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Abstract

Oblique-viewing endoscopes (oblique scope) are widely used in computer assisted surg-
eries. Viewing direction of an oblique scope can be changed by rotating the scope cylinder,
which extends the field of view, but makes the scope geometric calibration process more diffi-
cultly. Although few methods have yet been developed, the calibration is critical for applying
augmented reality technologies such as stereo to oblique scope related procedures. Moreover,
based on our knowledge, no photometric calibration method has been introduced to endoscope,
which is however important for illumination based visualization techniques e.g. shape from
shading. In this paper, we present a complete calibration process for oblique-viewing endo-
scope to estimating both geometric and photometric properties. Experimental results demon-
strate that our methods is practical and accurate.
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Introduction

One of the main goals of computer assisted orthopedic surgery is to enable true minimally invasive
surgery (MIS). As a key MIS tool, endoscope is attracting increasing attention for its potential
role in computer assisted surgery, especially in the surgical navigation system. By tracking the
endoscope in space using a position localizer, its role can be significantly augmented. For example,
it can be used to create MIS augmented reality systems, to merge the virtual and real endoscopic
images [1], to overlay real endoscopic images with 3D surfaces derived from CT images [2], or to
recover the 3D shape from a single endoscopic image [3, 4] or multiple images [5, 6, 7].

Camera geometric calibration, as an important step in endoscope related applications, mostly based
on Tsai’s model [8], has been addressed in several work [2, 9, 10, 11]. However, except [11], most
of these methods deal with the forward-viewing endoscope, in which the viewing direction is
aligned with the axis of the endoscope. Due to the constraints of the small incision, the range of
the movement of such a tool is restricted thus the field of view is very small. In order to view
sideways, oblique scope has been designed to have a tilted viewing direction, and a wider view-
ing field could be reached by rotating the scope cylinder. Fig. 1 illustrates an oblique-viewing
endoscope. Rotation happens between the scope cylinder and the camera head. Yamaguchi et al.
first modelled and calibrated the oblique scope [11, 12]. They formulate the rotation parameter
of the scope cylinder as another external parameters in Tsai’s camera model. They use two extra
transformations to compensate the rotation 6 of the lens system and still of the camera head. Yam-
aguchi et al’s camera model successfully compensates the rotation effect but their method requires
five additional parameters and the model is complicated. In this work we propose an alternative
approach to simplify the calibration. We attach an optical marker to the scope cylinder instead of
the camera head, with a newly designed coupler (as Fig. 1(b) illustrates). As a result our camera
model is simpler and we only need to estimate one additional parameter.

Camera photometric calibration, another important process in illumination related applications, is
performed to find the relationship between the image irradiance and image intensity for the cam-
era. This relationship is called the camera response function. Traditional photometric calibration
recovers only the camera response function by changing the camera’s exposure time. Compared
with regular cameras, it is hard to control the exposure time for endoscope, and the light spacial
distribution can be anisotropy. Therefore we develop a method to calibrate all these unknown
parameters simultaneously.

Geometric Calibration

Common orthopedic endoscope has a single camera and one or more point light sources equipped
at the tip of the scope. For this work, we use two oblique endoscopes as examples. One of them is
shown in Fig. 1 and another one is in Fig. 6.



Model for Oblique-viewing Endoscope

Yamaguchi et al’s camera model is based on Tsai’s model [8, 9]:
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where P, is a 3D point in the world coordinates, p; is the corresponding 2D image pixel. ™7,
is a rigid transformation from the world coordinates to the optical marker coordinates, “T,,(6)
is a rigid transformation from the marker (camera head) to the camera coordinates. °7,,(6) is
dependent on the rotation angle ¢. By considering the marker coordinates (camera head) as a
reference, only the lens system rotates while the camera head, i.e., the image plane, remains fixed
irrespective of the rotation. Yamaguchi et al. [11, 12] describe such a transformation due to the
rotation by decomposing the one physical rotation into two mathematical rotations. Tr(0;1,) is a
rotation of both scope cylinder and the camera head (image plane) around the axis of cylinder /.
Tr(—0;1,(0)) is an inverse rotation of the image plane around the z-axis of lens system [,. Both [,
and [;, have two unknown parameters. Although this model works well, it is very complicated.

Fig. 2 (a) shows the modified geometric model from that of Yamaguchi et al. by attaching an
optical marker on the scope cylinder instead of the camera head.

A, = AT, T, - P,
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where P, is a 3D point in the world coordinates, p; is the corresponding 2D image pixel without
rotation, p; is the image pixel with rotation 6. ™7, is a rigid transformation from world coordinates
to the optical marker coordinates, “7;,, is a rigid transformation from the marker (scope cylinder)
to the camera coordinates and independent on 6. cc is the principal point which is an intrinsic
parameter. R(6) represents a rotation of the image plane around cc by #. Thus camera intrinsic
matrix A and external matrix “7},, can be calibrated by using Zhang’s method [9] and ™T,, can
be obtained directly from the tracking system. In our model we only need to estimate the rotation
angle.

Rotation angle can be estimated by using a rotary encoder, as Yamaguchi et al [12] did. When it is
absent, the rotation angle can be estimated by using two optical markers: one attached to the scope
cylinder and the other one on the rod (camera head).

A comparison between our model and Yamaguchi et al’s model is listed in Fig. 3. Yamaguchi
et al’s use the camera head as a reference coordinates in their hand-eye calibration system. Since
surgeons rotates the scope cylinder with respect to the camera head in order to view sideways, it
is a natural way to consider the camera head as a reference. However it makes the cameral model
very complex. To think in an opposite way, no matter how surgeons rotate the scope cylinder, if
the reference coordinates is on the cylinder, the lens system is fixed with respect to the cylinder
but the camera head rotates around 6. Thus the external parameters are not affected by the rotation
anymore. Since the image plane is in the camera head, the rotation only affects the image plane.
Our method is therefore developed based on above observations. Yamaguchi et al.’s model needs
five more parameters but we only need one. They use two optical markers and one rotary encoder.
We only need two optical markers.



Estimate Rotation Angle Using Two Optical Markers

Let the marker attached to the scope cylinder be Marker 1 and the marker to the rod (camera head)
be Marker 2 (Fig. 3 (b)). As Fig. 4 shows, when we rotate the camera head around the scope
cylinder by 6, point P, in Marker 2’s coordinates O, will move along a circle with respect to a
point O on the axis of the scope cylinder, in Marker 1’s coordinates O;. Thus we can estimate the
center O of the circle first and compute 6 as:
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A is the position of Oy when ¢ = 0 and B is the position of Oy given a rotation . The center of the
circle can be represented in terms of the transformation from the world coordinates O,, to Marker
I’s coordinates O; and Marker 2’s coordinates O,, and at least 3 different positions of Marker 2
(O9) (with different #) are necessary.

Estimation of the center of circle in 3D

We rotate the camera head around the cylinder to acquire 3 different positions of Marker 2. Let
the transformation matrix from the world coordinates O,, to both Marker 1’s coordinates O; and
Marker 2’s coordinates O, for position ¢ be (OlTowi, 02 Towi) (z = 1,2, 3). Given any point ﬁ in Oy,
we first compute the position P in O, corresponding to different rotations as:

B =T, " (®T,, )T - P.i=1,2,3. 4)

Therefore, O is the center of the circumcircle of the triangle (131, ]32 and ]33).

Let P?l :ﬁﬁl — ﬁg, P?Q = ]32 - 133, the normal of the triangle is 7 = Pfl X R}. The perpendicular
bisector L,; of Ry and Ly of Ry can be computed as:

51:ﬁ5+ﬁ1/2+A1'ﬁXﬁ1
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where \; and \; are parameters of the line Ijl and [72. The intersection of these two lines are the
center of the circle. From Equation 5 we can derive the center of the circle as:
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It can be easily proved that O does not depend on the selection of JST Since at least 3 different
positions are necessary, we rotate the camera head around the scope cylinder by NV different angles.

We then apply a RANSAC algorithm to estimate O using random positions, and select O which
corresponds to the smallest variance as the center of the circle. The pseudo code of RANSAC
is listed in Table 1. It can be also proved that § does not depend on the selection of P, either. A



Table 1: Pseudo code of RANSAC for estimating the center of the circle

Loop k=1:K (K=2000)
Generate a random point P, from 3D space
Generate random number z,y,2z between [1,N]
Compute P,,P,,P, using Eq. 4
Compute Oy, using Eq. 6
Compute | O,P; |,j € [1,N],j # z,y,2
Compute vy,
Save Ok, Vk

End loop

Return Oy, ¢ = argpmin(vy)

Table 2: Pseudo code of RANSAC for estimating the rotation angle

Loop k=1:K (K=1000)
Generate a random point P, from 3D space
Compute P4 and Pp using Eq. 4
Compute 6, using Eq. 3

End loop

Return § = >~ 0k

similar RANSAC algorithm as Table 2 shows is then used to compute 6. Fig. 5 shows the estimated
rotation angle using RANSAC algorithm for two different endoscopes. The red curves are output
angles from different RANSAC iterations, the black curve is the average angle. We can see the
variance of the estimation is very small (less than 0.2 degree).

Experimental Results

We tested our algorithm using two different systems. We first tested it in our lab. We used Stryker
344-71 arthroscope Vista (70 degree, 4mm) oblique-viewing endoscope, DYONICS DyoCam’™
750 video camera, DYONICS DYOBRITE 3000 light source, Polaris (Northern Digital Inc., On-
tario, Canada) optical tracker. Next we tested it in conjunction with our standard operating room
equipment. We used Smith & Nephew video arthroscope - autoclavable SN-OH 272589 (30 de-
gree, 4mm), DYONICS video camera and light source, OPTOTRAK (Northern Digital Inc., On-
tario, Canada) optical tracker. Fig. 6 shows the different endoscopes and optical trackers.

The endoscope was first fixed and the calibration pattern was rotated on the table for capturing
images. A set of images were captured without a rotation between the scope cylinder and camera
head. They were used to estimate both the intrinsic matrix A (including focal length and radial
distortion coefficients) and extrinsic matrix “7;,, using Zhang’s method [9] (implemented using



OpenCV functions). After that, when there was a rotation happening between the camera head and
the scope cylinder, another set of images were captured and the center of the circle can be com-
puted by using Eq. 6. Next, we fixed the calibration pattern, with two optical markers attached to
the scope cylinder and the camera head, we captured a set of images by applying general motions
of the endoscope (moving the whole scope body or rotating the camera head with respect to the
scope cylinder (or more natural description: rotating the scope cylinder with respect to the camera
head)). This set of images were used to estimate the rotation angles. The initial position of the
camera head was considered as the reference position A illustrated in Fig. 4. Fig. 7 illustrates
the back projection of 3D corners of the calibration pattern with (blue) and without (red) a rota-
tion compensation. Green points are ground truth. For each rotation angle of the endoscope, we
computed the average back projection error for this angle as:

1 M
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where P, is a 3D point in the world coordinates, p; is the corresponding 2D image pixel, p(P;, 0) is
the back projected 2D image pixel of F;. M is the number of corners on the calibration pattern. We
have used different grid patterns (3x4 as shown in Fig. 7, 4x5 and 5x6. The size of each checker is
2mm x 2mm). In order to obtain enough light on the grid pattern, the endoscope needs to be placed
very close to the target (usually 5-15mm). So the smaller grid cannot capture the radial distortion
but the bigger grid will exceed the field of view. The 5x6 grid gave the best results.

Finally we did many trials by moving and rotating the endoscope randomly and estimate 6 simul-
taneously. The average back projection error with respect to the different rotation angles are shown
in Fig. 8. Fig. 8 (a) is the result using Stryker 344-71 arthroscope Vista (70 degree, 4mm) and Po-
laris optical tracker. Fig. 8 (b) is the result using Smith & Nephew video arthroscope - autoclavable
SN-OH 272589 (30 degree, 4mm) and OPTOTRAK optical tracker. The red curve represents the
back projection error without taking into account of the rotation angle, and the blue curve shows
the error with considering the rotation angle. The results show that including the rotation angle
into the camera model significantly improve the accuracy of the calibration.

Fig. 8 shows that different endoscopes have different accuracy. The reason is that endoscopes have
different magnification and optical trackers have different accuracy (according to the manufacturer,
RMS error is 0.Imm for OPTOTRAK and 0.3mm for Polaris). Yamaguchi et al. [11, 12] used an
OTV-S5C laparoscope (Olympus Optical Co. Ltd., Tokyo, Japan) and Polaris optical tracker. They
have achieved a high accuracy of less than Smm back projection error when the rotation angle
is within 140 degrees. Our results show that we can achieve the same level accuracy when the
rotation angle is within 75 degrees. Beyond this range, due to the bigger magnification, larger
radial distortion and poorer lighting (a comparison between images used in our experiment and
Yamaguchi et al.’s experiment is shown in Fig. 7), the back projection error is increased to 13mm
when the rotation angle is 100 degrees. When given the same quality endoscopes, we should be
able to achieve the same level of accuracy.



Photometric Calibration

Based on our knowledge, photometric calibration for the endoscope has not been studied in the
literature. In this paper we propose a method to compute the camera response function, light
source intensity and light spacial distribution function, simultaneously, inspired by [13].

Reflectance Model under Near-field Lighting and Projective Projection

Assume the bone surface is Lambertian, the scene radiance can be computed according to Lam-

bertian cosine law as: ) )
n- n-
R(z,y.2) = Gop(—5+ + —5") (8)

1 T3

where GG is the intensity of two light sources s; and s, p is the surface albedo, n is the surface
normal, 1; and 1, are two light rays arriving at the surface, and r; and r, are the distances from
each light source to the surface. (z,y, z) indicates the 3D location of the scene point P (see Fig.
9).

On the other hand, the image irradiance £ can be estimated from the image intensity v given the
camera response function H(-):

H~ (v(x,y))

Ele,y) = M(z,y)

(€))

where, M (x,y) is the spatial distribution of the source intensity that is assumed to be equal for
both light sources. Assume there is no loss of the energy when light rays propagate from the scene
to the camera lens, so the radiance remains the same and thus R = F. Combine Eq. 8 and 9 we
have:

H Y o(z,y)l =p-Go- M(z,y)

~ n- 11 n- 12 (10)

Mi(e,y) = M(x) - (Ut 4+ 52)

For calibration, we use a Macbeth color chart with known albedo for each patch. We capture a set
of images by varying light source intensity for each patch. We apply log to both sides of Eq. 10 to
obtain a linear system of equations:

hlvl(z, )] = pi + g; + 7(z,y) (11)

where i indicates the different albedos and j indexes the light intensity. h[v/ (z, y)] = log{H *[v/ (z, )]},

pi = log(pi), g; = log(Ey;) and m(x,y) = log[M(x,y)]. The unknowns (h(-), g;, m(x,y)) can
be obtained by solving this linear system of equations. The term M (x,y) is then estimated from

M (z,y) by measuring the distance to the chart from the scope tip. An image of a square patch with

uniform albedo is captured and distortion is then removed. We measure the distance between the

scope tip and four corners, and then compute the term ("2—211 + ("2—212 for each image pixel. Finally
1 2

M (zx,y) is estimated by removing the above term from m(x, y).



Solution to A(-)

Given the same light intensity g, and pixel value v(z,y) but two different albedos p;, and p;,, we
have

{ Al a5 = o) = =0 a2

hlvi,(z,y)] — g; — m(x,y) — pi, =0

Subtract the first line from the second line of Eq. 12 we obtain:
h[v], (@, 9)] = hlv}, (=, 9)] = pi, = P (13)

We use different pixels in the same image (albedo) or different images (albedos) to make as many
equations as Eq. 13, as long as we fix the light intensity for each pair of albedos. Since v} (z,y)
changes from 0 to 255(image intensity), we only need 256 such equations and stack them as:

h(0)
. R I Pi» =P,
L% 1# | = s (14)
h(255)

where 1* and —1* correspond to the column vfg(:v, y) + 1 and vfl (z,y) + 1, respectively. 17 and

—1# correspond to the column vi (x,y)+1and vfs (x,y)+1, respectively. Therefore h(v) is solved
from Eq. 14 and H (v) = exp(h(v)).

Solution to g,

Given the same albedo p; and pixel value v(x,y) but two different light intensities g;, and g;, we

have , )
h[vzj'l (C(],y)] — G5 — m(x,y) —Di = 0
7o N (15
hlvi*(z, y)] = g5, — m(z,y) —pi =0
Subtract the first line from the second line of Eq. 15:
W[} (,y)] = h[v (2. 9)] = g, — 95, (16)
We use the minimum light intensity g; as a reference, for other light intensities g;, 7 = 2, -+, Nygns,
we have '
g = g1+ h[v] (2, y)] = hlv} (2, y)] (17)

Given estimated h(v(z, y) and by changing the albedos and pixels, we compute the average value
for each g; as follows and G; = exp(g1) - exp(g;).

G =g+ S S (Rl (5, 9)] — B )] (18)

Nalbedo Npizels
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Solution to m(z, y)

Again, Given the same albedo p; and light intensity g, but two different pixels (z,,y,) and x4, y,
we have ' i
h[vf(xp, yp)] — g — m(xp, yp) —pi=0
j . (19)
hlv; (24, yq)] — 95 — M(2q,Yq) —pi =0
Subtract the first line from the second line of Eq. 19:

h[v! (2, yp)] = B[v] (24, Yg)] = 170(2p, 4p) — (24, Yq) (20)

For each g; and p;, instead of using CZQV,,mlS different pairs of pixels, we choose only Npzeis =
720 x 480 pairs and stack the equations like the following:

R (1) h[v] (w1, 10)] = hlv] (22, v2)]
T . m(2, Yo) B hlv] (z2,y2)] — hlv] (23, y3)]

—1 1 m(prizelS’ prizels) h[’Uf (:'UNpizels7 prizels)] - h[vzj(xl? yl)]
A

21

It’s not practical to solve Eq. 21 using singular value decomposition (SVD) directly since matrix
A requires a huge memory. However we notice that the matrix A in Eq. 21 is a special Ny;e5 by
Npizers matrix such that we could get the inverse directly by using Gauss-Jordan Elimination:

0 0 -1
-1 0 0 -1
Al=—| -1 -1 0 0 -1 (22)
: : Do 0 -1
-1 -1 -1 . -1 -1

Thus we successfully compute each element of 7 (z,y) independently and again, M (55, y) =
exp(m).

Experimental Results

A series of images of color chart are used for photometric calibration. We use 6 different levels of
image intensity. In Fig. 10, (a),(b) and (c) show the camera response function with Red,Green,Blue
channels. (d) shows the recovered light intensity in different levels and compared to the ground
truth. Smaller number in x-axis corresponds to higher intensity. We see a bit variance when light
intensity is high, that can be caused by the saturation. (e) shows the original image and (f) shows
m. (g) shows the cosine term (”—211 + ("T)% and (h) shows the spacial distribution function m(z, y).

1



Conclusions and Discussions

In this paper we have developed a full calibration process for both geometric and photometric
properties of endoscopes. Our geometric calibration method simplified previous work by designing
a coupler attached to the scope cylinder. It is easy to implement and practical to apply with the
standard operating room equipments such as the navigation system. The only drawback of this
method is the requirement of two markers to be visible to optical trackers all the time otherwise
the method will fail.

According to our knowledge, photometric calibration has not been applied by others. Most of
previous work did not rely on the physical model of endoscope light sources, or they restricted
the changing of light sources during the operation. A few of recent work applied shape-from-
shading to endoscopic images based on a simplified light source model without calibrating the
model parameters. However, in order to reconstruct an accurate shape from endoscopic images,
the knowledge of light sources is necessary and important.

Both geometrical and photometrical parameters are very useful for 3D visualization and recon-
struction of anatomical structures such as bones. We have already applied the calibrated endo-
scopes to artificial spine reconstruction [14]. In that work, we reconstructed the spine from each
individual endoscopic images based on a calibrated photometric model. With calibrated geometric
parameters of the endoscope, we were able to transfer all individual reconstructed shapes to the
world coordinates and thus find the global occluding boundaries, which helped the later re-grow
of the shape-from-shading. The results demonstrate that using calibrated endoscopes can achieve
very good reconstruction result which is promising for the real surgical applications.
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Figure 1: Stryker 344-71 arthroscope Vista (70 degree, 4mm): an oblique endoscope consists of
a scope cylinder with a lens and point light sources at the tip (the tip has a tilt from the scope
cylinder), a camera head that captures video images, and a light source device that supports the
illumination. Scope cylinder is connected to the camera head via a coupler. This connection is
flexible such that you can rotate either the scope cylinder or the camera head separately, or rotate
them together.
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Figure 2: The geometric model of endoscope based on a tracking system. A new coupler (see
Fig. 1 (b))is designed to mount an optical marker to the scope cylinder which ensures that the
transformation from scope(marker) coordinates O to the lens system (camera) coordinates Os is
fixed. World coordinates O, is defined by the optical tracker. Two optical markers are attached to
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the coupler and camera head separately in order to compute the rotation ¢ in between.
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Figure 3: A comparison between Yamaguchi et al.’s system and ours. In Yamaguchi et al.’s system,
the camera head is tracked such that the transformation from the marker to the lens system is not
fixed but depends on the rotation angle #. Let the marker coordinates as a reference, the lens
system is rotated around the scope cylinder about ¢, but the image plane (that is in the camera
head) remains the same. They use two additional transformation to describe the effect of rotation,
so their model becomes complicated. Moreover, they need to calibrate the axis of both the scope
cylinder and the lens system by using another optical maker attached to the scope cylinder. Based
on our observation, it is possible to simplify the model if we fix the transformation between the
marker and the lens system. We design a coupler that enables the mounting of the optical marker
onto the scope cylinder. Then we set the marker coordinates as a reference, the lens system is fixed.
The rotation only affects the image plane since the camera head is rotated around the cylinder
(reference). And the image plane only rotates around the principal point. Since the principal point
is an intrinsic parameter, we only need to estimate the rotation angle. As a result, we come up with
a very simple model (see details in the text).
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Figure 4: Illustration of the relationship between the rotation angle # and two marker coordinates.
(O is attached to the scope cylinder and O, is attached to the camera head. A indicates the position
of O, when # = 0 and B indicates the position of O, given a rotation 6. Given any point P, in O,
its trace with the rotation of the camera head is a circle in Marker 1’s coordinates O;. It moves from
position P2 to PP in Marker 1’s coordinates O;. This circle is also on the plane perpendicular to
the axis of scope cylinder. O is the center of the circle.
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Figure 5: Estimated rotation angles for two endoscopes. In each trial we rotated the camera head
with respect to the scope cylinder and captured an image. We captured a few images for the initial
position. After that we took two images for each rotation angle. The red curves are estimated
rotation angles from different RANSAC iterations. The black curve is the average rotation angle.
(Please enlarge the figure to see the difference between closely matching curves.)
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Figure 6: Endoscopes used in the experiments. (a) Smith & Nephew video arthroscope - au-
toclavable SN-OH 272589 (30 degree, 4mm). (b) Stryker 344-71 arthroscope Vista (70 degree,
4mm).
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Figure 7: (a) Illustration of the back projection with and without a rotation compensation. Green
points are ground truth - 2D corner pixels on the image of the calibration pattern. Red points are
back projection of the 3D world positions of the corners using the first equation of Eq. 2, which has
no rotation compensation. Blue points are back projection using both equations of Eq. 2. Since the
rotation is included in the camera model, the back projected pixels are much closer to the ground
truth than the red points. (b) An image used in Yamaguchi et al. [11, 12]’s paper. This image has
a higher resolution, better lighting and less distortion than ours.
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Figure 8: Back projection errors with respect to the rotation angles for two systems. (a) Stryker
344-71 arthroscope Vista and Polaris optical tracker in our lab. (b) Smith & Nephew video arthro-
scope and OPTOTRAK optical tracker in the operating room. Images in the top row of (a) and (b)
correspond to different rotation angles (the number is shown on the top of each image). The red
curves in (a) and (b) represent the errors without a rotation compensation. The blue curves in (a)
and (b) are errors with a rotation compensation.
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Figure 9: Illustration of the perspective projection model for endoscope imaging system with two
near point light sources: O is the camera projection center. s; and s, indicate two light sources.
We assume the plane consisting of O, s; and s, is parallel to the image plane. The coordinates
system is centered at O and Z is parallel to the optical axis, and pointing toward the image plane.
X and Y are parallel to the image plane. F' is the focal length. a and b are two parameters related
to the position of the light sources. Given a scene point P, the corresponding image pixel is p.
Assuming a Lambertian surface, the surface illumination therefore depends on the surface albedo,
light source intensity and fall off, and the angle between the normal and light rays.



300 Red Channel 300[ - Green Channel
250[ — Nonlinear Fit 250l ~ Nonlinear Fit
200 200
150 150
100 100
50 50
Oo0o05 115 225335 4 09¢g 1 2 3 4 5 6 7 ¢
(a) (b)
300 Blue Channel 1007 &
250 =— Nonlinear Fit 90 A
200 ) 80
150 70
100 60
50 r r T "
50 1 2 3 4 5
00051152253354455 —o—Ground Truth  —— Calibration

(©) (d)

e

(9) (h)

Figure 10: Results of photometric calibration. (a) camera response function in Red channel. Red
dots represents the data points and magenta line represents the nonlinear fit. (b) camera response
function in Green channel. Green dots represents the data points and magenta line represents
the nonlinear fit. (c) camera response function in Blue channel. Blue dots represents the data
points and magenta line represents the nonlinear fit. (d) Calibrated light intensity in different level
(blue) and ground truth (green). We use level 6 as a reference and plot level 1-5 with small level
corresponding to high light intensity. A bit variation in range of the high intensities may be caused
by saturation. (e) Original image of color chart. (f) m. (g) the cosine term ("2—%11 + (T?% (h) the
spacial distribution function m(zx, y).



