

model Figure views shadowgram sizereprojection err. volumetric err.

S
im

ul
at

io
n coral 13 84 530×270 2.2% 0.15%

seaweed 14 49 334×417 3.2% 0.21%
bicycle 15 61 635×425 2.3% 0.12%
spider 16 76 356×354 1.3% 0.08%

R
ea

l polygon-ball 17 45 126× 116 3.2% —
wreath 18 122 674×490 5.2% —

palm-tree 19 56 520×425 4.8% —
octopus 20 53 451×389 4.6% —

6 Results

In this section, we demonstrate the accuracy of our techniques using both simulated and
real experimental data. Table 3 summarizes the data set used in the experiment. All results
of 3D shape reconstructions shown in this paper are generated by exact polyhedral visual
hull method proposed by Franco and Boyer [7]. The acquired 3D shape is then rendered
using Autodesk Maya rendering package.

6.1 Reconstruction of Visual Hulls and 3D Source Positions

Simulation data:

We have chosen four objects with complex structure in our simulations — a coral,
a seaweed (also used in Figure 7, 10, and 11 in the main paper), a bicycle, and a
spider. The seaweed and coral objects have many thin sub-branches with numerous
occlusions. The bicycle object is composed of very thin structures such as spokes,
chains, and gears. The spider object is composed of both thick and thin structure.
The simulation experiments with known ground truth shape and source positions are
shown respectively in Figure 13, 14, 15, and 16.

Each of the figures is organized as follows: (a) A set of coplanar shadowgrams of
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the object is generated by a shadow simulator implemented by Direct 3D graph-
ics library. (b) The positions of light source are perturbed with random noise with
σ = 5% of the object size, and the silhouettes are blurred by 3× 3 averaging filters.
(c) The positions of the light sources are recovered using epipolar geometry fol-
lowed by the maximization of silhouette consistency in (d). For each of (b), (c), and
(d), the top row shows one of captured silhouette images (in green), overlaid with
the reprojection of the reconstructed visual hulls onto the silhouette (in yellow). The
middle row shows the ground truth positions of light sources (in red) and the esti-
mated positions (in yellow). The reconstructed 3D shape is shown at the bottom.
Finally, (e) the ground truth 3D shape and (f) the reconstructed visual hull rendered
by Maya is shown.

Real data:

We show the 3D shape reconstruction of four different objects — a polygon-ball
(also used in the Figure 12 in the main paper), a wreath (Figure 1 and 2), a palm-
tree, and an octopus. The wreath object has numerous thin needles which cause
severe occlusions. The polygon-ball is a thin wiry polyhedral object. The palm-tree
object is a plastic object composed of two palm trees with flat leaves. The octopus
object is a relatively simple structure, but has complex surface reflection and large
concavities. The results of reconstructing 3D shape are shown in Figure 17, 18, 19,
and 20. Each figure is organized in the same way as those of simulation data, except
that: The final reconstruction of source positions are presented in red in the middle
row of (b), (c), and (d). The photograph of the object is shown in (e).

6.2 Convergence

Figure 12 illustrates the convergence properties of our optimization algorithm. Figure 12(a)
shows the visual hull of the wiry polyhedral object obtained using the initial positions of
light sources estimated from the calibration spheres. The reprojection of the visual hull
shows poor and incomplete reconstruction. By optimizing the light source positions, the
quality of the visual hull is noticeably improved in only a few iterations.

The convergence of the reconstruction algorithm is quantitatively evaluated in Fig-
ure 21. The error in light source positions estimated by the algorithm proposed in Sec-
tion 5 is shown in the left plot. The vertical axis shows L2 distance between the ground
truth and the current estimate of light source positions. After convergence, the errors in the
light source positions are less than 1% of the sizes of the objects. The silhouette mismatch
defined in Equation (16) is plotted on the right. On average, the silhouettes cover on the
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order of 105 pixels. The error in the reprojection of the reconstructed visual hulls is less
than 1% of the silhouette pixels for the real objects.

7 Discussion of Limitations

Despite significant progress in optical scanning hardware [5, 12] and multi-view geome-
try [9, 17], reconstruction of intricate shapes remains an open problem. We believe this
work is an initial step in the right direction. In this section, we discuss some limitations of
our current system and propose possible extension of the coplanar shadowgram imaging
system.

7.1 Multi-screen Coplanar Shadowgrams

A single screen cannot be used to capture the complete 360◦×360◦ view of the object. For
instance, it is not possible to capture the silhouette observed in the direction parallel to a
shadowgram plane. This limitation can be overcome by augmenting the system with more
than one shadowgram screen (or move one screen to different locations). The algorithm
of the multi-screen coplanar shadowgram imaging can be divided into offline and online
steps:

Off-line Calibration (one-time): This calibration can be done in several ways and we
mention a simple one here. In the case of two-screen setup which is observed by a
single camera, we only need to estimate the homography between each screen and
image plane. The extra work required over the one-screen case is an additional ho-
mography estimation. The homographies in turn can be used to recover the relative
transformation between the screens.

Online Calibration: In the two-screen setup, we can estimate the light source positions for
each set of shadowgrams on one screen separately using the technique demonstrated
in the paper. Finally, we merge the two sets of results using the relative orientation
between the screens resulting from the off-line calibration.

In principle, it is possible to also optimize (minimize) the errors due to off-line cal-
ibration. However, the off-line intrinsic calibration of a camera and the screen-to-image
homography can be done carefully, More importantly, it is independent of the complexity
of the object and the number of source positions.
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We have performed simulations with a bicycle object with two screen positions as
shown in Figure 22. The bicycle was chosen since frontal and side views are both nec-
essary to carve the visual hull satisfactorily. Combining the two sets of shadowgrams en-
larges the coverage of source positions, which successfully reduces the stretching artifact
of the reconstructed shape in Figure 23.

7.2 Other Directions

Another drawback of SFS techniques is the inability to model concavities on the object’s
surface. Combining our approach with other techniques, such as photometric stereo or
multi-view stereo can overcome this limitation, allowing us to obtain appearance together
with a smoother shape of the object. Finally, using multiple light sources of different
spectra to speed up acquisition, and the analysis of defocus blur due to a light source of
finite area are our directions of future work.

References

[1] Bruce Guenther Baumgart.Geometric modeling for computer vision. PhD thesis,
Stanford University, 1974.

[2] William Henry Besant.Conic sections, Treated geometrically. Cambridge, 1890.

[3] Roberto Cipollaand, Kalle Åström, and Peter Giblin. Motion from the frontier of
curved surfaces. InProc. International Conference on Computer Vision ’95, pages
269–275, 1995.

[4] Geoff Cross, Andrew W. Fitzgibbon, and Andrew Zisserman. Parallax geometry of
smooth surfaces in multiple views. InProc. International Conference on Computer
Vision ’99, pages 323–329, 1999.

[5] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. InProc. SIGGRAPH ’96, pages 303–312, 1996.

[6] Andrew Fitzgibbon, Maurizio Pilu, and Robert Fisher. Direct least squares fit-
ting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(5):476–480, 1999.
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Appendix

A Proof of Proposition 1

Proof Given a setX in 2D or 3D space, the convex setX̂ of X is defined as

X̂
def
=

⋃
pm,pn∈X

pmpn. (19)

Suppose a visual hullVS reconstructed from a set of silhouettes{Si} (i = 1, · · · ,N) is
consistent, then

∀i : PiVS = Si (20)

holds by definition. The convex polygons{Ŝi} of {Si} is written as

Ŝi
def
=

⋃
pm,pn∈Si

pmpn. (21)

A visual hullVŜ reconstructed from{Ŝi} is

VŜ =

N⋂
i

P−1
i Ŝi . (22)
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Projecting both sides of Equation (22) to all silhouette views,

∀i : PiVŜ ⊆ Ŝi , (23)

If the equation in Equation (23) does not hold, there exists a 2D pointp that is included
in a silhouette, but not included in the back-projection of reconstructed visual hull to the
silhouette views.

∃i : PiVŜ ⊂ Ŝi (24)

⇒ ∃i∃p : p ∈ Ŝi ∧ p < PiVŜ (25)

From Equation (21), Equation (25) becomes

∃i∃p1∃p2∃p : p1 ∈ Si ∧ p2 ∈ Si ∧ p ∈ p1p2 ∧ p < PiVŜ. (26)

From Equation (20),p1 andp2 have respectively corresponding 3D pointsq1 andq2 in VS.
Suppose the projection ofp into 3D space intersects atq with a 3D line segmentq1q2, then
Equation (26) becomes

∃q1∃q2∃q : q1 ∈ VS ∧ q2 ∈ VS ∧ q ∈ q1q2 ∧ q < VŜ. (27)

By projecting all terms in Equation (27) to silhouette views,

∀ j∃pj
1∃pj

2∃pj : pi
1 ∈ S j ∧ pi

2 ∈ S j ∧ pi ∈ pj
1pj

2 ∧ pi < Ŝ j , (28)

wherepj
1 = Pjq1, pj

2 = Pjq2 andpj = Pjq. PjVS is substituted withS j by Equation (20).
This is contradictory to the definition of̂Si in Equation (21), which concludes the false
hypothesis of Equation (24). Hence, the relation in Equation (23) gives the equation

∀i : PiVŜ = Ŝ. (29)

From Equation (22) and Equation (29),VŜ is consistent by definition.
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(a) Generated coplanar shadowgrams (4 out of 84)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R
ep

ro
je

ct
io

n
S

ou
rc

e
po

si
tio

ns
V

is
ua

lh
ul

l

(b) Initial reconstruction (c) Epipolar constraint (d) Silhouette consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Ground truth shape (f) Rendering of reconstructed visual hull

Figure 13: Simulation with a coral object. (a) Eighty four coplanar shadowgrams of the
object are generated with average resolution 530× 270 pixels. (b) Initial reconstruction.
(c) The reconstruction using epipolar geometry. (d) The reconstruction using silhouette
consistency. (e) The ground truth 3D shape. The volume difference is 0.15% of the volume
of the ground truth 3D shape. (f) Rendering of the reconsturcted shape. (Refer to main
text for the detail of each figure.)
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(a) Generated coplanar shadowgrams (4 out of 49)
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(b) Initial reconstruction (c) Epipolar constraint (d) Silhouette consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Ground truth shape (f) Rendering of reconstructed visual hull

Figure 14: Simulation with a seaweedobject. (a) Forty nine coplanar shadowgrams of
the object are generated with average resolution 334×417 pixels. (b) Initial reconstruction.
(c) The reconstruction using epipolar geometry. (d) The reconstruction using silhouette
consistency. (e) The ground truth 3D shape. The volume difference is 0.21% of the volume
of the ground truth 3D shape. (f) Rendering of the reconsturcted shape. (Refer to main
text for the detail of each figure.)
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(a) Generated coplanar shadowgrams (4 out of 61)
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(b) Initial reconstruction (c) Epipolar constraint (d) Silhouette consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Ground truth shape (f) Rendering of reconstructed visual hull

Figure 15: Simulation with a bicycle object. (a) Sixty one coplanar shadowgrams of the
object are generated with average resolution 635× 425 pixels. (b) Initial reconstruction.
(c) The reconstruction using epipolar geometry. (d) The reconstruction using silhouette
consistency. (e) The ground truth 3D shape. The volume difference is 0.12% of the volume
of the ground truth 3D shape. (f) Rendering of the reconsturcted shape. (Refer to main
text for the detail of each figure.)
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(a) Generated coplanar shadowgrams (4 out of 76)
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(b) Initial reconstruction (c) Epipolar constraint (d) Silhouette consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Ground truth shape (f) Rendering of reconstructed visual hull

Figure 16: Simulation with aspider object. (a) Seventy six coplanar shadowgrams of the
object are generated with average resolution 356× 354 pixels. (b) Initial reconstruction.
(c) The reconstruction using epipolar geometry. (d) The reconstruction using silhouette
consistency. (e) The ground truth 3D shape. The volume difference is 0.08% of the volume
of the ground truth 3D shape. (f) Rendering of the reconsturcted shape. (Refer to main
text for the detail of each figure.)
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(a) Acquired coplanar shadowgrams (4 out of 45)
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(b) Initial reconstruction (c) Epipolar constraint (d) Silhouette consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Photograph (f) Rendering of reconstructed visual hull

Figure 17: Real experimentwith apolygon-ball. (a) Forty five coplanar shadowgrams of
the object are generated with average resolution 126×116 pixels. (b) Initial reconstruction.
(c) The reconstruction using epipolar geometry. (d) The reconstruction using silhouette
consistency. (e) Photograph of the object. (f) Photograph of the object. (Refer to main text
for the detail of each figure.)
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(a) Acquired coplanar shadowgrams (4 out of 122)
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(b) Initial reconstruction (c) Epipolar constraint (d) Silhouette consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Photograph (f) Rendering of reconstructed visual hull

Figure 18: Real experimentwith a wreath. (a) 122 coplanar shadowgrams of the object
are generated with average resolution 674× 490 pixels. (b) Initial reconstruction. (c) The
reconstruction using epipolar geometry. (d) The reconstruction using silhouette consis-
tency. (e) Photograph of the object. (f) Photograph of the object. (Refer to main text for
the detail of each figure.)
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(a) Acquired coplanar shadowgrams (4 out of 56)
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(b) Initial reconstruction (c) Epipolar constraint (d) Silhouette consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Photograph (f) Rendering of reconstructed visual hull

Figure 19: Real experimentwith apalm-tree. (a) Fifty six coplanar shadowgrams of the
object are generated with average resolution 520× 425 pixels. (b) Initial reconstruction.
(c) The reconstruction using epipolar geometry. (d) The reconstruction using silhouette
consistency. (e) Photograph of the object. (f) Rendering of the reconsturcted shape. (Refer
to main text for the detail of each figure.)
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(a) Acquired coplanar shadowgrams (4 out of 53)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R
ep

ro
je

ct
io

n
S

ou
rc

e
po

si
tio

ns
V

is
ua

lh
ul

ls

(b) Initial reconstruction (c) Epipolar constraint (d) Silhouette consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Photograph (f) Rendering of reconstructed visual hull

Figure 20: Real experimentwith anoctopus. (a) Fifty three coplanar shadowgrams of
the object are generated with average resolution 451×389 pixels. (b) Initial reconstruction.
(c) The reconstruction using epipolar geometry. (d) The reconstruction using silhouette
consistency. (e) Photograph of the object. (f) Rendering of the reconsturcted shape. (Refer
to main text for the detail of each figure.)
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Figure 21: Convergence of error: (Left) Error in light source positions is computed using
ground truth positions for simulation models. (Right) Error in shadowgram consistency.
Both plots are in logarithmic scale.
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side-direction frontal-direction

Figure 22: Two different configurations of coplanar shadowgrams of a bicycle object.
Gray rectangle and yellow spheres indicate respectively a shadow screen and light source
position. 36 light sources are used in both configurations. The screen is rotated by 90 de-
grees, while the object remains fixed. For the demonstration of the two-screen algorithm,
a small number of light sources are used.
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Figure 23: Comparison of shape reconstruction. We synthesized 36 coplanar shadow-
grams of a 3D shape shown in (a). The visual hull of the object is reconstructed from: (b)
the shadowgrams taken from side-direction (Figure 22 left) and (c) the shadowgrams taken
from frontal-direction (Figure 22 right). The reconstructed shape is stretched into the di-
rection perpendicular to a shadow screen due to the lack of views parallel to the screen.
(d) Combining shadowgrams (b) and (c) enlarges the coverage of light source positions,
which successfully reduces the stretching artifact in the reconstructed shape.


