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Abstract

Active illumination based methods have a trade-off be-
tween acquisition time and resolution of the estimated 3D
shapes. Multi-shot approaches can generate dense recon-
structions but require stationary scenes. In contrast, single-
shot methods are applicable to dynamic objects but can only
estimate sparse reconstructions and are sensitive to surface
texture. In this work, we develop a single-shot approach
to produce dense reconstructions of highly textured objects.
Key to our approach is an image decomposition scheme that
can recover the illumination and the texture images from
their mixed appearance. Despite the complex appearances
of the illuminated textured regions, our method can accu-
rately compute per pixel warps from the illumination pat-
tern and the texture template to the observed image. The
texture template is obtained by interleaving the projection
sequence with an all-white pattern. Our estimated warping
functions are reliable even with infrequent interleaved pro-
jection. Thus, we obtain detailed shape reconstruction and
dense motion tracking of the textured surfaces. We validate
the approach on synthetic and real data containing subtle
non-rigid surface deformations.

1. Introduction

Structured light based shape reconstruction algorithms
are divided into two categories: multi-shot [4, 6, 15] and
single-shot methods [7, 14, 17]. Multi-shot methods can es-
timate per-pixel depth map for a wide range of objects using
temporal coding of the illumination patterns but require the
scene to be stationary during image acquisition. Single-shot
methods can work for dynamic objects by decoding the spa-
tial structure embedded in the illumination pattern but gen-
erate low spatial resolution reconstructions and are suscep-
tible to the high frequency texture on the object surface (see
Figure 1 for examples).

In this work, we present a single-shot structured light
system that can estimate high spatial and temporal resolu-

Figure 1. Conventional single-shot structured light systems often
fail for highly textured objects. The mixture of albedo variations
and high frequency illumination patterns makes it difficult to es-
tablish reliable and dense camera-projector correspondences.

tion depth even for highly textured objects. The proposed
method is single-shot in the sense that it does not use the
illuminated images in the previous frames to temporally de-
code the illumination pattern. Our system consists of one
camera and one projector. Any modern projector can gen-
erate high frequency illumination patterns needed to esti-
mate dense 3D shape. We decompose the mixed appear-
ance in the observed image into the surface texture and the
projected illumination patterns. Because of this decomposi-
tion, high resolution 3D shape of the object in the textured
regions can be reliably estimated. In addition, we obtain
dense tracking inside the texture region in the presence of
the illumination pattern.

To achieve the illumination-texture decomposition, we
develop an optimization framework that estimates warps of
both the illumination pattern and a reference texture tem-
plate to compose the observed image. The texture template
is obtained by infrequently interleaving the projection se-
quence with an all-white pattern. The warping functions
are computed starting from a sparse set of correspondences
between the camera and the projector. The results are greed-
ily propagated into textured areas where spatial correspon-
dences cannot be directly computed. Figure 1 shows several
types of surface texture that our method can handle.

Since the method computes warps to a template, it does
not exhibit drift over time. Moreover, unlike conventional
single-shot structured light systems whose performances
degrade as surface texture frequency increases, our method
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achieves better decomposition accuracy with higher fre-
quency texture. Finally, despite being presented for single-
shot approaches, this method can also be used in conjunc-
tion with multi-shot systems by spatially modulating the il-
lumination patterns with a random pattern [18]. We demon-
strate dense and accurate decomposition and reconstruction
results on both synthetic and real data with non-rigidly de-
forming objects.

2. Related Work
Active illumination has been used to estimate shape es-

timation problem with major focus on designing coded pat-
terns that are robust to occlusion, depth discontinuity, and
albedo variations [11]. A conventional structured light sys-
tem has to choose appropriate illumination patterns depend-
ing on its temporal or spatial resolution requirements. Since
multi-shot methods can robustly generate high spatial reso-
lution but require stationary scenes, motion compensation
schemes have been developed to handle slowly moving ob-
jects [16]. Another common approach is to interleave the
patterns for structure estimation with patterns optimized for
computing motion [8].

On the other hand, single-shot methods sacrifice spa-
tial resolution for high temporal resolution reconstruction.
However, because of the spatial coding strategy, generally
these methods cannot deal with textured objects and they
are forced to rely on specific light patterns for different
types of surface texture. Koninckx et al. [9] mitigate the
problem by introducing a feedback loop that changes pat-
terns according to errors in the decoding process. Yet, they
rely on heuristic rules to set the color codes depending on
different textured surfaces. In principle, this method treats
the surface texture as a nuisance and designs illumination
patterns robust to the texture. Conversely, our method con-
siders the texture as an additional source of information that
needs to be recovered along with the 3D shapes. To the best
of our knowledge, this is the first work to explicitly sepa-
rate high frequency texture and illumination patterns in the
context of structured light system.

Another solution for single-shot methods to handle ob-
ject with both textured and textureless regions is to employ
multi-view stereo systems. These systems treat the illumi-
nation pattern itself as surface texture to assist the matching
[19]. However, since this method requires at least two cam-
eras with a projector in between, baseline between cameras
is larger which makes correspondence estimation hard.

Our image decomposition method is similar in spirit
to intrinsic image estimation [5, 12]. These works make
smoothness assumptions about the environment light (the
sun, the sky, or indoor lights) and estimate the reflectance
and shading images from images captured by a single cam-
era. Conversely, our work decomposes the high frequency
illumination patterns from the projector in the observed

mixed appearance. In addition, our method is specifically
designed for single-shot structured light systems that con-
sist of one camera and one projector.

3. Texture-Illumination Decomposition
Consider an object being illuminated by a projector.

Similar to intrinsic image estimation, the brightness I(x, y)
at location (x, y) in the observed image is modeled as a mul-
tiplication of a texture image IT (x, y) and the illumination
image IL(x, y) at that location:

I(x, y) = IT (x, y)IL(x, y). (1)

The texture image IT is the image observed when the
projector illuminates an all-white pattern on the object. The
illumination image IL is the incident lighting pattern. Equa-
tion 1 is ill-posed because one has to solve for two un-
knowns IT (x, y) and IL(x, y) from one equation. To han-
dle this under-constrained problem, we require additional
knowledge of the reference templates for the illumination
and texture source and a proper per-pixel initialization of
the unknowns. Since the illumination image is a projec-
tion of the known projector pattern, this pattern serves as
one of our references. The reference texture template can
be obtained by interleaving the projection sequence with a
white pattern. The initialization problem is solved by the
greedy correspondence growing algorithm [3]. We describe
the method in detail below.

3.1. Mathematical Formulation of the Objective

Figure 2 shows a sequence of images of an object being
illuminated by the projector. Initially, the projector illumi-
nates the scene with an all-white pattern so that the texture
template T is observed. The appearance of this template IT
changes according to the movement of the object. Because
image deformation is high dimensional and non-linear, an-
alytic forms that describe consistent deformation behavior
over the entire image do not exist. Thus, we locally model
this distortion by a warping function f and employ con-
stant gain aT and offset bT to approximate for the intensity
changes between the two images due to changes in surface
normals, light directions and ambient illumination:

IT (x, y) = aTT (f
−1(x, y)) + bT , (2)

where f−1(x, y) is the inverse warping function of f that
maps the coordinate of point (x, y) in the observed image to
its corresponding location in the texture template T . Sim-
ilarly, the illumination image IL is the projection of light
pattern L on the object and hence, is related to each other
by a set of local warping functions g. We assume the pro-
jector has been photometrically calibrated and adopt a lin-
ear model to relate the brightness of the pure illumination
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Figure 2. Texture and illumination image decomposition. The
green texture region in the template T is warped to the pure texture
image ITi by the function fi. The red squares from the illumina-
tion pattern L are mapped to the pure illumination image ILi by
the function gi. Properly composing the illuminated red squares
in ILi with the green region in ITi turns them into yellow squares,
which constitute the mixture image Ii observed at time i. Notice
that spatially adjacent squares are likely to have similar warping
parameters. By using the estimated warping parameters of the pre-
vious frame to initialize warps between the observed frame to its
reference templates L and T , the warping function can be reliably
estimated even with infrequent interleaving.

image to the projecting pattern:

IL(x, y) = aLL(g
−1(x, y)) + bL, (3)

where g−1(x, y) is the inverse warping function of g that
relates the point (x, y) to its matched in the illumination im-
age L and aL, bL are constant gain and offset to compensate
for the brightness difference between the projector pattern
and the observed illumination. We use the inverse of f and
g to avoid non-integer values when re-synthesizing the pure
texture and illumination images from their prior templates.

To increase the robustness of the warping functions to
large deformation, we set them to be locally affine and min-
imize the following cost function for their shape parameters
and the photometric compensation coefficients:

N∑
k=−N

N∑
l=−N

[IT (xk, yl)IL(xk, yl)− I(xk, yl)]
2
, (4)

over a patch of size (2N + 1)× (2N + 1) centered at point
(x0, y0), where we want to decompose. These inverse warp-

ing functions are given as:

f−1(xk, yl) =

[
x0 + p0 + (p2 + 1)k + p3l
y0 + p1 + p4k + (p5 + 1)l

]
,

g−1(xk, yl) =

[
x0 + q0dx + (q1 + 1)k + q2l
y0 + q0dy + q3k + (q4 + 1)l

]
,

(5)

where (dx, dy) is the normalized vector representing the
direction of the epipolar line in the projector image, and
q0..4, p0..5 are the affine warp parameters. Similar to stereo
matching, we simplify the parameterization of g by con-
straining it to lie on the camera-projector epipolar line. We
optimize Equation 4 patch-wise using the Gauss-Newton
method.

3.2. Pixel-wise Initialization

Due to perspective distortion in the illumination image
IL and the large deviation from the texture template T for
fast moving objects, good initial guesses for the warping pa-
rameters are required to optimize equation 4. Even with ran-
dom patterns [4], the repetitive nature of the spatial neigh-
bor coding illumination pattern exacerbates the local mini-
mum problem. We solve the initialization problem as fol-
lows: start from the boundary of the textured regions and
greedily propagate the results to interior texture area. We
employ the three steps to initialize points at the boundary.
Step 1: Compute dense matching between camera and pro-
jector using a greedy correspondence growing algorithm.
This greedy growing strategy and the use of a random il-
lumination pattern allows us to establish dense correspon-
dences everywhere except for the textured surface regions.
Here, the texture boundary is naturally defined as places
where spatial correspondences are not obtainable.
Step 2: For a pixel that is close to the textured region bound-
ary, we exhaustively search in its local neighbor for patches
on the illumination pattern and texture template that min-
imizes the cost defined in Equation 4. Depending on the
motion of the objects, the search range of pixels close to the
texture boundary is set a priory. Because of the deformation
between patches in the templates and the ones in the pure
texture and illumination images, patches in the templates
are pre-warped before being used to examine their contri-
bution to the cost function. The warping parameters of the
illumination pattern are initialized from its spatial neighbor
computed in step 1. Those of the texture templates are set
to either its temporal neighbor if available or to the zero de-
formation state.
Step 3: Refine the best locations of the illumination and
texture patches by optimizing the cost function in Equation
4 using a standard Gauss-Newton method.

Owing to the use of the previously computed texture
warping parameters in step 2, our warping functions can
robustly warp observed patch to its reference template that
is temporally far away. Hence, only infrequent projection



of the interleaving white frame is needed and the obtained
results have high temporal resolution. This strategy is anal-
ogous to the approach of Tian and Narasimhan et al. [13]
who use less distorted patches to estimate globally optimal
sets of warping parameters.

In spite of the greedy correspondence growing strategy,
erroneous guesses can not propagate long as monitored by
the cost function in Equation 4. Hence, our method avoid
both the global ambiguity of the illumination pattern and
being stuck in regions where occlusion, surface disconti-
nuity, or severe foreshortening occurs. Our method shows
good recovery from non-decomposable regions in the pre-
vious frames. Since only a few seed points are needed ini-
tially, the good correspondences can be quickly propagated
to non-decomposable regions in the earlier frames.

4. Results
We validate the performance of our approach on both

synthetic and real cloth sequences containing a range of
texture frequencies. The non-rigidity of cloth makes dense
decomposition and shape reconstruction challenging. We
show the results for sequences in which the all-white pattern
is projected once in 30 frames. For all of our experiments,
this interleaving interval gives good trade-off between the
temporal resolution of the results and speeds of the moving
objects. We also fix the patch size to be 19×19. The 3D
shapes are estimated by triangulating the correspondences
obtained after the decomposition. We split the region of
interest into sub-regions and independently execute them
in parallel to take advantage of the multi-core architecture
of modern computer. Currently, our algorithm can decom-
pose on average 4112 points every second on a Quad-core
i7 CPU (3.6 GHz).

4.1. Illumination pattern

Figure 3 shows our static bandpass random binary illu-
mination pattern [4]. The size of the speckle in this pattern
can be tuned to provide suitable contrast for illuminating
objects of different size. Fiducial checkerboard markers are
uniformly seeded at every 32 pixels inside this pattern to
provide set of sparse spatial correspondences. These cor-
respondences are computed using template matching along
epipolar lines. Because the distance between these markers
is usually magnified in the camera image, these markers do
not cause ambiguities in the propagation process.

4.2. Synthetic Data

Our synthetic cloth composed of 64,000 vertices is gen-
erated using the OpenCloth engine [10] and can deform in
subtle and non-rigid ways. The camera and projector reso-
lution are set to 1920×1080 and 1280×800, respectively.

Figure 4 shows the decomposition result on the syn-
thetic bear cloth sequence. We intentionally have the tex-

Figure 3. Part of the illumination pattern. The fiducial markers
are embedded into the random pattern to provide a sparse set of
correspondences between the camera and the projector.

ture of the bears to be very similar to the illumination pat-
tern. This extreme case severely violates the assumptions of
any methods powered by independent component analysis
or smoothness prior. Thus, such methods are not applicable.
Conversely, our method recovers the pure texture and illu-
mination images that well resemble the groundtruth. The
small noticeable defect in frame 2 does not expand and is
fixed in frame 18. Hence, there is little-to-no drift in the
estimated warping functions.

Figure 5 shows the decomposed images, the 3D shape as
well as the flow from the observed image to the reference
template obtained from texture warping functions. Without
our separation, the correlation score between the projector
patch and its corresponding patch in the observed image is
very low in the textured regions. The depths estimated in
these regions are eliminated, which results in large holes in
the 3D shape. By separating the pure texture and illumi-
nation images, the proposed method successfully estimates
the 3D shape with the exceptions of regions where severe
foreshortening occurs.

To quantify the decomposition error, we compare the
correspondences obtained after the decomposition with
those estimated on the synthesized pure illumination and
texture images. The pure illumination image is created by
projecting the illumination pattern onto a textureless cloth.
Texture image is obtained by texturemapping the cloth with
binarized Perlin-noise pattern generated by error-diffusion
dithering and projecting white light on the cloth. This bi-
narized random pattern is known to give accurate tracking
results [1, 8]. We compute spatial correspondences between
camera and projector on the pure illumination image and
temporal correspondences on the pure texture image using
the method in [2]. These correspondences are the best pos-
sible estimation at a given frame and hence serve as ground
truth. We define our error metric as the normalized error in
decomposing texture and illumination images:

1

N

√
(
x̂i − xi

W
)2 + (

ŷi − yi
H

)2, (6)

where N is the number of points inside the texture re-
gions, (x̂i, ŷi), and (xi, yi) are the ground truth and the es-



Decomposed  illumination at frame 18 

Ground truth illumination at frame 18 

Observed image and its magnified mixed  

appearance region at frame 18 

Ground truth illumination at frame 2 Ground truth texture at frame 18 Ground truth texture at frame 2 

Decomposed  illumination at frame 2 Decomposed  texture at frame 18 Decomposed  texture at frame 2 

Observed image and its magnified mixed  

appearance region at frame 2 

Figure 4. Decomposition of the texture and illumination images of the synthetic bear cloth sequences. The interleaving pattern is projected
every 30 frames. The same region of the bear in the two images is magnified to show how its intricate appearance changes over time when
it is illuminated by the projector. Because of cloth folding, bear appears smaller in the vertical direction. Visually, the illumination images
experiences higher deformation than the texture images. The noticeable defect in the decomposition at frame 2 has been fixed in frame 18.

timated correspondence locations, respectively. Depending
on whether the error of the illumination or texture is being
evaluated, (W,H) could be either the resolution of the pro-
jector or camera image.

Figure 6 shows the performance of our method on the
bear and flowery cloth sequences. The bear cloth has higher
frequency texture than the flowery cloth. With longer in-
terleaving sequences, larger deformation in the image de-
grades the algorithm performance. The texture decomposi-
tion error and the fraction of correspondences estimated for
flowery sequence are not as good as for the bear sequence.
This indicates that the algorithm performs better with higher
frequency texture. The explanation for this phenomenon is
similar to the optical flow problem: tracking highly textured
surfaces suffers from less drift. Notice that because of the

coherent structure of the bear, the algorithm fails when the
entire texture boundary cannot be estimated reliably which
results in the abrupt drop in the fraction of estimated cor-
respondences. Nevertheless, the initial illumination decom-
position error for the flowery sequence remains competitive
to the bear sequence until influence of the decomposed tex-
ture error overwhelms the overall result.

4.3. Real Data

We conduct several real experiments with different cloth
deformation and different texture frequencies. For all of our
experiments, the scenes are illuminated using a 1280×800
DLP View Sonic projector and the images are acquired by
the Canon XH-G1s HD 1920×1080 camera operating at
30fps. The camera and projector are calibrated using the
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Figure 5. Decomposition of the texture and illumination images from a synthetic flowery cloth sequence with interleaving pattern projected
every 30 frames. The depth map estimated after removing the texture not only shows its completeness over depth map obtained without
texture removal but its high accuracy with respect to ground truth depth. The displacement of the texture regions with respect to the
reference template is also estimated from the decomposition results.
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Figure 6. The accuracy and robustness of the decomposition with
respect to the interleaving period. (a) The median distance from
the current frame to the reference template and the accumula-
tive median displacement over frames (b) Percentage of camera-
projector correspondences obtained in the textured regions (c)
Normalized illumination error (d) Normalized texture error. The
error is evaluated only for points inside the textured regions and is
computed by Equation 6.

method of Vo et al [15]. As in the synthetic dataset, we
project an all-white frame every 30 frames. The results are
presented without any post-processing.

Figure 7 shows our results on the dogs and flag se-
quences. Despite the simple image formation model, our
approach can handle complex appearances of real world
textured objects illuminated by the projector. We believe
this is due to the local block decomposition strategy which

Kinect RGB 3D shape 

Figure 8. 3D shape from the Kinect. Note that smoothing filters
has been applied to generate the mesh from raw point cloud data.

is robust to global lighting variation. As shown in the flag
sequence, while the texture decomposition could be incom-
plete, especially for low frequency textured objects, the
quality of the decomposed illumination is less affected by
the texture frequency. Due to the relatively large size of the
textured region, the 3D shape of this folding cloth cannot
be obtained by hole-filling or interpolation algorithms. De-
spite the mixed appearance, the texture flow estimated with
respect to the reference template is also obtained.

Figure 8 shows the 3D shape obtained from the Kinect
sensor. For fair comparison with the performance of pro-
posed method shown in the T-shirt sequence in Figure 7,
the same subject is standing at a similar distance to the sen-
sor. Visually, the quality 3D shape from our method out-
performs that of the Kinect. It is noteworthy that unless
smoothing filter is applied to raw Kinect results, the mesh
generation fails as the surface normal computed from raw
point cloud is noisy.

4.4. Texture Flow vs. Illumination Flow

Besides the motion of the textured regions, there is also
an apparent motion due to the illumination pattern. As il-
lustrated in Figure 9, the flow direction of the illumination
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Figure 7. Decomposition of the texture and illumination images from real cloth sequences. The interleaving pattern is projected every 30
frames. After the decomposing process, the 3D shape can be obtained in the textured regions. No post-processing is applied. Applying
hole-filling methods on the 3D shape estimated without texture decomposing cannot yield appealing results because of the relatively large
textured regions. Despite the mixed appearance, the texture flow faithfully shows how the cloth is moving.

pattern and the texture are remarkably different from each
other. Unlike the motion flow which presents the movement
of points on the object surface, the observed illumination is
the projection of the ray emanating from the light source
and hence, its flow field must move only on the epipo-
lar line of the camera-projector system. Furthermore, this

flow field encodes the changes in depths of rays emanating
from the light source that hit the object. Because establish-
ing spatial correspondences between camera and projector
is much more difficult than estimating temporal correspon-
dences, especially in the wide baseline scenario, any struc-
tured light system can gain benefit from the temporal co-
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Figure 9. Observed motion flow and illumination flow when a moving textured object is illuminated by point light source. While the
directions of texture flow follow the movement of the object, the directions of the illumination flow are constrained to be on the camera-
projector epipolar line. The figure is best viewed in the electronic version.

herency of the illumination flow. Future work will inves-
tigate different approaches to incorporate illumination flow
constraint into structured light reconstruction algorithms.

5. Discussion
While we only show results on a single deforming ob-

ject, our algorithm is applicable to general scenes contain-
ing multiple objects. As long as the seed points, i.e. corre-
spondences established in textureless region, are available
on the object, these correspondences can propagate to the
entire object. Nevertheless, because of the nature of the
patch decomposition approach, our algorithm cannot han-
dle well the textured regions at the occluding boundary.

For objects with completely high frequency texture, the
proposed algorithm will fail. Yet, such cases are rare and
most objects have a mixture of low and high frequency
texture regions (see Figure 5). While our approach may
also fail for objects with low frequency texture, the camera-
projector correspondence can be established to reconstruct
3D shape. This shape information can be exploited to sepa-
rate the texture out of the observed image.

Since the interleaving sequence is dependent on the mo-
tion of the object, the interleaving period has to be adapted
to different applications. Nevertheless, in an era 60-fps con-
sumer grade camera, there is no need to interleave every
frame, especially for daily human activity.
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