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Abstract
With the advent of affordable and high-quality smartphone cameras, any signifi-

cant events will be massively captured both actively and passively from multiple per-
spectives. This opens up exciting opportunities for low-cost high-end VFX effects
and large scale media analytics. However, automatically organizing large scale vi-
sual data and creating a comprehensive 3D scene model is still an unsolved problem.
State of the art 3D reconstruction algorithms are mostly applicable to static scenes,
mainly due to the lack of triangulation constraints for dynamic objects observed
by unsynchronized cameras and the difficulties in finding reliable correspondences
across cameras in diverse and dynamic settings.

This thesis aims to provide a computational pipeline for high-quality 3D recon-
struction of the dynamic scene captured by multiple unsynchronized video cameras
in the wild. The key is to exploit the physics of motion dynamics, shape deforma-
tion, scene semantics, and the interplay between them. Toward this end, this thesis
makes four enabling technical contributions.

First, this thesis introduces a spatiotemporal bundle adjustment algorithm to ac-
curately estimate a sparse set of 3D trajectories of dynamic objects from multiple un-
synchronized mobile video cameras. The lack of triangulation constraint on dynamic
points is solved by carefully integrating physics-based motion prior describing how
points move over time. This algorithm takes advantage of the unsynchronized video
streams to estimate 3D motion reconstruction in the wild at much higher temporal
resolution than the input videos.

Second, this thesis presents a simple but powerful self-supervised framework to
adapt a generic person appearance descriptor to the unlabeled videos by exploiting
motion tracking, mutual exclusion constraints, and multi-view geometry without any
manual annotations. The adapted descriptor is strongly discriminative and enables
a tracking-by-clustering formulation. This advantage enables a first-of-a-kind accu-
rate and consistent markerless motion tracking of multiple people participating in a
complex group activity from mobile cameras in the wild with further application to
multi-angle video cutting for intuitive tracking visualization.

Third, this thesis creates a framework for 3D tracking of the rigidly moving
objects even in severe occlusions by fusing single-view unstructured tracklets and
multi-view semantic structured keypoints reconstruction. No spatial correspondences
are needed for the unstructured points. No temporal correspondences are needed for
the structured points. The imprecise but accurate 3D structured keypoint is compen-
sated by the sparse but precise 3D unstructured tracks, leading to improvements in
both structured keypoints localization and motion tracking of the entire object.

Fourth, this thesis presents a single-shot illumination decomposition method for
dense dynamic shape capture of highly textured surfaces illuminated by multiple
projectors. The decomposition scheme assumes smooth shape deformation and can
accurately recover the illumination image of different projectors and the texture im-
ages of the scene from their mixed appearances.
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Chapter 1

Introduction

Our memory is filled with many joyful social events: a birthday party with a group of close
friends, a show enacted by children, or our own wedding ceremony. Imagine if we could go back
in time and revisit such fine moments of our life. With the advent of affordable and high-quality
smartphone cameras and the popularity of social media sharing websites, any significant events
can be captured from multiple perspectives. These collections of such massive visual data pro-
vide a unique opportunity for rich explorations of the scenes, far exceeding what is possible with
a single camera. See Figure 1.1 for an example.

Despite great potentials, automatically organizing such rich dynamic visual data into a sin-
gle comprehensive 4D (space and time) model that could facilitate content browsing or media
analytics is challenging. The video data could be acquired from different locations, angles,
zoom settings, with varying focus, different types of cameras (high quality, low quality), and
at different times. The dynamics and diversity of this new form of visual data make it diffi-
cult to correspond images of the same object in the videos. Additionally, the mathematics of
reconstructing moving objects from unsynchronized cameras is not well-understood. Conse-
quently, current techniques on large scale analytics of community visual data are limited to static
scenes [75, 78, 188, 196], high fidelity dynamic 3D reconstruction requires elaborate setups and

Figure 1.1: A surprise birthday party for Martial Hebert organized by the faculty members and
students at CMU. Today, most interesting dynamic social events can be easily recorded from
multiple high-quality mobile cameras. Organizing and creating a 4D (space and time) scene
virtualization from such imagery opens up new exciting ways for novel visual experiences.
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expensive acquisition systems [3, 52, 61, 95, 179], and dynamic event browsing is limited to
image-based rendering [19, 138] or predefined multi-angle videos without interactive scene ex-
ploration [2, 14].

Overcoming these challenges unlocks strong potential applications in VR/AR, surveillance,
statistical understanding of crowd psychology, and even the chance of reconstructing historic
events from the Internet videos. As an example application, since the videos are captured from
different perspectives and at slightly different times, combining their information in 3D space
effectively re-creates the scene at higher spatial and temporal resolution than what can be ob-
tained from individual videos. Imagine we could playback the moment when your wife entered
your wedding ceremony, when we poured the champagne into the stack of champagne glasses, or
when our wives threw the bouquet to the crowd at slow motion and from all possible angles. Such
magical moments, lying deep in your memory, magically come back to us immersively and real-
istically. The same system can also be used for surveillance or crowd psychology analytics as the
unconstrained visual data has been automatically organized, reconstructed, and tracked in both
space and time. As another example, consider a historical tragedy such as The Boston Bombing
in 2013. This event was captured by infrastructure cameras and civilian personal cameras from
many different angles. If the information was automatically fused from the vast amount of visual
data, both the suspects and the explosive devices could be quickly identified. More importantly,
the civilian could be evacuated along the save escape routes that were planned according to the
reconstructed dynamic scene model. The pattern of people running away from the event could
also be studied for better construction of emergency evacuation routes.

The goal of this thesis is to create a set of computational algorithms for reliable and accurate
dynamic 3D reconstruction in the unconstrained crowd captured settings. Our key is to exploit
the physics of motion dynamics, shape deformation, scene semantics, and their interplay. To-
ward this goal, we first model the dynamic motion of objects to jointly estimate the spatial and
temporal configuration of both the cameras and the dynamic objects. Secondly, we create a self-
supervise semantic scene adaptation algorithm to find reliable coarse correspondences across
wide-baseline views. Lastly, we connect the motion and semantics using shape deformation
prior and improve both motion tracking as well as semantic detections.

Thesis organization: While we mostly focus this thesis on reconstructing event captured from
passive mobile sensors (e.g., smartphone camera) because this is the most common mode of
visual data nowadays (Chapters 2 3 4), we also briefly describe our efforts on active sensing
for dense dynamic capture (Chapter 5). We believe with the recent progress in projector/emitter
miniaturization (time-of-flight cameras are already available in Galaxy S10 and Huawei P30 Pro)
and smart sensing algorithms [5, 165], smartphones can be massively equipped with active sens-
ing system for dense dynamic reconstruction in the wild.

2
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1.1 Challenges
Creating a dynamic 3D reconstruction by integrating data from multiple imaging sensors in the
wild poses two foremost challenges: (1) geometry scene reconstruction with no geometric tri-
angulation constraint; (2) accurate spatiotemporal correspondences under diverse scene mo-
tion and wide-baseline cameras for coherent shape and motion tracking. These challenges are
decomposed into the specific problem as following:

Unknown temporal alignment: While dense and accurate dynamic structure estimation might
not be needed often for event browsing, precise video sub-frame alignment is essential [19, 127].
Current computational methods for video alignment, either using audio signal [215], video bit
rate profile [215], action recognition [24], or image-based interpolation of visual features [38,
63, 221, 239], are unreliable especially for scenes with strong ambient sound such as in a party
or relatively fast-moving scenes. Estimating the correct time alignment of multiple cameras is a
combinatorial problem. As the number of video increases, even a minute error in the temporal
sequencing of the video frames severely hurts the 3D motion reconstruction (as shown later in
Chapter 2) and creates annoying playback artifacts degrading the browsing experience.

Lack of geometric constraint: When a moving point is observed from multiple cameras with
simultaneously triggered shutters, the dynamic 3D reconstruction problem reduces exactly to the
case of static 3D reconstruction. The classic point triangulation constraint [140], and the algo-
rithmic edifice of bundle adjustment [211] built upon it, applies directly. However, no current
consumer mechanism exists to ensure that multiple personal cameras, i.e., smartphones, or con-
sumer camcorders, are simultaneously triggered [127]. Thus, in the vast majority of dynamic
scenes captured by multiple independent video cameras, no two cameras see the 3D point at the
same time instant. This fact trivially invalidates the triangulation constraint and disqualifies the
decades of research in photogrammetry [150] and geometry-based vision [94, 144].

Determining dense correspondences of dynamic objects from multiple cameras: This is a
challenge because many of the dynamic objects are non-rigid, i.e., not only their positions but
also their shapes change over time. The unknown shapes and motion models prohibit reliable vi-
sual motion prediction, especially for multiple people interacting scenes where visual occlusion
or motion blur are frequent. Moreover, some dynamic objects may be textureless which makes
pixel-level surface tracking impossible. Currently, solutions based on active sensing are still not
practical for mobile devices due to their large energy consumption.

Accurate camera localization in the presence of moving objects: For any interesting dynamic
event involved many people, the background is usually dynamic. The static objects such as build-
ings, walls are mostly occluded by other humans. This makes camera localization challenging
because there are few visual features of static objects available to build a reliable model of the
environment.

Visual artifacts caused by camera sensors and optics: Most modern consumer-grade cameras
employ a rolling shutter sensor. While the estimation of rolling shutter camera poses and its

3
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Figure 1.2: Our proposed pipeline for automatic total 4D reconstruction of a dynamic scene
from crowd capture settings. It takes multiple video sequences of an event and produces accurate
temporally coherent motion tracking of all objects along with their coarse meshes that can be
later fed to a learning-based module for realistic event browsing and scene analytics.

possible degeneracy configuration have been studied [8, 10, 56], most algorithms make strong
assumptions about the smoothness of the camera motion [169], which could adversely filter out
the high-frequency motion content, e.g. sudden vibration due to footstep. Additionally, accurate
self-calibration of rolling shutter scanning speed in unconstrained settings is unexplored. For
fast-moving dynamic scenes, improper handling of this temporal parameter could cause large
errors in estimating the 3D trajectories of the moving points (as shown later in Chapter. 2). Real-
istic optics issues such as motion blur, camera defocus, or image overexposure are extra sources
of error for visual tracking algorithms.

In general, we must recognize that the challenges are tightly coupled. As an example, con-
sider the problem of estimating 3D camera pose. While segmenting out stationary points and
using them to estimate camera pose is a strategy that has been used in prior work [168], it ignores
evidence from moving points that are often closer to the cameras and therefore provide tighter
constraints for precise camera calibration. As another example, consider the multiview time
alignment problem. While there are infinitely many dynamic 3D trajectories passing through
the camera viewing rays, each of these paths corresponds to a different temporal sequencing of
the rays. And yet, the true trajectory that correctly aligns all the cameras must follow a and
physically “natural and plausible” path. Lastly, while finding dense and accurate pixel-level
correspondences between cameras are hard, coarse region-level correspondence constraints the
pixel correspondence search. In return, accurate pixel-level correspondence stabilizes the motion
tracking and enables better localization of the region correspondences. These facts serve as the
guiding principles of our solution.

1.2 Contributions
Figure 1.2 shows our pipeline for automatic dynamic scene reconstruction from crowd capture
data. We tackle the above challenges by exploiting the physics of motion dynamics, shape de-
formation, scene semantics, and their interplay. The reconstruction evolves progressively from
coarse the object skeleton level estimation using semantics priors, to sparse but precise trajec-
tory reconstruction of salient features using motion prior, and finally the combination of sparse
trajectories and coarse skeleton to improve both data sources. Using active sensing and shape
deformation prior, we also present a novel illumination decomposition approach for dense dy-
namic shape capture. We believe with the recent progress in projector/emitter miniaturization

4
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(time-of-flight cameras are already available in Galaxy S10 and Huawei P30 Pro) and smart
sensing algorithms [5, 165], smartphones can be massively equipped with active sensing system
for dense dynamic reconstruction in the wild. We state our specific contributions as follow.

1.2.1 Spatiotemporal Bundle Adjustment for Dynamic 3D Reconstruction
To optimally solve the dynamic 3D reconstruction from unsynchronized video streams, we must
first recognize all the constituent sub-problems that exist. The classic problems of point tri-
angulation and camera resectioning in the static case are subsumed. Two new problems arise:
reconstructing 3D trajectories of moving points and estimating the temporal alignment of each
camera. Second, we must recognize that the sub-problems are tightly coupled and must be solved
jointly. Since there is only one observation of the dynamic point at any time instances, the re-
construction of its motion/trajectory is ill-posed. Clearly, there are infinitely many trajectories
passing through the camera viewing rays and each of these paths corresponds to a different tem-
poral sequencing of the rays. Yet, the true trajectory must also correctly align all the cameras.
Thus, to sufficiently constrain the solution, we recognize that both the geometry and dynamics
of the point have to be considered. We analyze several physical motion priors, i.e. least kinetic
energy, least force, and least action, on a large motion capture corpus of CMU Motion Capture
database, and carefully integrate of these priors within the reconstruction pipeline. Our formu-
lation not only allows sub-frame temporal alignment but also fully exploits the asynchronous
video streams to recover sparse but accurate 3D trajectories at much high temporal resolution
than the framerate of the input videos. As a demonstration, we reconstruct 3D trajectories of
dynamic actions captured outdoor at 240fps from 8 hand-held cameras captured at 30fps (see
Figure 1.3)1.

1.2.2 Self-supervised Scene-adaptive Multiview Human Association
To address the problem of people association across multiple viewpoints and time instances, we
propose to use self-adaptive learning of strong appearance descriptor specifically for the do-
main videos for people matching. We combine motion tracking, mutual exclusion constraints,
and multi-view geometry in a multi-task learning framework to automatically adapt a generic
person appearance descriptor to the domain videos. A discriminative person descriptor enables
the use of clustering for tracking individual persons. Since the association is solved globally,
there is no tracking drift. As a bi-product of the association, the videos are also temporally
aligned (up to the speed of the observed motion).

To further demonstrate the impact of the improved descriptor, we use our association to
drive a complete pipeline for 3D human tracking to estimate spatially stable and temporally
coherent 3D skeleton for each tracked person. Compared to the baseline, our method shows
significant improvement (5-10X) in 3D skeleton reconstruction, stability, minimizing tracking
noise. We believe, for the first time, stable and long duration 3D human tracking is demonstrated

1See link for our 960fps motion reconstruction from the original 120fps videos and other results

5
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Figure 1.3: The aligned images, estimated from the temporally down-sampled video at 30 fps,
are shown for the original video captured at 120fps. As shown in the inset of aligned images,
the shadow cast by the folding cloth is well temporally aligned across images. Our motion prior
based approach produces plausible reconstruction for the entire course of the action even with
relatively low frame-rate cameras (30fps).
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Human aware 4D reconstruction

t=5s t=10s t=15s t=20s t=25s

Evolution of the activity

12/17 input videos along with the associated people 
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Figure 1.4: 3D tracks of complex group activity from hand-held smartphone and head-mounted
GoPro cameras. A total of 14 people, each associated with a bounding box of unique color,
are tracked over time. Our method gives smooth and clean trajectories despite strong occlusion,
similar people appearance, and complex motion pattern. The human mesh model is fitted to
the estimated 3D skeleton, providing a coarse approximation of the human body shape for later
refinement.
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Figure 1.5: Reconstruction of vehicles crossing a busy intersection, making turns, going straight
and changing lanes. A subset of vehicle skeletons (3D detector locations) and their 3D trajec-
tories are augmented within the Google Earth view of the intersection. The reconstructions are
reprojected into multiple views of two cars (a sedan and an SUV) demonstrating good perfor-
mance under partial occlusions.

in actual chaotic live group events (see Figure 1.4 for one of those sequences 2). The existence
of spatiotemporally coherent 3D skeleton eases the human morphable mesh model fitting step
providing a good initialization for further body shape refinement.

1.2.3 Fusion of Motion and Semantic Priors via Object Triangulation
We formulate a novel fusion algorithm to combine the imprecise but accurate multiview struc-
tured semantic keypoint with the sparse but precise single-view unstructured tracks for an object
undergoing rigid motion. No spatial constraints are needed for single-view tracking points.
No temporal constraints are needed for multi-view matching points. No scale ambiguity
occurs in merging the motion estimation across cameras.

We apply the method to reconstruction moving cars at a busy intersection captured 21 hand-

2See link and https://www.youtube.com/watch?v=ZDuaJzcLcdE for more results.
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Figure 1.6: When a highly textured shirt illuminated by 2 projectors, the mixture of surface color
and the illuminations makes it difficult to find reliable and dense camera-projector correspon-
dences. By exploiting known illumination patterns and a partial observation of the surface color,
we can decompose the mixed appearances into its original illuminations and the surface texture.
The decomposed illumination facilitated dense camera-projector correspondences for detailed
shape reconstruction and the decomposed surface texture allows dense surface motion tracking.

held cameras (see Figure 1.5) 3. We demonstrate that incomplete and imprecise semantic key-
point detection across multiple views can be fused with precise but sparse single-view tracks
of Harris feature to reconstruct moving vehicles even in severe occluded scenarios. The shapes
(even sparse) and motions of the vehicles recovered using our approach can be invaluable to traf-
fic analysis, including vehicle type, speed, density, 636 trajectory, and frequency of events such
as near-accidents or for (semi-)autonomous vehicles approaching the intersection.

1.2.4 Illumination Decomposition for Active Sensing of Dynamic Shape
Active illumination sensing has a trade-off between acquisition time and resolution of the es-
timated 3D shapes. Multi-shot approaches can generate dense reconstructions but require sta-
tionary scenes. Single-shot methods are applicable to dynamic objects but can only estimate
sparse reconstructions and are sensitive to surface texture. We develop a single-shot approach to
produce dense shape reconstructions of highly textured objects illuminated by one or more pro-
jectors. Our key is an image decomposition scheme that can recover the illumination image of
different projectors and the texture images of the scene from their mixed appearances. Our main
assumption is that the object shape deformation is locally smooth such that local deforma-
tion propagation is possible. We focus on three cases of mixed appearances: the illumination
from one projector onto textured surface, illumination from multiple projectors onto a textureless
surface, or their combined effect. Our method can accurately compute per-pixel warps from the
illumination patterns and the texture template to the observed image. The texture template is
obtained by interleaving the projection sequence with an all-white pattern. The estimated warps
are reliable even with infrequent interleaved projection and strong object deformation. Thus, we

3See link and https://youtu.be/RUtK7xRtyns for more results

9

http://www.cs.cmu.edu/~ILIM/projects/IM/CarFusion/
https://youtu.be/RUtK7xRtyns


DRAFT

obtain detailed shape reconstruction and dense motion tracking of the textured surfaces. The
proposed method, implemented using a one camera and two projectors system, is validated on
synthetic and real data containing subtle non-rigid surface deformations (see Figure 1.6 for one
example result) 4.

1.3 Potential Impacts
This thesis could have strong impacts on many fields: filming industry, surveillance, media ana-
lytics, and crowd psychology understanding. Figure 1.7 illustrates some of these applications.

Cinematography: Many compelling video processing effects can be achieved if accurate
per-pixel depth information and the camera spatial and temporal calibrations are known. Han-
dling camera motion, occlusions, or relighting entirely in image space can be extremely labor-
intensive while dealing with these issues in scene-space is simple [62, 120, 124, 203, 249]. Our
system uses handheld video cameras to reconstruct temporally consistent mesh models of the
scene. This enables casual cinematography where everybody can create stunning visual effects
only available in blockbuster movies.

Security surveillance: Consider a historical tragedy such as The Boston Bombing in 2013.
This event was captured by infrastructure cameras and civilian personal cameras from many dif-
ferent angles. If the information was automatically fused from the vast amount of visual data,
both the suspects and the explosive devices could be quickly identified. More importantly, the
civilian could be evacuated along the save escape routes that were planned according to the re-
constructed dynamic scene model.

Crowd psychology: Understanding human behavior is crucial for human-robot interactions
or autonomous driving. For example, when a fully autonomous car travels to a new geodemo-
graphic region (India or China vs. USA), it has to understand the social behavior of both the
other drivers and the pedestrians in other to operate safely. Our system measures the movements
and activities of the people, the cars, etc. in natural settings, which is later used to understand
the social norms of that geodemography.

4See link for more results
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Cinematography: relighting, bullet time, etc. Large scale media analytics

Crowd psychology: 

how people drive at a busy intersection can be studied by monitoring the car motion

Figure 1.7: The ability to estimate dense and accurate temporally coherent 3D mesh models, the
scene illumination and the object ”true” color from handheld cameras in unconstrained settings
opens up many exciting applications in the movie industry, AR/VR, media analytics, and human
behavior understanding.
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1.4 Publication List
The relevant publications to this thesis are as follows:
• Chapter 2: Spatiotemporal Bundle Adjustment

(1) Spatiotemporal Bundle Adjustment for Dynamic 3D Reconstruction in the Wild, in
CVPR 2016
(2) Spatiotemporal Bundle Adjustment for Dynamic 3D Human Reconstruction in the
Wild, in TPAMI (under review)
Project webpage: link

• Chapter 3: Self-supervised Learning ofSpatiotemporal People Association
(1) Self-supervised Multiview Person Association and Its Applications, in TPAMI (under
review)
Project webpage: link

• Chapter 4: CarFusion: Fusion of Motion andSemantic Priors via Object Triangulation
(1) CarFusion: Incorporating Point Tracking and Detection for Multi-view Dynamic Re-
construction, in CVPR 2018
(2) Occlusion-Net: 2D/3D Occluded Keypoint Localization Using Graph Networks, in
CVPR 2019
Project webpage: link

• Chapter 5: Illumination Decomposition for DenseDynamic Capture in Active Sensing
(1) Texture Illumination Separation for Single-shot Structured Light Reconstruction, in
TPAMI 2016
Project webpage: link
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Chapter 2

Spatiotemporal Bundle Adjustment

When a moving point is observed from multiple cameras with simultaneously triggered shutters,
the dynamic 3D reconstruction problem reduces exactly to the case of static 3D reconstruction.
The classic point triangulation constraint [140], and the algorithmic edifice of bundle adjust-
ment [211] built upon it, applies directly. Currently, there exists no consumer mechanism to
ensure that multiple personal cameras, i.e., smartphones, consumer camcorders, or egocentric
cameras, are simultaneously triggered [127]. Thus, in the vast majority of dynamic scenes cap-
tured by multiple independent video cameras, no two cameras see the 3D point at the same time
instant. This fact trivially invalidates the triangulation constraint.

To optimally solve the dynamic 3D reconstruction problem, we must first recognize all the
constituent sub-problems that exist. The classic problems of point triangulation and camera re-
sectioning in the static case are subsumed. In addition, two new problems arise: reconstructing
3D trajectories of moving points and estimating the temporal location of each camera. Sec-
ond, we must recognize that the sub-problems are tightly coupled. As an example, consider
the problem of estimating 3D camera pose. While segmenting out stationary points and using
them to estimate camera pose is a strategy that has been used in prior work [168], it ignores
evidence from moving points that are often closer to the cameras and therefore provide tighter
constraints for precise camera calibration. Imprecise camera calibration and quantization errors
in estimating discrete temporal offsets result in significant errors in the reconstruction of moving
points1 [78, 174, 218].

In this chapter, we develop the novel concept of spatiotemporal bundle adjustment that jointly
optimizes for all for sub-problems simultaneously. Just as with static 3D reconstruction, where
the most accurate results are obtained by jointly optimizing for camera parameters and triangu-
lating static points, the most accurate results for dynamic 3D reconstruction are obtained when
jointly optimizing for the spatiotemporal camera parameters and triangulating both static and
dynamic 3D points. Unlike traditional bundle adjustment, we recognize the need for a motion

1Consider this example: when a person jogging at 10m/s is captured by two cameras at 30Hz, one static and one
handheld jittering at 3mm per frame, with the camera baseline of 1m, recording from 4m away. A simple calculation
suggests that a näive attempt to triangulate points of the static camera with their correspondences of the best-aligned
frame in the other camera results in up to 40 cm reconstruction error.
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prior in addition to the standard reprojection cost that jointly estimates the 3D trajectories cor-
responding to the sub-frame camera temporal alignment. We evaluate several physics-based
3D motion priors (least kinetic energy, least force, and least action) on the CMU motion cap-
ture repository [1]. Such joint estimation is most helpful for dynamic scenes with large back-
ground/foreground separation where the spatial calibration parameters estimated using back-
ground static points are unavoidably less accurate for foreground points.

Direct optimization of the spatiotemporal objective is hard and susceptible to local minima.
We address this optimization problem using an incremental reconstruction and temporal align-
ment algorithm. This optimization framework ensures the proposed 3D motion prior constraint is
satisfied. Our algorithm naturally handles the case of missing data (e.g., when a point is occluded
in a particular time instant) and scales to many cameras. Thus, we can produce accurate 3D tra-
jectory estimation at much high temporal resolution than the frame rates of the input videos.

While the incremental reconstruction and alignment approach is effective and accurately op-
timizes the spatiotemporal bundle adjustment problem, it is not efficient. The computational
complexity grows quadratically with the number of cameras. We solve this issue by dividing the
optimization problem into overlapping groups of cameras with overlapping field of view, each of
which is optimized independently using the incremental reconstruction and alignment scheme.
These sub-problems are merged and globally optimized in the final pass. Empirically, this ap-
proach is at least 20 times faster and has marginal accuracy loss on our datasets.

We apply spatiotemporal bundle adjustment to reconstruct human dynamic scenes. While
this algorithm can accurately reconstruct the 3D trajectory of the dynamic points, those points
are usually sparse and hence, can be hard to visually interpret. We fit a statistical 3D human
body model [141] to the unsynchronized and low frame rate videos to augment the reconstruc-
tion. This is in a similar spirit of Multiview stereo to sparse bundle adjustment [79, 188]. Due to
the lack of triangulation constraints used in previous work [112], we employ the same physics-
based motion prior and the sparse dynamic points to further constrain the fitting. Additionally,
since we fit the mesh model to multiple unsynchronized videos simultaneously, unless the frame
sequencing is properly estimated, the fitted mesh motion will contain significant jitters and loops.
This is the key difference between unsynchronized multiple cameras model fitting and monocu-
lar [101, 114, 213] or image-based model fitting [31, 170]. While ideally we should re-optimize
camera calibration parameters and 3D points jointly with the body shape and pose coefficients,
the extracted semantic cues are often imprecise and hurt the spatiotemporal bundle adjustment.
Thus, we fix the estimated spatiotemporal parameters during the shape fitting.

As a demonstration, we build an end-to-end pipeline that takes multiple uncalibrated and
unsynchronized video streams and produces a dynamic reconstruction of the event without any
constraints. Our framework is applicable to rolling shutter camera via a novel a self-calibration
method to estimate the rolling shutter readout speed and the spatial pose of a moving rolling
shutter camera. Because the videos are aligned with sub-frame precision, we reconstruct 3D
trajectories and human body mesh of unconstrained outdoor activities at much higher temporal
resolution than the input videos.
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Contributions: (1) We present a spatiotemporal bundle adjustment framework that jointly opti-
mizes four coupled sub-problems: estimating camera intrinsics and extrinsics, triangulating 3D
static points, as well as subframe temporal alignment between cameras and estimating 3D trajec-
tories of dynamic points. Key to our joint optimization is the careful integration of physics-based
motion priors within the reconstruction pipeline, validated on a large motion capture corpus of
human subjects. (2) We devise two efficient computational algorithms to strictly enforce the mo-
tion prior using the optimization: the incremental reconstruction and alignment and the divide
and conquer algorithm which significantly speeds up the first solver with marginal loss in accu-
racy. (3) We build an end-to-end framework for human shape reconstruction via model fitting to
unsynchronized low framerate video cameras.

2.1 Related Work

In order to reconstruct the dynamic scene, all the cameras must first be temporally aligned. Most
approaches compute corresponding trajectories of the moving points and optimize for the time
offsets such that the interpolated trajectories satisfy the mutiview constraints such the funda-
mental matrix [38, 63, 166] or rigidity rank-3 criteria [210]. Other interesting approaches, that
exploit the object motion dynamics [224], the relative motions of the rigid objects [80], or the
co-occurrence statistic of the spatiotemporal feature points [221, 239], are also explored. How-
ever, these methods are either fundamentally limited to the static world assumption, unable to
estimate sub-frame alignment, or restricted by the strict assumption of the motion model for the
entire observation.

Prior work in dynamic 3D reconstruction has mostly assumed known camera pose and tem-
poral alignment. Under this assumption, Avidan and Shashua posed the problem of trajectory
triangulation [17], where multiple noncoincidental projections of a point are reconstructed. Tra-
jectory triangulation is an ill-posed problem and current algorithms appeal to motion priors to
constrain reconstruction: linear and conical motion [17]; smooth motion [168, 215]; sparsity
priors [261]; low rank spatiotemporal priors [194].

Recent concurrent work has considered the aggregate problem of temporal alignment and
dynamic reconstruction jointly [108, 255]. However, the relation between static and dynamic
reconstruction was made. We are the first to formally model the four sub-problems jointly to
fully take advantage of their inter-connections.
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2.2 Motion Prior for Dynamic 3D Capture

Consider the scenario of C video cameras observing N 3D points over time. The relation be-
tween the 3D point Xn(t) and its 2D projection xnc (f) on camera c at frame f is given by:[

xnc (f)
1

]
≡ Kc(f)

[
Rc(f) Tc(f)

] [Xn(t)
1

]
, (2.1)

where Kc(f) is the intrinsic camera matrix, Rc(f) and Tc(f) are the relative camera rotation and
translation, respectively. For simplicity, we denote this transformation as xnc (f) = πc(f,X

n(t)).
The time corresponding to row rc at frame f is related to the continuous global time t linearly:
f = αct+βc+γc ∗rc, where αc and βc are the camera frame rate and time offset, γc is the rolling
shutter pixel readout speed. For global shutter camera, γc is zero.

Image reprojection cost: At any time instance, the reconstruction of a 3D point must satisfy
Eq. 2.1. This gives the standard reprojection error SI , which we accumulate over all 2D points
observed by all C cameras for all frames Fc:

SI =
C∑
c=1

N∑
n=1

Fc∑
f=1

Inc (f)
‖πc(f,Xn(t))− xnc (f)‖2

σnc (f)
, (2.2)

where, Inc (f) is a binary indicator of the point-camera visibility, and σnc (f) is a scalar, capturing
the uncertainty in localizing xnc (f) to SI . Since the localization uncertainty of an image point
xnc (f) is proportional to its scale [248], we use the inverse of the feature scale as the weighting
term for each residual term in SI .

However, Eq. 2.2 is purely spatially defined and does not encode any temporal information
about the dynamic scene. Any trajectory of a moving 3D point must pass through all the rays
corresponding to the projection of that point in all views. Clearly, there are infinitely many such
trajectories and each of these paths corresponds to a different temporal sequencing of the rays.
Yet, the true trajectory must also correctly align all the cameras. This motivates us to investigate a
motion prior that ideally estimates a trajectory that corresponds to the correct temporal alignment.
The cost of violating such a prior SM can be then added to the image reprojection cost to obtain
a spatiotemporal cost function that jointly estimates both the spatiotemporal camera calibration
parameters and the 3D trajectories:

S = arg min
X(t),{K,R,t},α,β

SI + SM . (2.3)

Given multiple corresponding 2D trajectories of both the static and the dynamic 3D points
{xc(t)} for C cameras, we describe how to jointly optimize Eq. 2.3 for the 3D locations X(t),
the spatial camera parameters at each time instant {Kc(f), Rc(f), Tc(f)} and the temporal align-
ment between cameras β. We assume the frame rate α is known.
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2.2.1 Physics-based Motion Priors

In this section, we investigate several forms of motion prior needed to compute SM in Eq. 2.3.
We validate each of these priors on the entire CMU Motion Capture Database [1] for their effec-
tiveness on modeling human motion.

When an action is performed, its trajectories must follow the paths that minimize a physical
cost function. This inspires the investigation of the following three types of priors: least kinetic
energy, least force2, and least action [71]. See Figure 2.1 for the formal definition of these priors.
In each of these priors, m denotes the mass of the 3D point, g is the gravitational acceleration
force acting on the point at height h(t), and v(t) and a(t) are the instantaneous velocity and
acceleration at time t, respectively.

Mathematically, the least kinetic energy prior encourages constant velocity motion, the least
force prior promotes constant acceleration motion, and the least action prior favors projectile
motion. While none of these priors hold for an active system where forces are arbitrarily applied
during its course of action, we conjecture that the cumulative forces applied by both mechanical
and biological systems are sparse and over a small duration of time, the true trajectory can be
approximated by the path that minimizes the costs defined by our motion priors. Any local er-
rors in the 3D trajectory, either by inaccurate estimation of points along the trajectory or wrong
temporal sequencing between points observed across different cameras, produce higher motion
cost.

Least kinetic motion prior cost: We accumulate the cost over all N 3D trajectories for all time
instances T n:

(2.4)SM =
N∑
n=1

Tn−1∑
i=1

wn(t)
mn

2
vn(ti)2(ti+1 − ti),

where γn(t) is the weighting scalar and mn is the point mass, assumed be to identical for all
3D points and set to be 1. We approximate the instantaneous speed v(ti) at time ti along the
sequence Xn(t) by a forward difference scheme, vn(ti) ≈ ‖X

n(ti+1)−Xn(ti)
ti+1−ti ‖. We add a small

constant ε to the denominator to avoid instability caused by 3D points observed at approximately
same time. Eq. 2.4 is rewritten as:

(2.5)SM =
N∑
n=1

Tn−1∑
i=0

wn(t)

2

∥∥∥Xn(ti+1)−Xn(ti)

ti+1 − ti + ε

∥∥∥2

(ti+1 − ti),

Using the uncertainty σnc (f) of the 2D projection of 3D point Xn(t), the weighting wn(t) can
be approximated by a scaling factor that depends on the point depth λ and the scale µ, relating
the focal length to the physical pixel size, as wn = µλ

σn
c

. The least force and least action prior costs
can be computed similarly.

2We actually use the square of the resulting forces.
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Figure 2.1: Evaluation of the motion priors on 3D motion capture data. The least kinetic energy
prior and least force prior performs similarly and both estimate the time offset between two
noisy sequences obtained by uniformly sampling a 3D trajectory from different starting times.
The least action prior gives biased results even for the no-noise case.

2.2.2 Evaluation on Motion Capture Data

Consider a continuous trajectory of a moving point in 3D. Sampling this continuous trajectory
starting at two different times produces two discrete sequences in 3D. We first evaluate how the
motion prior helps in estimating the temporal offset between the two discrete sequences. We ex-
tend this to 2D trajectories recorded by cameras later. The evaluation is conducted on the entire
CMU marker-based Motion Capture Database [1] containing over 2500 sequences of common
human activities such as playing, sitting, dancing, running and jumping, captured at 120 fps.

Each trajectory is subsampled starting at two different random times to produce the discrete
sequences. 3D zero-mean Gaussian noise is added to every point along the discrete trajectories.
The ground truth time offsets are then estimated by a linear search and we record the solution
with the smallest motion prior cost. For our test, the captured 3D trajectories are sampled at 12
fps and the offsets are varied from 0.1 to 0.9 frame interval in 0.1 increments.

As shown in Figure 2.1, the least kinetic energy prior and least force prior perform similarly
in this setting and both estimate the time offset between the two trajectories well for low noise
levels. When more noise is added to the trajectory sequences, the sequencing is noisier. Yet, our
motion cost favors correct camera sequencing over closer time offset. This is a desirable prop-
erty because wrong sequencing results in a trajectory with loops (see Figure 2.5). In contrast, the
least action prior gives biased results even when no noise is added to the 3D data.

We further compare the sequencing expressiveness of the least kinetic energy prior to the
least force prior for different cumulative framerate. The cumulative framerate is defined as the
framerate of the virtual camera consists of all the frames from each camera. As shown in Fig-
ure 2.2, the least force prior is more expressive than the least kinetic prior for lower framerate.
This is expected since the least force prior captures more local information of the trajectory.
However, for modern video cameras, the cumulative framerate easily exceeds 120fps, where the
alignment results using either priors are similar. Thus, we only use the least kinetic prior for the
remainder of the work. Extension to the least force is straight forward.
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Figure 2.2: Comparison of the sequencing expressiveness between the least kinetic energy prior
and the least force prior for different cumulative framerates.

2.3 Spatiotemporal Bundle Adjustment

Unlike traditional bundle adjustment [211], the spatiotemporal bundle adjustment must jointly
optimize for four coupled problems: camera intrinsics and extrinsics, 3D locations of static
points, temporal alignment of cameras and 3D trajectories of dynamic points. However, direct
optimization of Eq. 2.3 is hard because: (a) it requires a solution to a combinatorial problem of
correctly sequencing all the cameras and (b) motion prior cost is strongly discontinuous as small
changes in time offsets can switch the temporal ordering of cameras. Thus, it is not possible to
ensure the satisfaction of the motion prior constraint.

We solve this problem using an incremental reconstruction and alignment approach where
the camera is sequentially added to the optimization problem. This algorithm is further speedup
by a divide-and-conquer scheme where the groups of cameras are solved independently first and
then merged and refined globally using continuous second-order optimization. We initialize tem-
poral alignment and the 3D trajectory of the dynamic points using a geometry (or triangulation
constraint) based method [63, 196]. Even though the triangulation constraint is not strictly satis-
fied, empirically, the estimations provide a good starting point for the incremental reconstruction
and alignment.

2.3.1 Incremental Reconstruction and Alignment

Our incremental reconstruction and alignment (IRA) approach adds camera one at a time. For
every new camera, a linear search for the best sequencing of this camera with respect to the
previous cameras based on the motion prior cost is conducted. Once the sequencing order is
determined, we use continuous optimization to jointly estimate all the spatiotemporal camera
parameters, and static points and dynamic trajectories. Thank to the linear search step, we can
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Input: {xc(t)}, {K′,R′,T′},β′
Output: {X(t)p}, {K,R,T},β
1. (Sec. 3.1.1) Refine the alignment pairwise
2. (Sec. 3.1.2) Generate prioritized camera list
3. (Sec. 3.1.3) while All cameras haved NOT been processed do

for All cameras slots do
Solve Eq. 2.3 for {Xp(t)} and β
if No sequencing flipped then

Record the STBA cost and its solution.
else

Discard the solution;
end

end
Accept the solution with the smallest cost

end
4. (Sec. 3.2) Solve Eq. 2.3 for {X(t)p}, {K,R,T},β

Algorithm 1: Incremental reconstruction and alignment.

enforce the motion prior constraint strictly without any discontinuities due to incorrect time or-
dering of cameras. We summarize this method in Algorithm 1.

Temporal alignment of two cameras: We refine the initial guess by optimizing Eq. 2.3. How-
ever, just as in point triangulation, the 3D estimation from a stereo pair is unreliable. Thus, we
simply do a linear search on a discretized set of temporal offsets and only solve Eq.2.3 for the
3D trajectories. The offset with the smallest cost is taken as the sub-frame alignment result. We
apply this refinement to all pair of cameras.

Which camera to add next? As in incremental SfM [75, 196], we need to determine the next
camera to include in the calibration and reconstruction process. For this, we create a graph with
each camera as a node and define the weighted edge cost between any two cameras ith and jth as

Eij =
C∑

k=1,k 6=i,j

Sij
|tij + tjk − tik|

NijBij

, (2.6)

where tij , Nij , Bij , and Sij are the pairwise offset, the number of visible corresponding 3D
points, the average camera baseline, and the spatiotemporal cost evaluated for those cameras,
respectively. Intuitively, |tij + tjk − tik| encodes the constraint between the time offsets among
a camera triplet, and NijBij is a weighting factor favoring the camera pair with more common
points and larger baseline.

Similar to [63, 221], a minimum spanning tree (MST) of the graph is used to find the align-
ment of all cameras. We use the Kruskal MST, which adds nodes with an increasing cost at
each step. The camera processing order is determined once from the connection step of the MST
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procedure.

Estimating the time offset of the next camera: We temporally order the current processed
cameras and insert the new camera into possible time slots between them, followed by a non-
linear optimization to jointly estimate all the offsets and 3D trajectories. Any trials where the
relative ordering between cameras change after the optimization are discarded, ensuring that the
motion prior is satisfied. The trial with the smallest cost is taken as the temporal alignment and
3D trajectories of the new set of cameras.

2.3.2 Divide and Conquer

While the incremental reconstruction and alignment approach offers a tractable solution for op-
timizing Eq .2.3, its complexity increases quadratically with the number of cameras. For every
new camera, we must optimize Eq. 2.3 C − 1 times, where C is the number of the camera being
processed, to determine the sequencing order with the least motion cost. To address the compu-
tational efficiency issue, we propose a divide and conquer approach to speed up to solver with
minimal loss in reconstruction accuracy. This algorithm is based on the observation that the tem-
poral alignment becomes stable after a small number of cameras is processed (4 cameras in our
all of our experiments).

This algorithm proceeds in three stages. First, we form the camera groups with large co-
visibility with them by creating a skeleton graph [197] of camera graph built-in Sec. 2.3.1. Here,
each group is taken as two camera nodes in the skeleton graph and their connected cameras of
the camera graph. We purposely let the overlapping groups share two cameras to better detect
and discard temporal inconsistency when merging all the groups together. Second, we process
each camera group independently processed using the incremental reconstruction and alignment
approach. For every pair of inconsistency groups detected, these groups are merged and re-
processed using the first approach. Third, we aggregate to temporal alignment parameters from
all groups into a common timeline and optimize all cameras jointly for the spatiotemporal cali-
bration parameters and the 3D position of the static and dynamic points.

2.3.3 Motion Resampling via Discrete Cosine Transform

Note that Eq. 2.5 approximates the speed of the 3D point using finite-difference. While this ap-
proximation allows better handling of missing data, the resulting 3D trajectories are often noisy.
Thus, we further fit the weighted complete DCT basis function to the estimated trajectories. Our
use of DCT for resampling is mathematically equivalent to our discrete motion prior [200] and
is not an extra smoothing prior. For the uniform DCT resampling, the least kinetic energy prior
cost can be rewritten as:

(2.7)S ′M =
N∑
n=1

En>W nEn∆t,
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Figure 2.3: Evaluation of the motion priors on the Motion Capture database for simultaneous 3D
reconstruction and sub-frame temporal alignment. (a) Spatially, the trajectories estimated using
the motion prior achieves higher accuracy than generic B-spline trajectories basis. Frame level
alignment geometric triangulation spreads the error to all cameras and estimates less accurate 3D
trajectories. (b) Temporally, our motion prior based method estimates the time offset between
cameras with sub-frame accuracy.

where En is the DCT coefficient of the 3D trajectory n, W n is a predefined diagonal matrix,
weighting the contribution of the bases, and ∆t is the resampling period. The 3D trajectory
Xn(t) is related to En by Xn(t) = Bn>En, where Bn is a predefined DCT basis matrix. The
dimension of Bn and W n depend on the trajectory length. We replace the trajectory Xn(t) by
Bn>En and rewrite Eq. 2.3 as:

(2.8)S = argmin
E
λ1S

′
I + λ2S

′
M ,

where λ1 and λ2 are the weighting scalars and S ′I is the reprojection error computed using the
resampled trajectories. While applying resampling to the incremental reconstruction loop can
improve the 3D trajectories and the temporal alignment, it requires inverting a large and dense
matrix of the DCT coefficients, which is computationally demanding. Thus, we only use this
scheme as a post-processing step.

2.3.4 Evaluation on Motion Capture Data
We validate the proposed spatiotemporal bundle adjustment on synthetic data generated from
the CMU Motion Capture database [1]. We sequentially distribute the ground truth trajectory,
captured at 120 fps, to 10 global shutter perspective cameras with a resolution of 1920x1080 and
12fps. All cameras are uniformly arranged in a circle and capturing the scene from 3 m away. We
randomly add 3000 background points arranged in a cylinder of radius 15 m centered at dynamic
points. The relative offsets, discretized at 0.1 frames, are randomly varying for every sequence.
None of the offsets generates cameras observing the 3D points synchronously. We assume that
the initial offsets are within 2-3 frames accurate, which is the case for most geometry-based
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Incremental Divide and conquer
Geometry Spline MP R MP R

Static 3.45 2.93 2.54 2.41 2.56 2.41
Dynamic 17.8 1.68 0.85 0.74 0.89 0.75

Table 2.1: The reprojection error for the entire CMU Mocap dataset. MP is the results for all
cameras without resampling (R).

alignment methods. We also add zero mean Gaussian noise of 2 pixels standard deviation to the
observed 2D trajectories. For the divide and conquer approach, we split the camera into 3 groups
of 4 nearby cameras each.

The reconstruction and alignment errors are summarized in Figure2.3 and Table ??. Spa-
tially, the point triangulation of the frame-accurate alignment propagates the error to all cameras
and gives the worst result. Trajectories reconstructed using 3D cubic B-spline basis gives much
smaller error than the point triangulation. However, it also arbitrarily smooths out the trajecto-
ries and is inferior to our method. While both the direct motion prior and DCT resampling have
similar mean error (direct: 6.6 cm, DCT: 6.5 cm), the former has a larger maximum error due to
the noise in approximating the velocity. Temporally, our method can estimate ground truth offset
at sub-frame accuracy with low uncertainty. The divide and conquer approach is quantitatively
equally accurate with the incremental reconstruction and alignment method while being approx-
imately 30 times faster. We also observe that this approach produces no temporal inconsistency
between camera groups for all trials.

2.4 Dynamic Reconstruction of Human Body
While the spatiotemporal bundle adjustment can accurately estimate the 3D trajectory of dynamic
points, the number of such trajectories is sparse and is insufficient to fully visualize the scene
content. In this section, we leverage recent advances in semantic understanding to estimate the
3D human body shape and pose by fitting a statistical body model to the observed semantic cues.
More specifically, the optimization is constrained by the 2D human body part segmentation from
each image, the body anatomical keypoints, the sparse 3D trajectories recovered using sparse
spatiotemporal bundle adjustment, the least kinetic energy motion prior, and the spatial pose and
shape priors. Due to the imprecision in localizing the semantic cues, we fix camera parameters
and only optimize for the 3D human body.

2.4.1 Statistical Body Model
We use the SMPL model [141], a linear blend shape model of body shape that can be deformed
via linear blend skinning, to present the human body. This model V (Ω,Φ,Γ) is a triangle mesh,
composed of 6890 vertices, and is parameterized by gender, 10 identify shape coefficients Ω,
24 joints Φ, presented using angle-axis to model the relative rotation between body parts, and a
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body root translation Γ. The 3D location of the body joints X corresponding to a particular pose
configuration are given by the joint regressor R, a matrix presenting a sparse linear combination
of surface vertices around the joint, X = RV (Ω,Φ,Γ). In our case, R is slightly different
from [141] as our joints are defined according to the OpenPose keypoints format [36].

2.4.2 Body Alignment Objective
We fit the SMPL model to the observed semantic body part and keypoint detectors and the sparse
3D trajectory by optimizing the following cost:

(2.9)S = arg min
Ω,Φ(t),Γ(t)

λSJ
SJ + λST

ST + λSS
SS + λSM

SM + λSB
SB,

where {SJ , SS} are the image evidence cost, capturing the body joint, and body silhouette, re-
spectively, ST is the cost induced by the sparse 3D trajectory on the body, SM is the least kinetic
motion prior loss imposed on the 3D body joints, and SB is the body pose and shape prior cost.
We normalize each of these costs by the number of their contributing residuals before applying
the weights λSK

, λST
, λSS

, λSM
, λSB

} to each cost. The definition of these cost functions are
described as follow.

Body keypoint alignment cost: This cost function aims to reduce the difference between the
projected SMPL keypoints and the detected keypoints, and is written as

SJ =
C∑
c=1

Fc∑
f=1

J∑
j=1

Ijc (f)σjc(f)ρ

(
||πc(f,Xj)− xjc(f)||

σJ

)
, (2.10)

where σJ is a scalar approximating the uncertainty in detecting the body keypoints, Xj is a joint
among the set X(t) = RV (Ω,Φ(t),Γ(t)), Ijc (f) is a binary indicator of the point visibility, and
σjc(f) is the confidence of the keypoints detected by OpenPose [36].
Sparse 3D trajectory constraints: This cost function penalizes variance of the distances L(., .)
between the point Xn along the 3D trajectories to the two nearest joints within the same body
part, Xj ∈ 2NN(Xn), and is expressed as

ST =
C∑
c=1

Fc∑
f=1

N∑
n=1

∑
Xj

Inc (f)ρ

(
||L(Xj, Xn)− L(Xj, Xn)||2

σT

)
, (2.11)

where σT is a scalar capturing the uncertainty in estimating the location of point along the sparse
3D trajectory, Inc (f) is a binary showing the availability of Xn(t) on to camera c at frame f ,
and l is the Euclidean distance between two points. Here, we add the extra variable L(., .) as the
average distance between points over the entire course of motion, to the optimization. Despite
the non-rigid body and cloth deformation, we expect the deviation of the instantaneous point
distance to be close to its average over time. Empirically, we observe that this loss function
improves tracking robustness especially in case of semantic detector failure when body parts
corresponding different person are grouped together.
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Silhouette alignment cost: This cost function discourages any projected body vertices not con-
tain inside the detected body segmentation and is expressed as

SS =
C∑
c=1

Fc∑
f=1

∑
v∈V (Ω,Φ(t),Γ(f))

ρ

(
DTc(f)(πc(f, v))

σP

)
, (2.12)

where DTc(f) is the distance transform of the body part segmentation in camera c at frame
f . DTc(f) is zeros for points inside projected mesh and is equal to the distance between the
projected mesh vertex and its nearest point on the segmentation boundary contour otherwise.
This loss is particularly useful for occluded body parts. We use DensePose [11] to compute body
segmentation.
Motion prior cost: Due to the lack of triangulation contraints in unsynchronized camera setup,
the motion prior is key to for accurate dynamic human body estimation, especially for occluded
body parts under fast body motion and observed by low frame rate cameras. Similar to sparse
3D trajectory estimation, we use the least kinetic motion prior with forward differentiation ap-
proximation of the velocity imposed on the 3D body joints Xj to constraint to body motion over
its entire observation duration T

SM =
∑
t∈T

∑
Xj

∥∥∥Xj(t(i+ 1))−Xj(ti)

ti+1 − ti + ε

∥∥∥2 (ti+1 − ti)
σM

, (2.13)

where σM is the expected variation in human instantaneous velocity. We set σM differently for
different joints.
Body shape prior cost: The SMPL model is designed to fit semi-naked people, whereas we are
interested in measuring people who are wearing arbitrary clothes and accessories. Moreover, the
semantic detector that the model is being fit to could produce erroneous estimation, especially
for occluded body parts. Such limitation of the body model and the incorrect correspondences
can significantly affect both the body shape and pose parameters. We mitigate such defects by
placing a zero-mean standard normal distribution over the pose Φ(f) (favors mean pose) and
shape Ω parameters as

SB = λΩN (Ω) + λΦ

C∑
c=1

Fc∑
f=1

N (Φ(f)), (2.14)

where {λΩ, λΦ} are weighting scalar between the residuals.

2.4.3 Optimization Strategy
Due to the complexity of the human body pose, a direct optimization of Eq. 2.9 converges slowly
and often fails to produce accurate body fitting. We solve the problem in three stages. (1) full
sequence spatiotemporally coherent 3D human skeleton estimation (2), per-time-instance human
model fitting to the skeleton, and (3) window-based accurate and temporally coherent body pose
and shape fitting. These stages are described below.
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Stage 1: Coherent 3D human skeleton estimation For each person in the scene, we wish to
estimate a temporally and physically consistent human skeleton model for the entire sequence.
This is achieved by minimizing an energy function that combines of the reprojection cost on the
detected semantic keypoint of Eq. 2.10, the least kinetic motion prior cost of Eq. 2.13, and the
prior on human skeleton written as

Sb =
∑
t∈T

∑
q∈Q

(
L(q, t)− L(q)

σL

)2

, (2.15)

Slr =
∑
t∈T

∑
(l,r)∈S

(
L(l, t)− L(r, t)

σS

)2

, (2.16)

where Q is the set of keypoint connectivity within all rigid body parts, S denotes the set of
joints of the corresponding left and right limb, {σL, σS} captures the precision of the symmetry
and left-right constancy constraints. These priors enforce the left-right symmetry of the body
bone length and penalize large changes between the bone length estimated each time instance
and average bone length L over the entire sequence. As in Sec. 3, the initial 3D skeleton is
obtained by geometric triangulation. We weight the costs equally and optimize them for the
entire sequence at once. Lastly, we resample the 3D joint along the temporal axis using DCT to
fill in the missing skeleton due to occlusion.
Stage 2: Per-instance human model fitting Given the coherent 3D skeleton at all time instances,
we fit the SMPL model to the skeleton independently at each time instances in order to gain
resilience to fitting failure. This is done by optimizing a cost function composes of the 3D-3D
SMPL joint to our skeleton cost, and body shape and pose prior, as in Eq. 2.14. The 3D-3D cost
is written as

S3D−3D =
∑
t∈T

J∑
j=1

(
||Xj − X̃j||

σ3D

)2

, (2.17)

where X̃ is the estimated skeleton at stage 1 and σ3D is the expected noise in 3D estimation.
Empirically, we found this approach is fast and gives good approximation for the last stage.
Stage 3: Window-based human model fitting We optimize Eq. 2.9 for the SMPL body shape
and pose in overlapping windows. For the overlapping region, we fix the optimized parameters
to those of the previous windows to ensure consistent body shape estimation.

2.5 Analysis on Real Handheld Camera Data

2.5.1 Data Preprocessing
We create an end-to-end system that takes video streams for multiple temporally unaligned and
spatially uncalibrated cameras and produces the spatiotemporal calibration parameters as well as
the 3D static points and dynamic trajectories. We show the results for 3 scenes: checkerboard,
jump, and dance, captured by either smartphone or GoPro Hero 3 cameras, all of which are
rolling shutter camera. We quantify the error in 3D trajectory estimation and effect of sub-frame
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(b) The 3D trajectory of the checkerboard corners 
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Figure 2.4: Accuracy evaluation of the checkerboard corner 3D trajectories. While the recon-
struction is conducted independently at every corner, collectively, the estimated 3D trajectories
assemble themselves in the grid-like configuration. Our methods produce trajectories with sig-
nificantly smaller error than naive geometric triangulation.

alignment using the Checkerboard sequence, captured by 7 Gopro at 1920×1080 and 60 fps.
The Jump sequence, captured by 8 Gopro at 1280×720 at 120 fps, is served to demonstrate our
ability to handle fast motion using low framerate cameras. The Dance scene, captured by five
iPhone 6 and six Samsung Galaxy 6 at 1920×1080 and 60 fps, showcases the situation where the
static background and dynamic foreground are separated by a large distance. For all scenes, we
downsample the framerate to simulate faster motion, which invalidates the geometry constraints
for unsynchronized cameras and stresses the essence of the motion prior: 10 fps, 30 fps, and 15
fps for Checkerboard, Jump, and Dance, respectively.

3D corpus and initial camera pose estimation: We track SIFT features using affine opti-
cal flow [18] and sample keyframes, defined as frames where the number of tracked features
drop 40% from the last keyframe, from all videos. These keyframes are passed to a SfM
pipeline [187, 229] to build the 3D corpus of the scene. We register other frames to this cor-
pus using the r6P algorithm and refine their parameters using the Cayley transform model [9].
No temporal regularization is performed during the registration to preserve the abrupt a camera
motion frequently observed due to the camera holder’s footstep.

Rolling shutter scanning speed estimation: Consider a moving camera observing static fea-
tures. Geometrically, this camera can also be viewed as being static and observing moving
features. We estimate the camera rolling shutter readout speed by assuming the 3D location of
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(a) Geometric triangulation @10fps

(c) Motion prior with correct 

sub-frame alignment @10fps

(d) DCT resampling of (c)

(b) Motion prior with incorrect 

sub-frame alignment @10fps

Loops

250 mm

Figure 2.5: Effect of accurate sub-frame alignment for the 3D trajectory estimation. (a) Point
triangulation of frame accurate alignment gives large reconstruction error and creates different
3D shape with respect to other methods. (b) Incorrect sub-frame alignment generates 3D trajec-
tory with many loops. (c) Trajectory estimated from correct sub-frame alignment is free from
the loops. (d) Using DCT resampling for (c) gives smooth and shape preserving 3D trajectory.

these moving features also obeys the least kinetic motion prior for the duration of 1 frame. De-
noteXv(f), Xv(f + 1) as the virtual location of the static feature captured exactly at the first row
of of frame f, f + 1, respectively, and X(t) is the true location of the same feature observed in
the image, t ∈ [t(f), t(f + 1)]. Under the least kinetic assumption (e.g., constant velocity) and
vertical rolling shutter readout, we can present the 3D location of the observed feature as

X(t) = Xv(f) + γ
r

h
(Xv(f + 1)−Xv(f)), (2.18)

where r is the image row of the observed feature and h is the image height. Using this representa-
tion ofX to optimize Eq. 2.2, we can estimate the rolling shutter readout speed γ for each camera.

Corresponding 2D trajectory generation: We detect and match SIFT features across cam-
eras at evenly distributed time instances. We discard matches with low gradient score and track
the remaining points both forward and backward in time using affine template matching. The
backward-forward consistency check is used to discard erroneous optical flow during tracking.
Finally, we check for the appearance consistency between patches of the first and the last frame
using Normalized Cross Correlation and remove the entire trajectory if the score is below 0.8.

Trajectory classification: We exploit the fact that triangulation based methods work for static
points but produce large errors for dynamic points in order to identify 2D trajectories of dynamic
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Figure 2.6: Analysis of the spatial camera calibration for the Checkerboard sequence with dif-
ferent camera models.

No γ
Static-Dynamic

With γ
Static-Dynamic

Checkerboard 0.70 1.52 0.67 1.21
Jump 0.61 1.55 0.59 1.34
Dance 0.85 2.38 0.82 2.13

Table 2.2: Effect of modeling the rolling shutter readout on the reconstruction accuracy. While
the temporal sequencing between cameras is still correct (due to the artificial down-sampling of
the framerate), modeling γ results in smaller the reprojection error. Inaccurately reconstructed
dynamic points also (slightly) negatively affect the reconstruction of static points.

points. This is done using these two heuristics: (1) the reprojection error of a static point should
be small regardless of which camera frame it is triangulated from. We randomly sample frames
along the 2D trajectory to triangulate and consider the 2D trajectory as belonging to a static
point if the reprojection threshold is smaller than 3 pixels for more than 80% of the time. (2) the
reprojection error of a dynamic point forms a steep valley as the time offset passes by its true
value. We reject any set of trajectories as belonging to a dynamic point if the minimum of the
cost valley is not smaller than 80% of the average cost.

2.5.2 Sparse spatiotemporal bundle adjustment
We first evaluate the effect of properly modeling the rolling shutter pose and its readout speed
to the reconstruction. As shown in Figure 2.6, spatial modeling the rolling shutter produces sig-
nificantly more stable camera trajectory and lower reprojection error. As showed in Table 2.2,
although for artificially down sample frame rate videos, the rolling shutter readout becomes less
significant given the artificially lengthen frame duration, the reconstructions with γ modeled are
consistently more accurate. Theoretically, while the reconstruction of static points is not affected
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Geometry

#Trajectory
Avg samples

per trajectory

RMSE (pixels)

Static – Dynamic

Checkberboard 88 179.8 0.67 6.59

Jump 717 36.4 0.59 1.91

Dance 577 22.3 0.82 5.23

Motion prior

#Trajectory
Avg samples

per trajectory

RSME1 (pixels)

Static – Dynamic

RSME1∗ (pixels)

Static – Dynamic

RSME2 (pixels)

Static – Dynamic

RSME2∗ (pixels)

Static – Dynamic

Checkberboard 88 1023.0 0.67 1.21 0.65 1.15 0.68 1.2 0.67 1.16

Jump 3231 127.8 0.59 1.34 0.5 1.26 0.59 1.36 0.51 1.6

Dance 4105 216.4 0.82 2.12 0.85 1.71 0.83 2.14 0.87 1.72

Table 2.3: Reconstruction accuracy comparison between geometric triangulation and our pro-
posed method. RMSE1 and RMSE2 are the results obtained by the incremental reconstruciton
and alignment and divide and conquer approaches, repetitively. The ∗ denotes the results after
resampling. Both approaches are equally accurate and the divide and conquer scheme is at least
10 times faster. Please see the text for more details.

by γ, inaccurate reconstruction of dynamic points negatively affect the camera calibration param-
eters, which in turn affects the static points. For all results represented below, both the rolling
shutter camera pose and readout speed are employed.

Table 2.3 gives the complete quantitative evaluation on three video sequences in terms of
(a) re-projection error in pixels for both stationary and dynamic points, (b) number and average
length (time) of the 3D trajectories created using points from multiple views. Points with repro-
jection error exceeding the threshold are discarded. Noticeably, our proposed method produces
several folds more trajectories, longer average trajectory length, and less reprojection error than
geometry approach. For the checkerboard sequence, since the correspondences are known, its
3D points are intentionally not discarded. The resampling scheme consistently and noticeably
further reduces re-projection error for all scenes. Similar to the analysis on synthetic data, the
divide and conquer scheme is as accurate as the incremental reconstruction and alignment ap-
proach but is at least 10 times faster (40 times for Dance sequence).

Checkerboard scene: Since the ground truth location of the board is unknown, we quantify
the reconstruction accuracy by measuring the deviation from the planar configuration for all the
checkerboard corners. We reconstruct each corner independently. As depicted in Figure 2.4,
the reconstruction using geometric triangulation is at least 80 mm inaccurate. Conversely, most
3D corners estimated from our method have much smaller error (direct motion prior: 33 mm,
DCT: 15 mm). Visually, the estimated trajectories using the method assemble themselves in the
grid-like configuration of the physical board.
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(b) Time-aligned images (a) Original images 

(c) Insets of the time-aligned images 

Figure 2.7: Temporal alignment. (a) Original unaligned images. (b) Our aligned images, esti-
mated from temporally down-sampled video at 30 fps, are shown for the original video captured
at 120 fps. (c) Inset of aligned images. The shadow cast by the folding cloth is well temporally
aligned across images. This figure is best seen electronically.

Figure 2.5 shows the effect of accurate sub-frame alignment on the trajectory reconstruction.
Due to the fast motion, geometry-based method produces trajectory with much different shape
than the motion prior based method. We artificially alter the sub-frame of the offsets to create
wrong frame sequencing between different cameras and optimize Eq. 2.3 for the trajectory. This
results in trajectories with many small loops, a strong cue of incorrect alignment. Conversely,
our reconstruction with correct time alignment is free from the loops. Our final result, obtained
by DCT resampling, gives smooth and shape-preserving trajectories.

Jump scene: To visually evaluate the alignment, we scale the estimated offsets to show the
alignment on the original footage at 120fps (see Figure 2.7). Notice that the shadow cast by
the folding cloth are well aligned across images. Figure 2.8 shows our estimated trajectories
for all methods. The point triangulation of frame-accurate alignment fails to reconstruct the fast
action happening at the end of the action. Conversely, our method produces plausible metric
reconstruction for the entire action even with relatively low frame-rate cameras. Due to the lack
of ground truth data, we compare our reconstruction with the point triangulation using 120 fps
videos, where few differences between the two reconstructions are observed.

Dance scene: We estimate per-frame camera intrinsic to account for the auto-focus function of
smartphone cameras. Figure 2.9 shows our trajectory reconstruction results. Our method recon-
structs fast motion trajectories (jumping), longer and higher temporal resolution trajectories than
point triangulation results at 15 fps. Since we discard many short 2D trajectories (thresholded at
10 samples), we reconstruct fewer 3D trajectories than geometric triangulation at 60 fps. How-
ever, the overall shape of the trajectories is similar.

Interestingly, this scene has a large number of static background points. This adversely re-
duces the spatial calibration accuracy for the foreground points (see Figure 2.10). Our algorithm
improves the spatial calibration for cameras with enough number of visible dynamic points.
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(b) Motion prior based @30fps (front view) (c) Motion prior based @30fps (top view) 
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(a) Jump scene 

(e) Motion prior based @30fps (zoom-in) (f) Geometry based @120fps (zoom-in) (d) Geometry based @30fps (zoom-in) 

Figure 2.8: Jump scene. Point triangulation of frame-accurate alignment fails to reconstruct the
fast action happened at the end of the sequence. Conversely, our motion prior based approach
produces plausible reconstruction for the entire course of the action even with relatively low
frame-rate cameras. Trajectories estimated from our approach highly resemble those generated
by the frame-accurate alignment and triangulation at 120fps.

0 20 5 10 15 

(d) Geometry based @15fps (zoom-in) 

(a) Dance scene 

(e) Motion prior based @15fps (zoom-in) 

Low temporal resolution trajectories 

Fail to reconstruct the fast motion 

(c) Motion prior based @15fps (top view) 

(f) Geometry based @60fps (zoom-in) 

(b) Motion prior based @15fps (side view) 

Time (s) 

No fast motion  

Low temporal resolution 

Figure 2.9: Dance scene. The 3D trajectories are estimated using 10 15 fps cameras. Noticeably,
the trajectories generated from frame accurate alignment and triangulation are fewer, shorter, and
have lower temporal resolution than those reconstructed from motion prior based approaches.
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(b) Insets of the (a): Success (left) and failure (right) epipolar estimation.

(a) A subset of the temporally aligned images and their epipolar lines corresponding to the point in the first camera image

(c) Visibility matrix of the dynamic points

After spatiotemporal bundle adjustmentBefore spatiotemporal bundle adjustment

Figure 2.10: Evaluation of the spatiotemporal calibration. The blue and red lines are the esti-
mated epipolar lines before and after spatiotemporal bundle adjustment, respectively. The epipo-
lar lines estimated after spatiotemporal bundle adjustment have noticeable improvement at the
foreground for cameras with a large number of visible dynamic points. This figure is best seen
electronically.

2.5.3 Human body fitting

Due to the lack of ground truth data, we qualitatively compare the different shape fitting al-
gorithms by its alignment to the observed person silhouette. As shown in Figure 2.11, due
to fast human activity and abrupt camera motion, shape fitting using geometric constraint and
frame-level alignment either fails to estimate the body shape (first and second rows in the second
column) or does not align well with the observed silhouette (third row, second column). Motion
prior based shape fitting to the detected body keypoints better aligns the mesh to the images
but fails when the detected keypoints are occluded (first, second, and fourth rows in the third
column). Additionally due to the small misalignment when the SMPL model internal joint loca-
tion and the detected joints, especially at the hip joints, using the only detected joints produces
suboptimal body shape (third row, third column). Our full cost function considering the motion
prior, the body joints, and detected silhouette produces the best fitting results. We notice that
contribution of the sparse dynamic 3D points is negligible for both scenes. This is because most
of the points are concentrated in the body torso, which is already the most stable tracked body
part. We show snippets of the reconstructed body mesh for both scenes in Figure 2.12.

2.6 Discussion

One of the our biggest obstacles is the requirement of corresponding 2D trajectories across cam-
eras. Just as SIFT descriptor for point matching has revolutionized static scene reconstruction,
trajectory descriptor is needed for dynamic scene reconstruction. To disambiguate the matching,
such a descriptor must accumulate information spatiotemporally. Another promising solution is
to use semantic detection as coarse correspondences which can later guide the pixel-level corre-
spondences in a tracking-by-detection framework. We explore this option further in Chapter 4.
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Figure 2.11: The effect of subframe alignment for human shape fitting for the Dance and Jump
scenes. Given the input frames (first column), due to fast motion, shape fitting assuming frame-
level alignment and geometric constraint (second column) fails to match the silhouette of the
person. Our motion prior based shape fitting to the 2D body joints (third column) better aligns
the observed silhouette but fails when the joints are not visible. Adding the silhouette constraint
to the motion prior based fitting produces the best results (last column).
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Figure 2.12: Human mesh fitting for different person in the Dance sequence (top and bottom left)
and Jump sequence (bottom right). The color encodes the relative action time.
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2.7 Summary
We present a framework for dynamic human reconstruction from unsynchronized video streams
where geometric triangulation constraint is inapplicable. The key to our approach is the use of
physics-based motion prior to joint spatiotemporally calibrate the cameras and reconstruct the
observed feature points, as well as the rolling shutter scanning speed. We devise an incremen-
tal reconstruction and alignment that strictly enforces the motion prior during the optimization
and a divide and conquer algorithm that speeds up the first algorithm many folds without loss
of accuracy. For better visual interpretation of the scene, we fit a statistical human model of the
observed unsynchronized video streams. This fitting is constrained by the same motion prior
in addition to detected semantic cues in the images. We showcase the reconstruction on videos
captured by uncalibrated and unsynchronized and moving rolling shutter cameras in the wild.
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Chapter 3

Self-supervised Learning of
Spatiotemporal People Association

With the rapid proliferation of consumer cameras, events are increasingly being recorded from
multiple views, such as surprise parties, group games, and sports events. The challenges in
tracking and reconstructing such events include: (a) large scale variation (close-up and dis-
tant shots), (b) people going in and out of the fields of view many times, (c) strong viewpoint
variation, frequent occlusions and complex actions, (d) clothing with virtually no features or
clothing that all look alike (school uniforms or sports gear), and (e) lack of calibration and syn-
chronization between cameras. As a result, tracking methods (both single [50, 192, 251] and
multi-view [27, 136, 181]) that rely on motion continuity produces short tracklets. And tracking-
by-association methods relying on pretrained descriptors [15, 246] fail to bridge the domain gap
between training data captured in (semi-)controlled environments and event videos captured in
open settings.

In this chapter, we present a novel self-supervised person association framework that in-
tegrates tracking-by-continuity and tracking-by-association to overcome both their limitations.
We show that even a state-of-art pretrained person appearance descriptor trained on large-scale
labeled human re-identification dataset [133, 178, 256] is not sufficient to discriminate different
people over a long duration and across multiple views. We bridge the domain gap by refining the
pretrained descriptor to the event videos of interest with no manual interventions (such as manual
labeling) and discriminatively learn a robust single-frame person association descriptor. Our in-
sight to self-supervision is to exploit three basic sources of information in the target domain: (a)
short tracklets from tracking-by-continuity methods, (b) multi-view geometry constraints, and
(c) mutual exclusion constraints (one person cannot be at two locations at the same time). These
constraints allow us to define contrastive and triplet losses [51, 189] on triplets of people images
– two of the same person and one of a different one. Even using the most conservative definition
of the constraint satisfaction (tiny tracklets, strict thresholds on the distance to epipolar lines)
allows us to automatically generate millions of training triplets for domain adaptation.

While the above domain adaptation stage improves the descriptor discriminability of peo-
ple with similar appearance, it could also lead to strong semantic bias for people rarely seen in
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Scene

# cameras 6 head-mounted + 12 hand-held 16 hand-held 9 hand-held
Video stats. 1920×1080, 60fps, 30s 1920×1080, 60fps, 60s 3840×2160, 30fps, 120s

# people 14 14 60
Tracklet noise 2% 11% 3%

Table 3.1: Three new group activity tracking datasets scenes: Chasing [C] (left) , Tagging [T]
(middle), and Halloween [H] (right). [C] has 6 of people with camouflage and 3 others with dark
clothing, and cannot be distinguished without strong attention to detail. Most people in [T] wear
feature-less clothing making feature tracking hard. [H] is from an actual surprise birthday during
the Halloween party and suffers from significant motion blur. The scene and camera behavior for
any of these sequences are not staged. Tracklet noise is the percentage of tracklets with at least
two people grouped into a single track.

the videos. We address this problem by jointly optimize the descriptor discrimination on the
large labeled corpus of multiple publicly available human re-identification (ReID) datasets and
the unlabeled domain videos using a multitask learning objective. Empirically, the proposed
descriptor learning enables easier multi-view association of individual or tracklet of detections
via clusterings. We show that even classical clustering algorithm such as k-means is sufficient
given a known number of people. In practice, since the number of people is unknown, we adopt
the continuous clustering framework [191] and enforce soft spatiotemporal constraints from our
mined triplets during the construction of the clustering connectivity graph. Since the association
is solved globally, there is no tracking drift.

We validate our framework on the recent WILDTRACK dataset [41] and three challenging
new datasets of complex and highly dynamic group activity: Chasing [C], Tagging [T], and Hal-
loween [H], captured by up to 181 mobile cameras (see Tab. 1). We show significant people
association accuracy improvement over the state-of-art pretrained human ReID model (18% for
[C], 9% for [T], and 9% for [H]).

To further demonstrate the impact of the improved descriptor, we use our association to drive
a complete pipeline for 3D human tracking to estimate spatially stable and temporally coherent
3D skeleton for each tracked person. Compared to the baseline, our method shows significant
improvement (5-10X) in 3D skeleton reconstruction, stability, minimizing tracking noise. We
believe, for the first time, stable and long duration 3D human tracking is demonstrated in actual
chaotic live group events.

We leverage the tracked 3D human skeletons and merge multiple video streams into a multi-

1For a pair of cameras are held by 1 person, we only use the left camera for learning human descriptor and
skeleton reconstruction due to their small camera baseline.
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angle video by selecting video chunks where the visible person is most frontal to the viewing
camera. Such multi-angle cut is needed because it is unlikely that any person in the scene is well
visible by one video stream for any complex group activity events. Our cut algorithm detects
inter-human occlusion to determine the camera switching moment while still maintains the flow
of the action well. This system provides an easy visual interface for people tracking from multi-
ple cameras of crowded activities.

Contributions: (1) We present a simple but powerful self-supervised domain adaptation of per-
son appearance descriptor framework using monocular motion tracking, mutual exclusive con-
straints, and multi-view geometry without manual annotations. (2) We demonstrate that discrim-
inative appearance descriptor allows a reliable association via simple clustering. This advantage
enables a first-of-a-kind accurate and consistent markerless motion tracking of multiple people
participating in a complex group activity from mobile cameras “in the wild” with further applica-
tion to multi-angle video for intuitive tracking visualization. These contributions are orthogonal
to advances in single-view tracking (tracklet) or clustering algorithms.

3.1 Related Work
Our work is related to the themes of people Re-Identification (ReID) and multi-view motion
tracking. People ReID focuses on learning descriptors that match people across views and time.
Recent advances can be attributed to large and high-quality datasets [133, 178, 256], and strong
end-to-end descriptor learning, which eclipses handcrafted features [135, 143, 149, 254, 257].
Common modern ReID approaches include verification models [7, 46, 98, 133] and classifica-
tion models [231, 235]. In general, verification models only use weak re-ID labels and do not
take all the annotated information into consideration, these models are outperformed by many
classification-only models by a margin [216, 230, 231]. One drawback of the identification model
is that the training objective is different from the testing procedure, i.e., it does not account for
the similarity measurement between image pairs, which can be problematic during the people re-
trieval process. [151, 201, 202, 228] combines approaches for both image-based and video-based
ReID and show improvement in accuracy. Some recent works also consider body part informa-
tion [131, 253] for fine-grained descriptor learning. We adopt similar architecture [201, 235] but
show how a previous generic person descriptor trained on labeled data is insufficient for a reli-
able human association on the multi-view videos captured in the wild. Our key is to exploit basic
constraints available in testing scene to adapt the person descriptor with no manual annotations.
Thus, our model is event (scene) specific rather than generic human ReID models.

People tracking approaches formulate person association as a global graph optimization prob-
lem by exploiting the continuity of object motion; examples include [59, 155, 251] for single
view tracking, and [27, 193, 223] for multi-view tracking from surveillance cameras. These
approaches use relatively simple appearance cues such as the histogram of color, optical flow,
or just the overlapping bounding box area [12, 34, 50, 53, 164, 192] for monocular settings or
3D occupancy map from multi-view systems [73, 136, 232]. Although data-association based
tracking methods are theoretically promising, the performance is highly reliant on the quality
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of the object detector. Since not all objects can be detected in each frame, false detections may
be present, and some objects may occlude others, solving the tracking-by-detection problem via
graph optimization is very challenging. Thus, these methods usually generate reliable short-term
tracklets as the targets permanently disappear after a short time. We tackle people tracking in
recurrent scenes and our algorithm takes those single-view tracklets as inputs to produce their
associations for the entire scene. Additionally, whereas existing multi-view tracking algorithms
are limited on fixed, calibrated and synchronized cameras [23, 73, 136, 232], our framework is
applicable to uncalibrated moving cameras and can temporally align multiple videos automati-
cally.

Recently, [60, 156, 205, 246] combine global graph optimization and discriminative appear-
ance descriptors and show clear improvements over isolated approaches. Zhang et al. [252] are
probably the first to apply online discriminative learning in tracking multiple objects. Dehghan
et al. [60] formulate an online discriminative learning, which solves the detection and global data
association jointly by integrating global data association into the inference of a structured learn-
ing tracker. The closest to our work is Yu at al. [246]. However, their method assumes known
number of people captured in controlled settings and solve a challenging L0 optimization using a
sophisticated solution path approach. We tackle a similar problem but in unconstrained settings
with unknown number of people and moving cameras using simpler clustering algorithm. This
is possible because of our discriminative but automatic scene-aware person descriptor.

We use our association to drive a complete pipeline for 3D human tracking. While markerless
motion tracking has been widely demonstrated in laboratory setups [64, 110, 139, 199] and more
recently in general settings [65, 157, 172, 177], thank to advances in CNN-based body pose de-
tectors [35, 163], these methods showcase the results on activity involving 1 or 2 people staying
in fixed volume (never have to re-associate people) with minimal interactions (inter-occlusion is
not considered). In contrast, we target 3D motion tracking of complex group activities of up to
14 people in unconstrained settings captured by up to 11 cameras with people frequently move
in and out of the field of view.

Our application to multi-angle video cut is most related to Arev at. el [14]. However, our
goal is obtained the best front-facing camera view to track a selected person whereas they aim
to capture the recorders joint attention. Moreover, the key constraints in choosing the best view
are fundamentally different as we have underlying 3D skeleton models whereas they rely on co-
visibility of the camera frustums.

3.2 Person Appearance Descriptor
Our goal is to learn a robust appearance descriptor extractor ux = f(x) of a person image x
that is similar for images of the same person and dissimilar for different people regardless of the
viewing direction, pose deformation, and other factors (like illumination) for our domain videos.
We start with an extractor f(x), initially trained on a large labeled corpus of multiple publicly
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RGB image 

18 confidence maps of the anatomical keypoints

38 confidence maps of the affinity field between keypoints

Figure 3.1: The input to our CNN is a 59-channel feature maps, consisting of the color image,
the feature maps of the 18 anatomical keypoints and their affinity fields computed by CPM.

available people ReID datasets, and finetune it using the Siamese triplet loss on triplets of images
automatically mined from the domain videos with no human intervention. While this finetuning
stage improves the descriptor discriminability of people with similar appearance, it could also
lead to strong semantic bias for people rarely seen in the videos. We address this problem using
a multitask learning objective and jointly optimize the descriptor discriminability on the labeled
corpus labeled human ReID datasets and the unlabeled domain videos. We iteratively mine the
triplets and retrained the descriptor for several (triplet mining) iterations.

3.2.1 Person Appearance Descriptor
This section describes our pose insensitive person descriptor extractor f(x). For current ReID
datasets, the ground truth detections and labels are mostly not generated manually. Pedestrian
misalignment, which mainly arises from person detector errors and pose variations, is a critical
problem for a robust person reID system. With bad alignment, the background noise will sig-
nificantly compromise the feature learning and matching process. One straight forward way to
achieve invariance to such misalignment and various pose configuration is to rectify the input
image into a canonical frame [253]. However, the rectification is problematic due to 2D warping
artifact and wrong pose detection. Instead, we augment the RGB image with the heatmaps of
keypoints and their part affinity fields provided by CPM model [35] (see Figure 3.1). This rep-
resentation avoids the viewing direction quantization in rectifying the body parts [46, 133] and
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name
patch size/
stride

output
side

#1×1
#3X3
reduce

#3x3
double #3X3
reduce

double
#3X3

pool+proj

input 59x288x112
conv 0–5 3x3/2 32x72x28

inc 1a 256x72x28 64 64 64 64 64 avg+64
inc 1b stride 2 384x36x14 64 64 64 64 64 max+identity
inc 2a 512x36x14 128 128 128 128 128 avg+128
inc 2b stride 2 768x18x7 128 128 128 128 128 max+identity
inc 3a 1024x18x7 256 256 256 256 256 avg+256
inc 3b stride 2 1536x9x4 256 256 256 256 256 max+identity

fc7 256
fc8 256
fc9 M

Table 3.2: The structure of our CNN model for person ReID. This model is inspired by the
Inception architecture, known for its efficiency and expressiveness.

takes the detection confidence into account to down weight possible pose detection failures.
Table 3.2 shows our detailed CNN model for the extractor f(x). Inspired by the ability

to learn multi-scale features and model compactness of the Inception architecture [204], our
customized CNN model passes an input of size 288x112x59 through six convolution layers, six
Inception modules, and three fully connected layers. The person descriptor is extracted at fc8
layer. We use Batch Norm [104] followed by ReLU activation at every layer. We regularize
training by randomly switching off 50% of the neurons in the fc7 layer during training.

3.2.2 Spatiotemporal Descriptor Adaptation
Due to possible discrepancies between the appearances of the training sets and our domain ap-
plication videos, we finetune the f(x) on each of our test video sequences using the contrastive
and triplet loss [51, 189]. The input to our process are triplets of 2 images of the same person
and 1 image of a different person. We optimize the CNN such that the distance between query
and anchor is small and the distance between query and the negative example is large. Our loss
function is defined as:

LS(ui, u
+
i , u

−
i ) = ‖ui − u+

i ‖2
2

+ max (0, ‖ui − u−i ‖2
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where (ui, u
+
i , u

−
i ) is triplet of two positive and a negative unit norm descriptor, respectively, and

m (set to 2 for all experiments) is the margin parameter between two distances. Our total loss
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function for finetuning is defined as:

EST = min
f

Nd∑
i=1

LST (ui, u
+
i , u

−
i ),

where,Nd is the number of triplets in the domain videos. We optimize the model using Stochastic
Gradient Descent. Empirically, we found hard-negative mining hurts the learning due to possibly
erroneous triplets in the first triplet mining stage and thus, only use this trick in later iterations.

Automatic Triplet Generation

Single-view triplets: For every video, we first apply CPM to detect all the people and their cor-
responding anatomical keypoints. Given these detections, we can easily generate negative pairs
by exploiting mutual exclusive constraints, i.e. the same person cannot appear twice in the same
image. In addition, we can create positive pairs by using short-term motion tracking. We create
motion tracklets by combining three trackers: bidirectional Lucas-Kanade tracking of the key-
points, bidirectional Lucas-Kanade tracking of the Difference of Gaussian features found within
the detected person bounding box, and person descriptor matching between consecutive frames.
The tracklet is split whenever any of the trackers disagree. We also monitor the smoothness of
the keypoint 2D trajectories and split the tracklet whenever the instantaneous 2D velocity is 3
times greater than its current average value. More sophisticated approaches such as [59, 155]
can also be used for better tracklet generation. Images corresponding to the same motion tracklet
constitute positive pairs for our finetuning.

Multi-view triplets: We enrich the training triplets with positive pairs across views by using
multi-view geometry – pairs of detections corresponding to a single person in 3D space must
satisfy epipolar constraints. Since our videos are captured in the wild, they are unlikely to be
synchronized. Thus, we must first estimate the temporal alignment between cameras to use
multi-view geometry constraints. Assuming known camera framerate and start time from the
video metadata, which aligns the videos up to a few seconds, we linearly search for the temporal
offset with the highest number of inliers satisfying the fundamental matrix. A bi-product of this
alignment process is the corresponding tracklets across views, which form our positive pairs.

More specifically, let kni (t) = {knt,1

i , ..., k
nt,18

i } be the set of anatomical keypoints of the
people detection n at frame t of camera i, and Tl

i = {n0, .., nF} be a tracklet l containing the
images of the same person for F frames. Let Mc = (Tl

i,T
k
j ) be the candidate tracklet pair c of

the same person, computed by examining the median of the cosine similarity score of between all
pairs of descriptors 2 within the tracklets, for camera pair (i, j) and Mi,j be all putative matched
tracklets for camera pair (i, j). We set the similarity threshold to 0.5 and add those candidate
matches to the hypothesis pool until their ratio-test threshold drops below 0.7. We use RANSAC
with the point-to-line (epipolar line) distance as the scoring criteria to try all possible time offsets
within the window of [−2W, 2W ] frames to detect the hypothesis with the highest number of

2At this stage, the descriptors are extracted using a pretrained CNN.
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geometrically consistent matched tracklets:

I←RANSAC
Mc∈Mi,j

W∑
w=−W

F∑
t=1

Ni(t)∑
n=1

n∈Tl
i(t)

m=Tk
j (t+w)

(Tl
i,T

k
j )∈Mc

18∑
p=1

d(kn,pi , km,pj ,Fi,j(t)),

where, Ni(t) is the number of people detected in camera i at frame t, I is the number of inliers,
and d(x1, x2,Fi,j(t)) is the bidirectional point-to-line distance characterized by the fundamental
matrix Fi,j(t) between the camera pair. Fi,j(t) can either be estimated by calibrating the cameras
with respect to the scene background or explicitly searched for using the body keypoints during
the time alignment process. We prune erroneous matches by enforcing cycle-consistency within
any triplet of cameras with overlapping field of view. We set W to twice the camera framerate
and use the video start time to limit the search.

3.2.3 Multitask Person Descriptor Learning
While finetuning the person appearance descriptor exclusively on the test domain could poten-
tially improve discrimination of similar looking people, using it alone may result in semantic
drift. The learned descriptor has a strong bias toward frequently observed people. The descriptor
of different people who are rarely observed together from a single camera cannot be forced to be
different due to the lack of mutual exclusive constraints.

We jointly learn the person descriptor from both the large scale labeled human identity train-
ing data and the scene specific videos. Since the model must predict the identity of the person
from the labeled dataset, it is expected to output discriminative descriptors for rarely seen people
in the domain videos. On the other hand, since we finetune the model on the domain videos, it
should also discriminate people in those sequences better than training solely on other datasets.
Mathematically, our multitask loss function is defined as:

ED = min
f

(1− α)ESM + αEST ,

where α is the scalar balancing the contribution of two learning tasks. ESM is the standard
classification loss:

ESM = argmin
f

Ns∑
i

LSM(g(f(xi)), yi)),

where, Ns is the number of training examples in the labeled corpus datasets, g is a linear function
mapping the person appearance descriptor, f(·), to a vector of the dimension of the number of
people in the training corpus, and LSM is the softmax loss penalizing wrong prediction of the
people ID label. We set α equal to 0.5 for all experiments.

3.3 Analysis of Human Descriptor Learning
We validate our method on three challenging new sequences: [C], [T], and [H] (see Table 3.1).
In [T], the camera holders are mostly static and appear in low resolution which does not provide
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#identity #camera #images Resolution Annotation
VIPeR [84] 632 2 1.2k 48x128 Manual
3DPes 192 8 1k 37x88 – 236x278 Manual
ETH[190] 149 1 8.5k 44x85 – 175x449 Manual
iLIDS[68] 250 8 0.5k 32x76 – 115x294 Manual
CAVIARA[47] 72 2 1.2k 16x43 – 72x144 Manual
PRID[99] 200 2 4.4k 128x48 Manual
V47[222] 47 2 0.4k 51x154 – 222x446 Manual
WARD[148] 70 3 0.5k 48x128 Computer
CUHK02[132] 1816 10 7k 60x160 Manual
CUHK03[133] 1467 10 28k 31x92– 201x308 Computer
RAiD[57] 43 4 7k 64x128 Manual
Shinpuhkan[117] 24 16 22k 48x128 Manual
CUHK04[236] 8432 - 32k 19x53 – 141x375 Manual
MARS[256] 1261 6 59k 128x256 Computer
CMU[109] 33 31 13k 222x367 – 631x958 Computer
DUKE MTMC [178] 1843 8 36k 64x156 –114x362 Computer
SAIVT[28] 150 8 7k 73x137 – 200x400 Manual

Table 3.3: Statistic of the people re-ID dataset. There are large variations in the image res-
olution, number of people, number of views for these datasets. For most large scale datasets
(MARS, DUKE MTMC), the ground truth people bounding boxes were generated by computer
algorithms, which heavily suffers from people misalignment.
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3DPeS CAVIAR CUHK02

CUHK03 CMU DUKE-MTMC

ETH GRID iLIDS

MARS PRID RAiD

SAIVT Shinpuhkan CUHK04

v47 VIPeR WARD

Figure 3.2: We learn the discriminative appearance feature embedding using CNN on a train-
ing corpus consists of 18 different datasets. Each dataset was collected with different setups,
e.g., multi-camera surveillance system or single camera multi-target tracking (ETH), at differ-
ent places, e.g., campus (CUHK02, CUHK03, MARS, DUKE˙MTMC), shopping mall (Shin-
puhkan), airport (iLIDS), or streets (ETH, WARD, PRID), and of different image resolution.
Note that there are strong people misalignment in MARS.
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enough appearance variation for strong descriptor learning. It also has many noisy single-view
tracklets with different people grouped together due to the lack of texture on the clothing and
frequent inter-occlusion. There were no constraints on the camera motion or the scene behavior
for any sequences. All the cameras in [C] and [T] are spatially calibrated using the ColMap
library [187]. Calibration fails for [H] due to human motion which frequently occludes the
background and strong motion blur. We manually annotate the people ID in our datasets for
quantitative evaluations.

We first train the generic person descriptor extractor f(x) on a combination of 16 different
publicly available ReID datasets: VIPeR [84], 3DPes [20], ETH [190], iLIDS [68], CAVIARA[47],
PRID[99], V47[222], WARD[148], CUHK02 [132], CUHK03 [133], CUHK04[236], RAiD[57],
Shinpuhkan[117], MARS[256], CMU Panoptics studio [111], and SAIVT[28]. Each dataset was
collected with very different locations with different demographics, various camera setups, and
image resolution. CUHK02 CUHK03, DUKE-MTMC, MARS were captured on campus, where
many students wear backpacks. PRID contains pedestrians in street views, where crosswalks
appear frequently in the dataset. VIPeR images has significant illumination variation across dif-
ferent camera views. iLIDS was captured at the airport with many people dragging the luggage.
The CMU dataset, captured in the CMU Panoptics studio, contains strong viewpoint and pose
variations. ETH was captured from a single moving camera in street views for multi target track-
ing purpose. Notably, CUHK04, contained both images captured around an urban city and movie
snapshots, has rich variations of viewpoints, lighting, background conditions. This dataset has
the largest number of people identity but with very few views for each of them (on average 3 im-
ages). For most large scale datasets (MARS, DUKE MTMC), the ground truth people bounding
boxes were generated by computer algorithms, which heavily suffers from people misalignment.
The statistics for each of these datasets is summarized in Table ??. The resulting labeled training
corpus has approximately 200k images of nearly 16k different people. Please see Figure 3.2 for
an illustration of the datasets.

We employ the standard softmax loss and train the extractor model f(x) from scratch using
Stochastic Gradient Descent with mini-batch of size 240 for 100 epoch. To train the MTL de-
scriptor, we split samples evenly between unlabeled domain data and the labeled ReID datasets
for each training batch and train until 1 epoch of the domain data is reached.

3.3.1 Analysis of Pose-Insensitive Person Descriptor
We analyze the accuracy of our descriptor on six commonly used datasets: CUHK03, MARS,
PRID, iLIDS, ViPER, and 3dPES. We follow the same testing protocols for each dataset and use
the Cumulated Matching Characteristics (CMC) to evaluate the performance of different ReID
methods. Effectively, the CMC curve measures how the accuracy changes as a function of the
number of nearest neighbor used in the gallery set.

Qualitative: Figures 3.3, 3.4, 3.6, 3.5, 3.7, and 3.8 show the qualitative results of the success
and failure cases for PRID, ViPER, 3dPES, iLIDS, CUHK03, and MARS, respectively. While
the top retrievals for PRID, ViPER, iLIDS, or 3dPES bare some global appearance similarities
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Failure cases: query and top-20 retrievals

Success cases: query and top-20 retrievals

Figure 3.3: Some typical the query images (red) where our model fails to find the correct matches
after 20 nearest neighbors (blue) matchings for PRID dataset. For every row, the first image is the
query and other are the nearest neighbors, sorted in decreasing distance from the query. While
the top retrievals bare some global appearance similarities with the query, the retrievals are quite
scattered in general. Note that this dataset is small and contains low-quality images.
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Failure cases: query and top-20 retrievals

Success cases: query and top-20 retrievals

Figure 3.4: Some typical the query images (red) where our model fails to find the correct matches
after 20 nearest neighbors (blue) matchings for ViPER dataset. For every row, the first image is
the query and other are the nearest neighbors, sorted in decreasing distance from the query. While
the top retrievals bare some global appearance similarities with the query, the retrievals are quite
scattered in general. Note that this dataset is small and contains low-resolution images with large
viewpoint and illumination variations.
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Failure cases: query and top-20 retrievals

Success cases: query and top-20 retrievals

Figure 3.5: Some typical the query images (red) where our model fails to find the correct matches
after 20 nearest neighbors (blue) matchings for iLIDS dataset. For every row, the first image is
the query and other are the nearest neighbors, sorted in decreasing distance from the query. While
the top retrievals bare some global appearance similarities with the query, the retrievals are quite
scattered in general. Note that this dataset is small and contains quality resolution images with
strong occlusion.

50



DRAFT

Failure cases: query and top-20 retrievals

Success cases: query and top-20 retrievals

Figure 3.6: Some typical the query images (red) where our model fails to find the correct matches
after 20 nearest neighbors (blue) matchings for 3dPES dataset. For every row, the first image is
the query and other are the nearest neighbors, sorted in decreasing distance from the query. While
the top retrievals bare some global appearance similarities with the query, the retrievals are quite
scattered in general. Note that this dataset is small and has large viewpoint and illumination
variations.
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Failure cases: query and top-20 retrievals

Success cases: query and top-20 retrievals

Figure 3.7: Some typical the query images (red) where our model fails to find the correct matches
after 20 nearest neighbors (blue) matchings for CUHK03 dataset. For every row, the first image
is the query and other are the nearest neighbors, sorted in decreasing distance from the query.
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Failure cases: query and top-20 retrievals

Success cases: query and top-20 retrievals

Figure 3.8: Some typical the query images (red) where our model fails to find the correct matches
after 20 nearest neighbors (blue) matchings for MARS dataset. For very row, the first image is
the query and other are the nearest neighbors, sorted in decreasing distance from the query. Note
the subtle differences between the query and the retrievals in case of failure. In some cases, the
provided people identity is wrong (top row).

53



DRAFT

Input CUHK03 MARS PRID iLDS ViPER 3dPES

Baselines 85.4[81] 77.4 [98] 43.6 [167] 64.6 [235] 56.3 [81] 56.0 [235]
Big RGB 91.1 76.9 55.0 84.5 42.4 70.0
Big RGB+KP 92.8 79.8 60.0 84.4 51.9 78.0
Big RGB+PAF 93.1 79.4 59.0 84.5 49.7 79.4
Big RGB+KP+PAF 93.7 79.8 62.0 85.2 52.5 78.9

Table 3.4: Ablative analysis of the pose heatmaps for the top-1-NN accuracy. Using all the
heatmaps generated by CPM yields the best accuracy, albeit modest improvements over the key
points (KP) or the part affinity fields (PAF) alone. Except for ViPER, which is a small dataset
with strong illumination and viewpoint variations, our method consistently outperforms the base-
lines by a margin.

with the query, the retrievals are quite scattered in general. In contrast, the failure cases for
CUHK03 and MARS are more subtle with many of them coming from the same tracklet (the
third row in MARS), some even due to wrong ground truth labels (the first row in MARS). Note
that CUHK03 and MARS are many times bigger than other datasets.

We show the pose and viewpoint insensitive properties on the data collected from the CMU
Panoptic Studio using t-SNE visualization [145] in Figure 3.9. his dataset consist of 30k images
for 80 different people. None of them are the same people as in the CMU dataset used in the
training stage. Despite the similar appearance of multiple people, the images of the same person
are clustered together. This shows a strong evidence of the pose and viewpoint insensitivity of
our descriptor.

Quantitative: Table 3.4 shows the comparison between our approach and the recent methods
for the top-1 matches on six commonly used datasets and our ablative analysis of how differ-
ent heatmap categories affects the matching accuracy. For video dataset such as MARS, most
methods compute the averaging distance of the learned feature descriptor over all pairs of time
instances of the tracklets to match between trajectories. We perform per-frame matching, which
is more challenging. Our approach outperforms most other methods by a margin except for
ViPER, which is a small dataset with strong variations in viewpoint, image quality, and lighting
condition. Since the total number of images from PRID, iLIDS, ViPER, and 3dPES comprises
less than 5% of the training images, their appearance statistics is likely to be dominated by larger
datasets. This potentially explains for their lower accuracies compared to CUHK03 and MARS.
Augmenting the color images with the CPM heatmaps improves the accuracy, among which
ViPER is boosted by 10.1%. Using both the keypoints and part affinity field heatmaps gives the
best accuracy, albeit a modest improvement over keypoints or affinity field heatmaps alone.
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3.3.2 Analysis of Descriptor Adaptation

Figure 3.10 shows 10-NN cross-view matching of images of several people with similar ap-
pearance or motion blur for all sequences and their cosine similarity score using the pretrained
model (P) and our multitask descriptor learning (MTL). The pretrained model retrieves multiple
incorrect matches. Our method is notably more accurate. Our similarity score often has a clear
transition between correct and incorrect retrievals. Figure 3.11 and Figure 3.12 show a compar-
ison of the 2D t-SNE embedding [145] between the descriptors using P and our MTL approach.
While the descriptors extracted from the pretrained model are scattered, our descriptor groups
images of the same person from all views and time instances into cleanly separated clusters. Note
that while [H] is very complex scene with up to 60 people, our discriminative MTL still better
clusters images of the same person into a single group.

Figure 3.13 shows the Cumulative Matching Characteristic (CMC) for all sequences: Chasing
[C], Tagging [T], and Halloween [H]. There are clear improvements over the pretrained model
as more sophisticated stages of your algorithm is applied. We further visualize the association
accuracy in Figure 3.14. For the all sequences, the adapted descriptor improves the discrimina-
tion of frequently visible actors: 94% vs. 68% 1-NN classification accuracy for [C] and 90% vs.
75% for [T]. However, the discrimination of descriptor for the camera holders decreases: 56% vs.
85% for [C] and 35% vs. 42% for [T]. Our MTL, combining the strength of the classification and
metric learning loss, performs best (92%/95% for actors/holders on [C] and 89%/61% for [T])
and has an overall baseline improvement of 17% [C], 9% for [T]3, and 9% for [H]. False matches
due to the similar descriptor extracted from the generic CNN model are largely suppressed.

Figure 3.15 shows our analysis of the number of cameras, the tracklet noise, the training
videos length on 1-NN matching accuracy, and the triplet mining iterations. Multi-view con-
straints are more helpful than temporal constraints as there are small improvements compared to
the pretrained model P when a single camera is used. The algorithm shows noticeable improve-
ment even with as few as 4 cameras. Yet, for the current scenes, such improvement saturates
when more than 6 cameras are used. Regarding tracklet noise, our algorithm can improve the
baseline if the noise percentage is less than 4%. High noise leads to fewer, and potentially incor-
rect, multi-view tracklets from pairwise matches and leads to slightly inferior accuracy compared
to P. Even finetuning on 1/6th of the sequences leads to a notable improvement over P and per-
formance converges after 2/6th of the sequence is used; this indicates that our method could be
used on a smaller training set (e.g., first 15 minutes of a game) and applied to the rest. Lastly, we
observe marginal accuracy improvement after the 1-st triplet mining iteration. This suggests that
hard-negative mining is probably not needed and should be avoided in our framework.

3The results for [T] was obtained with cleaned tracklets.
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3.4 Applications

3.4.1 Multi-View People Tracking via Clustering
Using the person descriptor, we cluster detections of the same person across all space-time in-
stances. Since each video contains tens of thousands of detections, jointly clustering all detec-
tions for all videos is computationally costly. We adaptively sample the people detector according
to their 2D proximity with other detectors and the speed of the detector within each tracklet. All
close-by detectors are sampled. Detectors that can be linearly interpolated by others within the
same tracklet are ignored. Unreliable detectors with less than 9 keypoints (partially occluded
people) detected are also ignored.

We use the robust continuous clustering framework of Shah and Koltun [191] but explic-
itly enforce soft constraints from motion tracklets, mutual exclusive constraints, and geometry
matching to link detections. Depending on the discrimination of u, the correct number of cluster
can be automatically determined during the optimization process. This clustering is formulated
as the optimization problem:

C = min
m

N∑
i=1

‖ui −mi‖2
2+λ

∑
(p,q)∈Q

wp,qρ(‖mp −mq‖2),

where,N is the number of people detectors,Q is graph connecting data points ui, m = {m1, ..,mN}
are the representative of the input descriptors u, λ is scalar balancing the maximum curvature
between the data and the regularization during the optimization [191], and ρ is the German-
McClure estimator. wp,q =

∑N
i Ni

N
√
NpNq

, where Ni is the number of edges connecting xi in Q,

balances the strength of the connection (p, q).

In our settings, the graph Q is mutual k-NN graph [32]. To form Q, we first determine the
similarity between tracklets by taking the median of the similarity score between all possible
person descriptor pairs within the two tracklets. The number of nearest neighbors for each track-
let is chosen such that the distance between different tracklets is 2 times larger than the median
of the tracklet self-similarity score. All detectors belonging to the same tracklet are connected
with detectors of their k mutually nearest tracklets. We then prune connections that violate the
multi-view triplets mined in Section 3.2.2.

Analysis of the Descriptor Benefits: Tab. 3.5 quantifies the performance of different descriptor
learning algorithms by the number of clusters automatically determined by the algorithm, the
Adjusted Rand Index (ARI)4, and cluster accuracy for all detected people in both sequences.
Using [191] on MTL descriptor performs best. However, for a known number of people, per-
forming the classical K-means clustering on the MTL descriptor also yields comparable accuracy
(the precise number of people is only available in [C]). This confirms the effectiveness of our de-
scriptor learning, not the clustering algorithm.

4The ARI is a measure of the similarity between two clusters with different labeling systems and is widely used
in statistics [103].
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[C] [T] [H]
C ARI Acc. C ARI Acc. C ARI Acc.

[191]+ P 21 .88 90.1 66 .85 86.8 86 .77 79.5
[191] + MTL 16 .97 98.3 45 .94 95.1 71 .85 88.1

Kmeans+MTL 16 .98 98.7 14 .87 88.2 60 .87 88.7

Table 3.5: Analysis of the clustering algorithms by the number of clusters C, ARI measure and
clustering accuracy. Although all methods detected clusters than needed, they correspond to the
small cluster of pedestrians who do not participate in the activity (often seen in [T]) or not fully
visible bodies due to occlusion. Using [191] on our (MTL) descriptors performs best, achieving
near perfect clustering accuracy (98.3% for [C] and 95.6% for [T]))).

3.4.2 Markerless Human Motion Capture
We build a pipeline for markerless motion tracking of complex group activity from handheld
cameras. We first cluster the descriptors from all camera to obtain person tracking information.
For each person (cluster), we wish to estimate a temporally and physically consistent human
skeleton model for the entire sequence. This is achieved by minimizing an energy function that
combines an image observation cost, motion coherence, and a prior on human shape:

E(K,L) = EI(K) + EL(K,L) + ES(K) + EM(K),

where, K is the 3D location of the anatomical keypoints over the entire sequence, L is the set
of mean limb length for each person. The image evidence cost EI encourages the image repro-
jection of the set of keypoints 3D position to be close to the detected 2D keypoints. The human
constant limb length cost EL minimizes the variations of the human limb length over the entire
sequence. The left-right symmetric cost ES penalizes large bone length differences between the
left and right side of the person. The motion coherency cost EM prefers trajectory of constant
velocity [219]. The formulation for each of these terms are given in Tab. 3.6. We weight these
costs equally.

We initialize K,L by per-frame RANSAC triangulation of the corresponding person obtained
from the person from descriptor clustering and minimize E(K,L) using Levenberg-Marquardt
optimizer [6]. Lastly, we fit the SMPL mesh model [141] to the skeleton to improve the visual-
ization quality (See Section 2.4 for the fitting details).

Analysis of the Descriptor Benefits: As a baseline, we use the ground truth people association to
perform a per-frame multi-view triangulation along with limb length symmetry constraints link
this reconstruction temporally using ground truth person tracking for visualization. As shown
in Figure 3.16, our method succeeds despite the strong occlusion and complex motion pattern.
Quantitatively, we show 5 to 10X improvement over the baseline (see Tab. 3.7). We visualize the
reprojection of 3D keypoints to all views for [C] in Figure 3.17. The reprojected points are close
to the anatomical keypoints. These results validate our algorithm ability to perform accurate
markerless motion capture completely in the wild.
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EI(K)
∑C

c=1

∑F
t=1

∑N
n=1

∑18
p=1 ρ

(
V np
c (t)πc(Knp,t)−knp

c (t)
σI

)
EL(K,L)

∑F
t=1

∑N
n=1

∑
q∈Q

(
L
nq−Lnq

c (t)
σL

)2

ES(K)
∑F

t=1

∑N
n=1

∑
(l,r)∈S

(
Lnl
c (t)−Lnr

c (t)
σS

)2

EM(K)
∑N

n=1

∑18
p=1

∑F−1
i=1

(
Knp(i+1)−Knp(i)

σp
M∆(i+1,i)

)2

C: number of cameras
F : number of frames

N : number of tracked people
πc(K

p, t): projection matrix
V np
c (t): visibility indicator

Lnq(t): 3D distance between two points
Q: keypoint connectivity set

S: corresponding left and right limb set
∆(., .): absolute time differences
σI : variation in 2D detection
σL: variation in bone length
σpM : variation in 3D speed

Table 3.6: 3D human-aware tracking cost functions.

[C]] [T]
Baseline Ours Baseline Ours

Length Dev. (cm) 8.0 1.5 13.6 1.5
Symmetry Dev. (cm) 9.1 1.2 10.2 1.4

Table 3.7: Comparison between per-frame 3D skeleton reconstruction using ground truth associ-
ation and human aware tracking. Temporal integration and the physical body constrains improve
the 3D skeleton stability by 5-10X.
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[C] [T]
ARI Acc. ARI Acc.

[246]+P+known #cluster .82 85.3% .76 78.5%
[246]+MTL+known #cluster .89 91.7% .81 82.4%
[246]+P+GT 3D location+known #cluster .88 90.3% .84 84.1%
[246]+MTL+GT 3D location+known #cluster .96 98.2% .87 89.8%
Ours:MTL+unknown # clusters .97 98.3% .94 95.6%

Table 3.8: Due to the inaccurate sparse association between detections (tracklet noise in [T]),
wrong number of people (in [T]), and early commitment to perframe 3D human position estima-
tion (sensitive to errors due to wrong/missing inliers in RANSAC), [246] is not as competitive
as ours. Discriminative descriptor learned by MTL outperforms pretrained P regardless of the
association algorithms. GT 3D is the estimated location with ground truth association.

r [23] Ours: No tracklets Ours: Full
0.3 67.0% 71.6% 71.9%
0.5 74.1% 75.8% 76.2%

Table 3.9: MOT-Accuracy comparison for different threshold radius r on WILDTRACK [41].
Due to large number of negative samples, our method outperforms [23] even without using
single-view tracklet for triplet generation. We observe modest gain in our full method because
frequent occlusions and frame sub-sampling prohibit long single-view tracklets.

We also compare our tracking via clustering approach to current arts in multi-view people
tracking of [246] on [C] and [T] (results on [H] is not possible due to calibration failure) in
Tab. 3.8 and with [23], the current best published 3D tracker on the WILDTRACK[41] dataset,
the current most challenging multi-view tracking dataset in Tab. 3.92. In both cases, we observe
clear improvements using our MTL descriptors. Note that while previous methods require fixed
cameras (in [23]) and known number of people (in [246]) in addition to being synchronized and
calibrated, our algorithm can perform long term tracking of group activities in the wild without
any of aforementioned requirements. We show our 3D tracking and the projected skeleton to
observed images for the WILDTRACK dataset in Figure 3.18. We observe that the 2D projection
of the keypoints to all views corresponds well to the expected person anatomical keypoints and
tracks people even through occlusions.

3.4.3 Semantic Cut for Multi-angle Video

For any complex group activity events, it is unlikely that any person in the scene is well recorded
by one video stream. We leverage track3d 3D human skeleton and merge multiple video streams
into a multi-angle video by selecting video chunks where the selected person is visible and most

2Due to strong inter-person occlusion, many correctly associated detection are seen by less than 3 cameras,
which are discarded by our 3D reconstruction algorithm. Thus, we only show the MOT-Accuracy for reconstructed
3D skeletons.
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frontal to the camera. Similar to Arve et al. [14], we model the selection of the camera on a
trellis graph and seek for the smallest cost path transversing the graph. The nodes in this graph
are frames of camera c and edges are the connection of all consecutive frames from all cameras.

Node cost: This cost is determined by the normal vector of the person torso n(K) and the camera
c viewing direction dc and the distance of the projection of the skeleton K to image center and is
written as:

En(c, f) = Vc(f)

(
λ1n(K).dc + λ2g(|πc(K, f)− cc|2, τ)

)
,

where Vc(f) is a binary visibility indicator, πc(f) is the camera projection matrix, cc is the 2D
image center location, g(., τ) is a thresholding function, only penalizes the cost if it exceeds τ ,
and (λ1, λ2) are the weights between two error terms.

Edge cost: This cost function is weighted combination of constant cost γ penalizing rapid cam-
era switching and transitability cost penalizing camera switching during action. We determine
the transitability by the instantaneous velocity of the skeleton. Our edge cost is written as:

Ee(ci(f), cj(f + 1)) = λ3

∣∣∣∣K(f + 1)−K(f)

∆(f + 1, f)

∣∣∣∣2 (3.1)

+λ4γ[ci(f) 6= cj(f + 1)],

where [.] is the Iverson bracket, and (λ3, λ4) are the weights between two error terms.

We compute the smallest path using Dijkstra’s shortest path algorithm. Figure 3.19 shows a
camera switching case where it correctly switches the camera upon inter-human occlusion. Since
this algorithm does not plan several steps ahead, we observe that abrupt camera switching still
occurs. We smooth the path using an average filter in the post-processing stage.

3.5 Discussion

During the triplet mining for descriptor adaptation, the temporal offsets between cameras are es-
timated. The accuracy of the estimated offset depends highly on the relative speed of the moving
objects and the camera framerate. In the extreme case of static scenes, although these offsets can
be arbitrarily inaccurate, the multiview constraints is still satisfied. Thus, interestingly, we could
mine multiple cross views tracklets of the same person despite inaccurate offset estimation, as
long as those tracklets satisfy the multiview constraints.

We note the importance of accurate tracklet generation for descriptor bootstrapping. Noisy
tracklets can severely degrade the descriptor discrimination. While more sophisticated algo-
rithms could be used to improve the tracklet generation quality [59, 60], the problem may still
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remain for scenes with people wearing similar and textureless clothing. One prominent solu-
tion is the use of robust estimator for the distance metric loss under the graduated non-convexity
framework [191, 258].

The ultimate assumption of our framework is accurate semantic keypoints detection. Unless
these keypoints are well localized, our multiview synchronization and triplet mining will break
down. While this assumption is acceptable given recent dramatic advances in human keypoint
detection [36, 67, 96, 163, 237], the detection are much less accurate for other objects, such as
vehicles. We develop an algorithm to combine local unstructured single-view tracking and mul-
tiview structured semantic keypoints for cars to improve both 3D motion tracking and semantic
detection in Chapter 4.

3.6 Summary
We have presented a simple but powerful framework for scene-adaptive person descriptor. This is
demonstrated on challenging scenes captured by mobile cameras. The learned descriptor reliably
associates the same person over distant space and time instances. Our descriptor outperforms the
baseline by 18% and our 3D skeleton reconstruction is 5-10X more stable than naive recon-
struction even with ground truth people correspondences on events captured in the wild. Our
algorithm works even with few cameras. This enables has potential applications to broadcast
sport (e.g, basketball or football) with domain adaptation using prior unlabeled footage as fine-
tuning on a small subset of the test sequence suffices for generalization.
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Original resolution

Figure 3.9: The Barnes-Hut t-SNE visualization of our embedded descriptor for 30k images of
80 people collected by the CMU Panoptic studio. Despite similar appearances, the images of
the same person are clustered together. We magnified the image resolution of the original t-SNE
clusters for better visualization. This figure is best viewed on a monitor when zoomed in.
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Figure 3.10: 10-NN cross-view matching of the several people with confusing appearance and
their cosine similarity score using the pretrained model and our multitask descriptor learning
(MTL). Green denotes the query and red denotes incorrect matches. We label the query in green
and wrong association in red. Our method retrieves more positive matches and provides easy-to-
separate similarity score. All top three neighbors are of the same person.
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Figure 3.11: t-SNE visualization of the person descriptor extracted using a pretrained model and
our multitask learning (MTL) for sequence [C]. Except for images of the same tracklet within
a single view, the pretrained descriptors are scatter. Our descriptor groups images of the same
person from all views and time instances into cleanly separated clusters. See Figure 3.14 for
extra quantitative evidences.
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Visualization with label Visualization with label

Figure 3.12: t-SNE visualization of the person descriptor extracted using a pretrained model
(left) and our multitask learning model (right) for sequence [H]. Despite being a very complex
scene with high number of people, our proposed algorithm shows better discrimination and the
same person is better grouped into a single cluster.
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Figure 3.13: The CMC for the Chasing (left), Tagging (middle), and Halloween (right) scene at
different stage of our algorithm. Our method outperforms the pretrained model at every stages.
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Pretrained: 68% MB: 75% MLT: 77%

Pretrained: 76% Pretrained: 74% MTL: 83%MB: 78%MB: 83% MLT: 93%

Figure 3.14: The confusion matrix of the top-1 matches for the all sequences ([C] top left, [T]
top right, [H] bottom) at different stages: pretrained model, multi-view bootstrapping (MB), and
multitask learning (MTL). There are consistent improvements in accuracy as more sophisticated
stage is executed.
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Figure 3.15: 1-NN matching accuracy analysis of the proposed method for a different number
of cameras, percentage of tracklet noise (two or more people grouped in 1 tracklet), fraction of
domain data required for generalization, and triplet mining iterations. P denotes the pretrained
model. Please refer to the text for the details.
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t=10s t=20s t=30s t=40s t=50s

Per-frame 3D reconstructionHuman aware 3D tracking: View 2Human aware 3D tracking: View 1

t=5s t=10s t=15s t=20s t=25s

Defects

Per-frame 3D reconstructionHuman aware 3D tracking: View 2Human aware 3D tracking: View 1

Defects

Figure 3.16: 3D tracking for [C] (top) and [T] (bottom) for the entire event. Owing to accurate
association, our method gives smooth and clean trajectories despite strong occlusion, similar
people appearance, and complex motion pattern.
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Figure 3.17: The 2D projection of the keypoints to all views corresponds well to the expected
person anatomical keypoints and tracks people even through occlusions.
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Figure 3.18: 3D tracking from 7 cameras of the WILDTRACK dataset. Owing to the accurate
association, our method gives smooth and clean trajectories despite strong occlusion, similar
people appearance, and complex motion pattern. The 2D projection of the keypoints to all views
corresponds well to the expected person anatomical keypoints and tracks people even through
occlusions.

69



DRAFT

Figure 3.19: A visualization of two shots cut created by our algorithm for the Chase sequence.
The red square indicates the selected camera (frame). The top row shows the input images from
all camera at a particular time instance and the corresponding 3D view. The tracked person is
highlighted in the green bounding box. The green arrow shows his front-facing direction. All
visible cameras are shown in blue and the selected camera is shown in green. The bottom row
shows consecutive frames of the final video. The not selected frames are shown in grayscale.
Our algorithm detects and switches the camera upon inter-human occlusion.
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Chapter 4

CarFusion: Fusion of Motion and
Semantic Priors via Object Triangulation

The increasing availability of multiview camera systems at urban traffic intersections provides
us a strong opportunity to reconstruct moving vehicles crossing those intersections. Even coarse
shapes and motions of the vehicles can be invaluable to traffic analysis, including vehicle type,
speed, density, trajectory and frequency of events such as near-accidents, that can be fed to (semi-
) autonomous vehicles approaching the intersection. That said, reconstructing moving vehicles
in a busy intersection is hard because of severe occlusions. Moreover, the cameras are often
unsynchronized, have little overlap in fields of view, and need to be calibrated each frame as they
are often not rigidly attached and sway because of wind or vibrations.

Given recent advances in semantic keypoints detection of vehicles (wheels, headlights, doors,
etc.) [130, 163, 225], one naive approach to reconstruct the moving vehicles is to triangulate the
detected 2D keypoints. Unfortunately, current car keypoint detector significantly lags the human
keypoint counterpart due to the lack of large-scale dataset. Thus, the detected keypoint locations
are often incomplete and not precise enough to directly apply triangulation-based 3D recon-
struction methods in the presence of occlusions. For the same reason, tracking via per-frame
detection is not stable enough to be useful for structure-from-motion approaches. On the other
hand, in spite of significant improvement on feature point tracking [18, 209] in structure-from-
motion/SLAM [58, 119, 161, 162], corresponding these features across wide-baseline views is
near impossible given that each camera sees only parts of a vehicle (front, one side, or back)
at any given time instant. Currently, there are no methods for consistent 3D reconstruction of
moving vehicle under heavy occlusion.

In this chapter, we present a comprehensive framework for 3D reconstruction of moving ve-
hicles even in severe occluded scenarios by fusing single-view unstructured motion tracking and
semantic structured keypoints detection. Our insight is that the imprecise but accurate structured
keypoint is rigidly tight to the sparse but precise single-view unstructured tracks over the entire
course of motion. No spatial correspondences are needed for the unstructured points. No tem-
poral correspondences are needed for the structured points. We optimize for both the 3D points
and the car motion over all viewing cameras jointly using bundle adjustment. We call this frame-
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Figure 4.1: Reconstruction of vehicles crossing a busy intersection, making turns, going straight
and changing lanes. A subset of vehicle skeletons (3D detector locations) and their 3D trajec-
tories are augmented within the Google Earth view of the intersection. The reconstructions are
reprojected into multiple views of two cars (a sedan and an SUV) demonstrating good perfor-
mance under partial occlusions.
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Figure 4.2: CarFusion: Our overall pipeline for dynamic 3D reconstruction of multiple cars from
uncalibrated and unsynchronized video cameras. We fuse the structured points (detected vehicle
parts) and the tracks of the unstructured feature points to obtain precise reconstruction of the
moving vehicle. The reconstructions are reprojected into all the views and are used to bootstrap
and improve the detectors.

work as “CarFusion” and it consists of three main stages: (1) a novel object-centric (as opposed
to feature-centric) RANSAC approach to provide a good initialization of the 3D geometry of
the structured points of the vehicle, (2) a novel algorithm that fully exploits the complementary
strength of the structured and unstructured points via rigidity constraints, and (3) closing-the-
loop by reprojecting the reconstructed structured points to all views to retrain the part detectors.
A schematic overview of our system is illustrated in Figure 4.2.

We demonstrate the reconstruction of vehicles at a busy intersection shown in Figure 4.1.
About 62 vehicles were detected, tracked and reconstructed within a 3-minute duration captured
from 21 handheld cameras that are uncalibrated and unsynchronized and were panning to cover
wider fields of view. A subset of vehicle structured point trajectories is augmented within the
Google Earth image of the intersection. They include cars of different types (sedans, SUVs,
hatch-backs, jeeps, etc.) making left and right turns, going straight-ahead as well as changing
lanes. Several views of two specific cars in various occluded scenarios are shown with the repro-
jections of the structured points.

We also validate the performance of each stage of our framework and compare our approach
to alternative methods that rely only on tracking-by-detection or feature-based structure-from-
motion. By treating structured and unstructured points in a unified framework, we are able to
show significant improvements in vehicle detection rates, vehicle trajectory lengths (or tracks)
and reconstruction accuracies. Our approaches are designed to handle partial occlusions but fail
when a vehicle is mostly occluded at all times. The estimated 3D vehicle tracks are accurate but
slightly wobbly and will benefit from additional domain-specific priors.
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Contributions: We develop a framework to fuse both the single-view feature tracks and multi-
view semantic keypoints to significantly improve the detection, localization, and reconstruction
of rigid dynamic objects even in the presence of strong occlusions.

4.1 Related Work
The literature on 3D reconstruction of vehicles can be largely classified into two categories:
coarse, object-centric reconstruction using a single image or monocular video and dense recon-
struction using multiview stereo. Unlike works that employ different sensor modalities [45, 129],
our work is purely based on RGB cameras and thus, we only review methods using RGB sensors.

Single-View Reconstruction in the Wild: Reconstructing 3D information from a single view
has been the subject of study for multiple decades. The earlier approaches assumed an isolated
object for analysis similar to a projection of a CAD model on a plain background [29, 30, 180].
With the onset of better recognition algorithms [125, 128, 233], recent works utilize state-of-the-
art object detectors [82] and instance segmentation [96, 244] algorithms to isolate an object, and
follow various recipes to extract 3D information [21, 159, 212]. Multi-stage pipelines involve
detecting and segmenting objects in the scene, estimating 3D poses, fitting shape models to the
segment masks, enabling coarse to fine improvement [115, 158, 171]. Notably, Xiang et al. [234]
estimated 3D voxels of the object directly from detection and segmentation results instead of es-
timating viewpoints and keypoints. Approaches that regress depth from a monocular video have
also been explored [83, 259]. In general, these approaches produce coarse and category specific
reconstruction (e.g., car, chair). The reconstruction is also potentially geometrically inconsistent
if re-projected to multiple views.

Active-Shape Model Reconstruction: Many works have been motivated by using active shape
models [54] for vehicle reconstruction [262, 263]. These algorithms exploit strong part detectors
learned from CNNs [40, 130, 137, 163, 225] and deform the shape model to fit the observa-
tions. Recent works have also combined SLAM with active shape priors for the reconstruction
of objects [49]. In general, these approaches produce more detailed 3D shape than those with
category-specific reconstruction.

Multi-view reconstruction: Multiview stereo systems are widely used in the context of vehicle
reconstruction for both dense shape and velocity estimation [26, 87, 152, 153]. These approaches
exploit cues from 2D bounding box detection, image instance segmentation or object category
shape to regularize the stereo disparity for large displacement and textureless/glossy regions.
Our work also employs multiple cameras but reconstructs both the car skeleton and sparse tra-
jectories of the car body using 3D priors on symmetry, link length, and rigidity constraints. Our
multiview detector bootstrapping is similar in spirit to Simon et al.[195] for hand keypoint detec-
tion. However, their work is conducted in a laboratory studio equipped with a massive number of
cameras and the method can produce a good hand skeleton using multiview triangulation alone.
Our work is “in the wild” where stable vehicle reconstruction is hard even with ground truth
correspondences.
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4.2 Multiview Reconstruction of Moving Cars
Consider C video cameras observing M rigidly moving cars over F video frames. At any time
instance f , the car m has a fixed number of structured points Sm(f) and an arbitrary number of
unstructured points Um(f). The structured points are semantically meaningful 3D locations of
parts on the car. They can be reliably but imprecisely detected and can be matched to different
images at any time instance. The unstructured points are the 3D locations of the local features
(say, Harris corners) in the observed image. They can precisely be detected and reliably matched
only within the same video. Their 2D locations are scm(f) and ucm(f), respectively. The motion
of an individual car is characterized by a rigid transformation [Rm(f), Tm(f)] at frame f . Denote
xc(f) = πc(X(f)) as the image projection of an arbitrary 3D point X to camera c at time f by
the camera projection matrix πc(f). The visibility of X in camera c is given by V c(X(f)). We
assume all the cameras are globally calibrated with respect to the static background and tem-
porally synchronized. The 3D locations of the unstructured points can be computed using SfM
algorithms [187], which are later transformed to the global coordinate system of the static back-
ground. We note that each set of unstructured points computed from different cameras is up to
an unknown scale, which is optimized jointly during the global optimization process. Our goal
is to precisely estimate and track the 3D configurations of the structured points.

4.2.1 cRANSAC: Car-Centric RANSAC
To reconstruct the vehicle from multiple views, we must find correspondences across views first.
We propose a car-centric RANSAC procedure for finding such correspondences. Compared to
common point-based RANSAC [94], we consider the entire car as a hypothesis, which allows
explicit physical constraints on the car link length and its left-right symmetry to be enforced.
Due to the uncertainty in detecting the 2D location of the structured points from different views,
these additional constraints are needed for reliable multiview correspondence estimation.

Concretely, consider a set of 2D car proposals h(f) = {h1(f), ..., hc(f)} available from all
the cameras at frame f . Each proposal consists of a set of structured points scm. We want to find a
set gm = {g1

m, ..g
c
m}, where gim ∈ hi, for every car m visible in the cameras. At every RANSAC

iteration, we sample proposals within a triplet of cameras with sufficiently large baselines and
triangulate the hypothesis to obtain Sm(f). These points are back-projected to all cameras to
find a better hypothesis gm. We optimize a car-centric nonlinear cost function EC and prune
proposals with large error within gm. This procedure is applied for a fixed number of iterations.
The hypothesis with the largest number of elements is taken as the inlier proposal for that car.
These proposals are removed from the proposal pool h and the process is restarted until no good
hypothesis is left. The car-centric cost function is defined as:

EC = αIEI + αSES + αLEL (4.1)
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where, {EI , ES, EL} are the image evidence cost, car link length symmetry cost, and car link
length consistency cost, respectively, and {αI , αS, αL} are the weights balancing the contribu-
tions of each cost. The cost functions are described below.

Image evidence cost: This cost function penalizes the deviation between the 3D projection of a
point and its detected 2D location:

EI(f) =
C∑
c=1

Sm∑
p=1

V c
p (f)ρ

(
πc(Sp(f))− scp(f)

σI

)
,

where, ρ is the Tukey Biweight estimator and σI is the deviation in 2D localization of the struc-
tured point xcp.

Link length consistency cost: This cost incorporates prior information about the expected
length of two structured points and penalizes the deviation of the estimated length with respect
to its mean:

EL(f) =
∑
{p,q}∈L

ρ

(
Lp,q(f)− Lp,q

σL

)2

,

where, L{p,q} is the Euclidean distance between two structured points {p, q}, in the connectivity
graph L, and its expected length L{p,q}, defined based on the vehicle type, e.g. sedan or truck,
and σL is the expected variation in length.

Left-right symmetry cost: We penalize large differences between the left and right link length
of the car. This constraint is useful in fusing detectors visible from the opposite side in other
views. This cost function is given as:

ES(f) =
∑
{l,r}∈S

(
Ll(f)− Lr(f)

σs

)2

,

where, S is the set of corresponding left and right links, and σS is the expected variation in the
left and right link lengths.

We rescale the SfM reconstruction into metric units and set {σI , σL, σS} to {10, 1.5, 0.1},
{αS, αS, αL)} to {1, 1, 0.5}, respectively for our experiments.

4.2.2 Fusion of Structured and Unstructured Points
By exploiting the physical constraints on link length and left-right symmetry, we can estimate
plausible 3D configurations of Sm from multiple wide baseline cameras at any time instances.
Yet, these estimations remain spatiotemporally unstable due to large uncertainty in detected loca-
tions of structured points. On the other hand, the unstructured points can be detected and tracked
precisely for every camera. However, it is difficult to reliably establish correspondence between
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Input: {scm(f), ucm(f)}, πc(f), h(f)
Output: {Sm(f), Um(f)},{Rm(f), Tm(f)}
repeat

while No more cars available do
while Inliers < Min Inliers do

repeat
gm ← Sample h from three cameras;
Sm← DLT(gm);
gm← Project Sm to all cameras;
gm← Optimize Eq. 4.1 and prune gm;
if gm > gmbest then

gmbest = gm;
end
iter++;

until iter < Max Iteration;
end Section 4.2.1
Remove gm from h;
Reconstruction Um(f) objects ;
Optimize Eq.4.2 for Sm(f), {Rm(f), Tm(f)} (Section 4.2.2);

end
Project Sm and retrain the detector (Section 4.2.3);

until iter < Max Iteration;
Algorithm 2: CarFusion algorithm
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unstructured points across cameras due to large viewpoint changes.

Our fusion cost combines the complementary strengths of the structured and unstructured
points using rigidity constraints. It enables precise and spatiotemporally stable estimation of the
3D configuration of the structured points. This cost function is formulated as:

e(f) =

(
‖Rm(f)Sc

i (fs)+Tm(f)−λcUc
j (f))‖2−‖(Sc

i (fs)−λcUc
j (fs))‖2

σR

)2

,

ER =
∑C

c

∑F
f

∑Uc
m

j

∑Sc
m
i e(f),

where λc is the global unknown scale factor for estimating the unstructured points from camera
c, σR, set to 0.1, is the expected deviation from rigid deformation of the car 3D configurations
over time, and fs is the frame where the car is first reconstructed (with sufficient inliers) using
our RANSAC algorithm. We initialize λc using the average scale of the structured points. Our
formulation links structured and unstructured points between all the visible cameras seamlessly
over space and time. The cost function promotes fixed distances between the structured and
unstructured points (definition of rigid motion) during the course of motion. No spatial corre-
spondences are needed for the unstructured points. No temporal correspondences are needed for
the structured points.

Since the car motion is a rigid transformation, we explicitly enforce this constraint into the
image evidence cost and integrate it over all time instances:

e(f) = ρ

(
πc(Rm(f)(f)Sm(0)+Tm(f))−scp(f)

σI

)
EI2 =

∑C
c=1

∑F
f

∑Sm

p=1 V
c
p (f)e(f),

We then optimize the following total cost for precise 3D reconstruction of each car:

E = min
Sm(t0),Lm,{Rm(f),Tm(f)}

EI2 + ES + EL + ER, (4.2)

where, Lm is set of mean link lengths and is initialized using mean of the 3D configurations Sm
estimated in Sec. 4.2.1.

For efficiency, we start the reconstruction of each vehicle progressively, starting from the first
time when our RANSAC detects the 3D object, and optimize Equation 4.2 for its structured point
trajectories. The reconstructed cars are removed from the hypotheses pool. We iterate this pro-
cess until no more cars can be reconstructed. Please refer to Algorithm 2 for the entire process.

4.2.3 Multiview Detection Bootstrapping
Precise and temporally stable 3D reconstruction of the car from multiple views can bootstrap
the 2D detection of the structured points (loop-back shown in Figure 4.2). In turn, better 2D
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localization of the structured points enables more precise 3D estimation of the car. Given the 3D
locations of structured points and their visibilities, we project the 3D points onto all the views.
We use the reprojected points as automatically computed labels for fine-tuning the car detector.
We recompute the reconstruction using the improved detectors for better fitting of the structured
points and further minimization of the reprojection error. The emphasis is to improve detections
using reconstruction and vice-versa from cameras captured in the wild.

4.3 Analysis

We evaluate our framework on a traffic scene captured with six Samsung Galaxy 6, ten iPhone
6, and six Gopro Hero 3 cameras at 60 fps in a busy intersection for 3 minutes. In total the
algorithm is run on nearly 210000 frames. These videos were captured by 13 people, some of
whom carried two cameras. The sequence is challenging as there are no constraints on the cam-
era motion or the vehicle motion in the scene. We manually annotate the 2D locations of the
structured points for every visible cameras for 2793 frames from different viewing angles in the
Intersection dataset.

We evaluate our reconstruction pipeline at its progressive stages: car-centric RANSAC (cRANSAC),
temporal integration using only the structured points (T-cRANSAC), and the fusion of both struc-
tured points and unstructured track (CarFusion). The T-cRANSAC is the result of optimizing the
cost function 4.2 but without the fusion term ER. This method can be considered as reconstruc-
tion using tracking-by-detection. We also compare the evolution in accuracy of the 2D structured
point detector before and after the multiview bootstrapping. We use the Stacked Hourglass archi-
tecture [163] referred to as ”pretrained”, to detect the structured points. The same architecture
is used for finetuning with the point labels obtained using our multiview reconstruction. The
finetuned detector is referred to as MVB (multiview bootstrapping).

4.3.1 Data Pre-processing

Structured points detection and tracking: We used the FCIS model [244] to obtain the car
proposal hypotheses. For each hypothesis, The structured points are 14 car keypoints, obtained
by training the Stacked hourglass CNN architecture [163] the KITTI dataset [106, 130]. We
generate tracklet of each proposal by examining the overlapping area of the bounding boxes in
consecutive frames. We split the tracklet if there are other bounding boxes with 70% overlapping
area in one frame.

Camera calibration and 3D background estimation: We estimate the camera intrinsics and
extrinsics at keyframes and reconstruct the stationary background points using ColMap [187].
The camera poses are propagated from the keyframes to all other frames using the affine Lucas-
Kanade tracking and PnP pose estimation. The time offsets between cameras are estimated using
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Figure 4.3: [Left] CAD based reconstruction [137] shows 22o angular error with respect to the
motion of the vehicle. [Right] In comparison, our result shows 1o angular error. The CAD basis
based methods fail due to inaccurate keypoint predictions, especially when only one side of the
vehicle is visible.

the approach in [217].

3D reconstructing of the unstructured points: For every car proposal, we detect the Harris
features and track them using the affine Lucas-Kanade algorithm. We initialize the detection
every 30 frames and the track them for 120 frames in both backward and forward directions. We
estimate their 3D locations using single view SFM.

4.3.2 Comparison with Baseline Approaches
Comparison with CAD/Active Shape Model Fitting: Figure 4.3 shows a comparison between
the CAD fitting algorithm of Lin et al. [137] applied to a single image and our approach. CAD
fitting approaches are sensitive to errors in 2D keypoint localization, especially in the presence
of occlusions. In unconstrained settings as ours, CAD fitting orientation error is approximately
22 degrees (while our method shows only 1 degree error). Further, since current methods were
trained on a small range of CAD models, they cannot generalize to arbitrary vehicles in the wild.

Comparison with single video methods: Figure 4.4 shows a comparison between our method
and a traditional single-video based SFM reconstruction of structured points on the intersection
dataset. While single video-based reconstruction has a reprojecion error of 35 pixels and fails to
properly match the structured points of a different viewpoint, our method produces more accurate
reprojection (2.5 pixels reprojection error).

4.3.3 Ablation Analysis
Quantitative: We analyze the improvement in the accuracy of reconstructed structured points
with respect to the ground truth annotations according to the tracking length and the number of
unstructured points in Figure 4.5. As expected, the increase in visibility (track length) of struc-
tured points better stabilize the structured points which leads to higher quality reconstruction.
We also find that the larger number of unstructured points improve the quality of the structured
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Figure 4.4: [Top-Left] Single-video based SFM(SVB-SFM) reconstruction of structured points.
[Top-Right] The reprojection of the reconstruction onto a different view. [Bottom] Projection of
reconstructed car using CarFusion to the above corresponding views.

Figure 4.5: Analysis of accuracy with respect to the increase in number of frames (left) and
increase in number of unstructured points (right) used in the CarFusion algorithm.
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cRANSAC T-cRANSAC CarFusion

# Traj
RMSE

Pretrain-MVB #Traj
RMSE

Pretrain-MVB #Traj
RMSE

Pretrain-MVB
Straight 14 12.24 8.52 14 17.8 7.1 112 16.8 2.5
Turning 14 8.94 6.95 14 12.5 5.83 101 15.5 3.1
Multi 42 7.45 5.3 42 14.3 4.47 414 17.4 2.2

Table 4.1: Reprojection error of the reconstructed tracks at different stages of the pipeline. The
rows refer to cases where one car is moving straight, turning left or right and multiple cars in
the intersection. The number of trajectories using cRANSAC and T-cRANSAC is fixed to the
number of parts, while with point fusion we have a combination of structured and unstructured
tracks. The full pipeline (CarFusion + MVB) performs best, reducing the error of cRANSAC
and T-cRANSAC by 4 and 2 times, respectively.

α = 0.1 α = 0.2
Pretrained 87.1 91.8
MVB 91.4 94.5

Table 4.2: Comparing the structured point detectors using the Percentage of Correct Keypoint
(PCK) metric. Our multiview bootstrapping (MVB) shows clear improvement over the state-of-
art baseline detector [163].

points due stronger rigidity constraints and the improvement is more evident for stricter threshold
(α = 0.1).

We adopt the widely used PCK metric [240] to evaluate the accuracy of 2D structured point
detection. Under this metric, a 2D prediction is deemed correct when it lies within specified ra-
dius α∗B of the ground-truth label, whereB is the larger dimension of the car bounding box. We
provide fine-grain analysis of the methods in Table 4.1, using three sub-sequences: car moving
straight in a single lane, car turning, and a three cars scene. The first sub-sequence is observed
for 234 frames, the second sub-sequence is observed for 172 frames, and last sub-sequence is ob-
served for 202 frames. We report the root mean square error (RMSE) of the difference between
the re-projected points and the detected points. We observe that the RMSE of the cRANSAC
algorithm is large because of many detections with high variation in part localization. This error
is reduced by finetuning (MVB) and can be attributed to the fact that better detection produces a
more consistent 3D model. Interestingly, without multiview bootstrapping the error increases for
T-cRANSAC. This could be because the detections are not temporally consistent. As expected,
this error drops after detector finetuning. Using the unstructured tracks reduces the overall re-
projection error of the 3D tracks by at least 5 times (12.24 to 2.5 or 7.45 to 2.2). However, the
finetuned network gives modest improvement over the reconstruction of the structured tracks.
This could be due to the limitation of the CNN architecture where the training image is down-
sampled substantially. The length of the trajectory of the car is the max length of the bounding
box tracks over all the inlier videos.
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Input image Manually annotated Stack hourglass [32] MVB @ Iter 1 Car Fusion

Figure 4.6: Qualitative analysis of the structured point detector before and after multiview boot-
strapping (MVB), shown for two cars in three different views. Initial detectors were trained using
Newell et al. [163]. The CarFusion approach was used to reconstruct the cars. Then the resulting
3D structured points were re-projected to all the views and used to retrain/bootstrap the detectors.
The MVB approach shows clear visual improvement over the baseline, even in the presence of
occlusions.

As showed in Table 4.2, our finetuned detector improves the accuracy of the baseline method
by 4.3% with α = 0.1 and 2.7% with α = 0.2 just by finetuning the detector from the 2D
re-projection of the reconstructed structured points. This result clearly demonstrates the benefit
of CarFusion for accurate 3D structured points reconstruction and multiview bootstrapping for
more accurate structured point detection.

Qualitative: Figure 4.6 compares detection of the structured points before and after multiview
bootstrapping with respect to the ground truth labels for two cars observed in three different
views. We visualize only detections with more than 50% confidence. Our multiview bootstrap-
ping shows clear improvements over the baseline method as more confident points are accurately
detected. Using CarFusion, the reprojected points accurately localize the structured points and
provide a plausible prediction for occluded locations, as shown for twelve snapshots of another
car in Figure 4.7. We attribute this property to the use of symmetry, link length, and rigidity
constraints in the reconstruction stage. Although some of the structured points are not visible
from any of the views, for example, the left front wheel of the car in Figure 4.7, we are still
able to accurately reconstruct the point in 3D due to our left-right symmetry and link length con-
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Figure 4.7: The 2D re-projections of the steel gray colored car in many occluded configurations.
The CarFusion method can accurately reconstruct the 3D configuration of car despite strong
occlusion. The top row shows the full field of views and the bottom row shows zoomed in insets.

Figure 4.8: Visualization of the reconstructed trajectories of multiple cars using cRANSAC. The
insets on the right show detailed comparisons of the trajectories stability between cRANSAC and
CarFusion. CarFusion produces clearly more stable trajectories. Visually, they correspond well
to the motion of a moving car.

straints. Without these constraints, the reconstruction of the structured points, even fully visible
from multiple views, often explodes due to erroneous detection hypothesis.

Figure 4.8 shows a comparison between the quality of the reconstructed trajectories of the
structured points using cRANSAC and the complete CarFusion pipeline. The trajectories are
smoother by incorporating the Fusion of points compared to SFM on structured points. Our
smooth trajectories are verified to be more accurate (see Table 4.2). Regardless of the finetun-
ing step, cRANSAC performs poorly. This is due to erroneous detection that leads to frequent
failure of cRANSAC . We observe a significant boost in the accuracy by temporal smoothing
of the cRANSAC results over time. Our full CarFusion algorithm with multiview bootstrapping
performs best, with 79.4% inliers detected.

In Figure 4.9 we illustrate the complete 3D reconstruction of trajectories of structured points
on moving cars using CarFusion and the 2D projection to inlier views for several cars. As can be
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Figure 4.9: Visualization of the 8/43 reconstructed cars using CarFusion. We show the 2D re-
projection of the reconstructions onto sample frame containing those cars. All the re-projected
points fit the cars well.
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seen from the results we are able to accurately reconstruct the trajectories of the cars over time
captured from unsynchronized videos.

4.4 Discussion
While our multiview bootstrapping can significantly improve the keypoint detection accuracy,
we notice that it could be overly confident and incorrectly predict occluded points. We expect an
explicit modeling of the relation between occluding and occluded keypoints using graph neural
net in order to refine the occluded points can help.

As shown in Chapter 2, To reconstruct a dynamic scene from multiple cameras, the most im-
portant aspect is the temporal alignment of the C cameras. Currently, the alignment is estimated
offline by solving the spatiotemporal bundle adjustment on a very sparse set of unstructured
point correspondences across cameras. However, similar to the point trajectory smoothness as-
sumption in spatiotemporal bundle adjustment, we could potentially solve the alignment by con-
sidering the smoothness of the rigid body motion when aggregating the estimated motion from
individual cameras.

4.5 Summary
We have presented a method to fuse imprecise and incomplete part detections of vehicles across
multiple views and the more precise feature tracks within a single view to obtain better detec-
tion, localization, tracking and reconstruction of vehicles. This approach works well even in
the presence of strong occlusions. We have quantified improvements due to the different stages
of the end-to-end pipeline that only uses videos from multiple uncalibrated and unsynchronized
cameras as input. We believe this approach can be useful for stronger traffic analytics at urban
intersections.
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Chapter 5

Illumination Decomposition for Dense
Dynamic Capture in Active Sensing

Structured light systems have been the method of choice to obtain dense and accurate surface
models of complex objects for many industrial applications such as inspection of manufactured
parts, biometrics, etc. Current illumination coding strategies can be mainly classified into two
categories: multi-shot [55, 89, 218] and single-shot [118, 214, 238]. Multi-shot methods can
estimate per-pixel depth map for various types of objects using temporal coding of the illumina-
tion patterns but require the scene to be stationary during the image acquisition. By decoding the
spatial structure embedded in the illumination pattern, single-shot methods are applicable to dy-
namic objects but generate low spatial resolution reconstructions. Moreover, single-shot systems
are susceptible to high frequency textured objects which distorts the appearance of the light pat-
tern (see Figure 5.1 for an example). Such different requirements of multi-shot and single-shot
methods lead to a trade-off between the spatial and the temporal resolution of the 3D shape and
is hampering wider success of structured light systems.

Another well-known limitation of the current structured light approaches is that the multiple
projectors cannot be used concurrently because of the illumination mixing phenomena. With the
emergence of the virtual reality and tele-presence engines [25, 147], there is an increasing need
for surround structured light systems where the use of multiple projectors is a must. Unfortu-
nately, instead of producing high spatial resolution reconstructions in the overlapping regions,
large holes are obtained. Currently, the problem is mitigated using additional hardware [33].
However, this approach alters the calibrated extrinsic between individual units and may require
online recalibration of the whole system to integrate individual 3D shapes into one piece.

In this chapter, we present a structured light system that can handle the two aforementioned
issues. First, despite being a single-shot method, it can use high frequency illumination patterns
to estimate high spatial resolution shape information of highly textured objects. Second, it al-
lows concurrent use of multiple projectors without additional hardware. The proposed method is
single-shot because it does not use the illuminated images in the previous frames to temporally
decode the illumination pattern. Figure 5.1 shows a typical example of surface texture that our
method can handle.
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Figure 5.1: Conventional single-shot structured light systems often fail for highly textured ob-
jects. For multiple projectors system, problematic effects such as the mixture of albedo variations
and the interference between high frequency illumination patterns arises, which makes it difficult
to establish reliable and dense camera-projector correspondences.
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Due to the use of multiple projectors, the observed image not only contains the mixed ap-
pearance between the surface texture and the illumination but also the mixture of the illumination
from different projectors and their combinations. Our solution decomposes possible combina-
tions of the surface texture and the projected illumination patterns used to recreate the observed
mixed appearance image. More concretely, we develop an optimization framework that reliably
estimates local warps of the illumination patterns visible in the observed image regions and a
reference texture template to compose the observed image. The texture template is obtained by
periodically interleaving the projection sequence with an all-white pattern. The warping func-
tions are computed starting from a sparse set of correspondences between the camera and the
projectors. These initial matches are greedily propagated into textured areas where spatial cor-
respondences cannot be directly estimated. Our separation scheme allows the use of multiple
projectors to accurately capture the 3D shape of large objects.

As a result of the separation, the dense correspondences between projectors and camera even
in the textured, and (or) mixed illumination regions are established. Subsequently, these corre-
spondences are triangulated to reconstruct the high resolution 3D shape of the object. In addition,
we obtain dense tracking inside the texture region in the presence of the illumination pattern.

Since the method computes warps to a template, it does not exhibit drift over time. Moreover,
unlike conventional single-shot structured light systems whose performances degrade as surface
texture frequency increases, our method achieves better decomposition accuracy with higher fre-
quency texture. Finally, despite being presented for single-shot approaches, this method can also
be used in conjunction with multi-shot systems by spatially modulating the illumination patterns
with a random pattern [241]. Structured light systems using our decomposition method can take
advantage of the consumer trends in resolution increases for both camera and projector and thus,
avoid the need for expensive high quality time-of-fight sensors.

The proposed method is implemented on a structured light system consisting of one camera
and two projectors, where four possible types of appearance could be observed: pure illumina-
tion from individual projector, illumination from two projectors, surface texture and illumination
from individual projector, and illumination from two projectors and surface texture. We demon-
strate dense and accurate decomposition and reconstruction results on both synthetic and real
data with non-rigidly deforming objects.

5.1 Related Work
Active illumination for shape estimation mainly focuses on designing coded patterns that are
robust to occlusion, depth discontinuity [37, 42, 186, 218, 250], defocus [4], or global illumina-
tion [43, 44, 55, 85, 90, 91]. A thorough review of the current state of the art techniques is given
in [185]. Generally, these systems have to select appropriate illumination patterns depending on
the temporal or spatial resolution requirements. Since multi-shot methods can robustly generate
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high spatial resolution but require stationary scenes, motion compensation schemes have been
developed to handle slowly moving objects [226]. Another common approach is to interleave the
patterns for structure estimation with patterns optimized for computing motion [86].

In contrast with multi-shot approaches, single-shot methods sacrifice spatial resolution for
high temporal resolution reconstruction and usually cannot deal with textured objects. In the
context of single-shot structured light reconstruction, the problem of textured objects is almost
unexplored with the exception of the work from Koninckx et al. [122, 123]. Their methods rely
on a feedback loop that changes patterns according to the error in the decoding process and
heuristic rules to set the color codes depending on different textured surfaces. In principle, this
method treats the surface texture as a nuisance and designs illumination patterns robust to the
texture. Conversely, we consider the texture as an additional source of information that needs to
be recovered along with the 3D shapes.

While single camera-projector systems are most popular, there have been few attempts to
deploy the multiple systems at once because of the distorted appearance of multiple illumination
patterns superimposed on each other. Recently, Furukawa et al. [76] present a two projectors-one
camera system that projects de Bruijn stripe pattern of different colors from different projectors
to reduce the interference between those patterns. Sagawa et al. [184] extend the idea further
and obtain higher resolution shape by interpolating the de Bruijn sequence. Inherit from these
works, a surround structured light system is introduced [116]. Due to the use of sparse color
grid, all these methods produce sparse shape reconstruction and are not robust to color objects.
Another notable surround structured light reconstruction is presented by Lanman et al. [126]
where the planar mirrors are elegantly arranged to simulate the projector patterns coming from
different views. There are also efforts to create the surround 3D reconstruction systems for im-
mersive visualization and tele-presence using the Kinects I depth sensor [25, 34, 147]. Generally,
Kinect-based methods rely on hole filling or smoothing algorithms [147] and external mechani-
cal vibrator to make their light patterns blurred when viewed by the other Kinects [25].

Although the theme of image separation has not been applied to structured light system, its
history dates back to the early 90s when researchers extract motion between different depth lay-
ers from image sequences [105, 107, 220, 227]. Their key observation is that the background
and the reflection layers undergo different motions due to their different distances to the trans-
parent layer, and hence, can be separated. These methods require multiple images with motions
of various directions and they only focus on motion separation, not image layer restoration.

A similar type of image separation is performed while estimating intrinsic images [72, 206,
243]. Prevailing intrinsic image decomposition algorithms assume that natural images contain
piecewise-smoothness reflectance and smoothly varying shading. Recently, by exploiting the
difference in the distribution of the two intrinsic components, Yu and Brown [245] present a fast
separation algorithm that produces state of the art results with a single image. In contrast with
these methods, our work decomposes the high frequency illumination patterns and texture from
the observed mixed appearance image. Such high frequency mixture breaks the smoothness as-
sumption of both transparent/semi-reflection removal and intrinsic images.
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5.2 Decomposition Framework

5.2.1 Mathematical Formulation
Consider an object being illuminated by one or more projectors. The brightness I(x, y) at loca-
tion (x, y) in the observed image is modeled as a multiplication of a texture image IT (x, y) and
the illumination image IL(x, y) at that location:

I(x, y) = IT (x, y)IL(x, y). (5.1)

The texture image IT is the image observed if the projector illuminates an all-white pattern on
the object. The illumination image IL is the incident lighting pattern. This equation can explain
different types of mixed appearance: illumination light from one projector onto textured surface,
illumination from multiple projectors onto a textureless surface, or illumination lights from mul-
tiple projectors onto a textured surface. When the object is being illuminated by multiple light
sources, the incident light is the combination of all lighting coming from individual projectors.

Equation 5.1 is ill-posed because it has more unknowns, e.g. IT (x, y) and IL(x, y), than the
equations. Thus, we must rely on additional knowledge of the illumination and texture source.
Since the illumination image is a projection of the known projector patterns, these patterns serve
as our referenced templates. The reference texture template can be obtained by interleaving the
projection sequence with an all-white pattern.

As the object deforms, the appearance of both the texture image IT and the illumination
image IL change accordingly. This suggests that we must be able to warp the texture template
and projecting patterns to the current their current hidden appearances in order for Equation 5.1
still to hold true. Because image deformation is high-dimensional and non-linear, analytic forms
that describe consistent deformation behavior over the entire image do not exist. Thus, we model
the warping function locally within a small patch to approximate for these distortions. More
specifically, we employ an affine warping function f , a constant gain aT and an offset bT to map
patches in the texture template T to the texture image IT :

IT (x, y) = aTT (f(x, y)) + bT , (5.2)

where the constant terms, aT and bT , are defined patch-wise and help compensating for the
intensity changes between the two images due to changes in surface normal, light directions and
ambient illumination. The warping function f is written as:

f(xk, yl) =

[
x0 + p0 + p2k + p3l
y0 + p1 + p4k + p5l

]
, (5.3)

where (k, l) are the row and column of the texture template patch centered at point (x0, y0), and
p0..5 are the warping parameters.
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Unlike the texture template warping where the deformation between two time instances can
be small, the appearance of a patch in the illumination pattern is quite different when observed in
the camera image due to perspective transformation. Assuming photometrically calibrated pro-
jectors, we adopt a homography warping g, a set of constant gain aLi, and offset bLi to transform
the illumination pattern Li to the illumination image IL:

IL(x, y) =
N∑
Il=1

aLiLi(gi(x, y)) + bLi, (5.4)

where N is the number of projectors visible at pixel x, y in the camera image. The role of aLi
and bLi are also to compensate the intensity changes between the illumination patterns and the
illumination image. Empirically, we found the homography warping more robust than affine
warping. This warping function h is expressed as:

gi(xk, yl) =

[
x0+qi0+qi2k+qi3l

1+qi6k+qi7l
y0+qi1+qi4k+qi5l

1+qi6k+qi7l

]
, (5.5)

where (k, l) denotes the row and column of the texture template patch centered at point (x0, y0),
and qi0,..i7 are the warping parameters of the ith projector.

We minimize the following cost function over a patch of size (2M + 1)× (2M + 1) centered
at the decomposing point (x0, y0) for the warp parameters p0..6, qi0..i7 and their photometric
compensation coefficients aT , bT , aLi, bLi:

M∑
k=−M

M∑
l=−M

[IT (xk, yl)IL(xk, yl)− I(xk, yl)]
2. (5.6)

Once the optimization converges, we quantify the decomposition by the Normalized Cross
Correlation (NCC) score of the patch in the observed image and the patch synthesized by Equa-
tion 5.1. A decomposition is deemed successful if the ZNCC score is greater than predefined
threshold, set to 0.9 for all experiments.

Decomposition complexity: The complexity of Equation 5.6 grows linearly with the number
of projectors. For a typical setup of two projectors and one camera, at every patch, the number
of unknowns are 17 (8 parameters for IT and 9 parameters for IL) for texture and one illumi-
nation pattern mixing, 18 parameters for two projector illumination patterns mixing, and 26 (8
parameters for IT and 18 parameters for IL) for texture and two illumination patterns mixing.
For our local decomposition scheme, the ratio of the number of constraints, i.e. the number of
pixels in a patch, over the number of unknowns is small, which makes solving for these warp
parameters challenging. Thus, proper exploitation of additional geometric constraints and a good
initial warp estimation are crucial to the decomposition scheme.

5.2.2 Illumination Flow Constraint
For a dynamic object illuminated by a stationary structured light system, its observed image
changes at every time instance. Besides the motion of the textured surface observed on this
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Figure 5.2: Illumination flow constraint. Two rays emanating from the projector P hit the ob-
ject at [X1,1, X2,1] and [X1,2, X2,2] at time instance 1 and 2, respectively. Their corresponding
projection to camera C are [x1,1, x2,1] and [x1,2, x2,2]. The illumination flow vectors, ~x1,1 − ~x1,2

and ~x2,1 − ~x2,2, intersect at the epipole e of the projector. This geometry constraint reduces the
dimensionality of the illumination flow by one.
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image, there is also an apparent motion due to the illumination pattern. Interestingly, the flow
direction of the illumination pattern and the texture are radically different from each other. Un-
like the motion flow which can be in any directions according to the movement of points on the
object surface, the direction of individual illumination flow is only along specific lines. Figure
5.2 illustrates this phenomenon. Because the illumination flow lies on the projection of the ray
emanating from the projector, their directions must be along the epipolar lines of the camera-
projector system. Furthermore, the illumination flow field encodes the changes in depth of rays
emanating from the light source that hit the object. Because establishing spatial correspondences
between camera and projector is much more difficult than estimating temporal correspondences,
especially in the wide baseline scenario, any structured light systems can gain benefit from the
temporal coherency of the illumination flow for shape reconstruction.

For our scenario, the illumination flow constraint allows us to simplify Equation 5.5 to:

gi(xk, yl) =

[
x0+qi0dx+qi1k+qi2l

1+qi5k+qi6l
y0+qi0dy+qi3k+qi4l

1+qi5k+qi6l

]
, (5.7)

where the center of the patch (x0, y0) is forced to lie on the epipolar line parameterized by nor-
malized direction vector (dx, dy) of that line in the projector image. Compared to Equation 5.5,
for each projector, this equation reduces the dimensions of the optimization in Equation 5.6 by
one and allows us to search for the decomposed illumination patch only along the epipolar line.

5.3 Greedy Correspondence Growing
Due to perspective distortion in the illumination image IL and the large deviation from the texture
template T for fast moving objects, good initial guesses for the warping parameters are required
to optimize Equation 5.6. Even with random patterns [55], the local minimum of the cost function
still exist due to the repetitive nature of the spatial encoding illumination pattern. We solve
the initialization problem greedily. Starting from a few correspondences established in pure
illumination or low textured regions, the results are gradually expanded to the mixed regions
by optimizing for the warp parameters in Equation 5.6. Figure 5.3 gives an overview of this
propagation process.

5.3.1 Types of Mixed Appearance
Solving for the warp parameters in Equation 5.6 requires knowing the mixture type of the de-
composed point. Let the point being decomposed be the “child” and the point initializing the
child’s warping parameters be the “parent”. The choice of possible appearance mixture of the
child point depends on the type of mixture of its immediate parent in the propagation chain. We
allow at most one change in the mixture’s component with respect to its parent. For example, for
the case of two projectors and one camera, if the parent composes of the light from one projector
and the texture surface, its child can only be created from the pure illumination from that pro-
jector, the illumination and the texture, or mixture of two illumination patterns and the textured
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Figure 5.3: Correspondence propagation. The blue textured region is illuminated by the square
pattern. Since the appearance of the squares in the textured region have changed, direct matching
between the observed image and the projector pattern is not possible. The correspondences are
propagated from the p1, whose match in the projector pattern is easily found, to other squares
inside the textured region. For the propagation path showed by dotted arrows, p1 is the immediate
parent of the child p2, p2 is the immediate parent of the child p4, and etc.

surface. Although this assumption can be violated such as when the illumination and texture
boundaries are at the same location, empirically they rarely happen and hence, are ignored. Be-
cause evaluating all the possible choices of the child mixture type is computationally expensive,
we give more priority in the processing of the mixture type that is the same as the parent first.
Table ?? shows all allowed mixture type for this structured light configuration.

5.3.2 Initialization of Warp Parameters
We initialize the warping parameters in two steps.

Table 5.1: Determination of mixture type
Parent type Possible child type
L1 L1, TL1, L1L2

L2 L2, TL2, L1L2

L1L2 L1, L2, L1L2, TL1L2

TL1 L1, TL1, TL1L2

TL2 L2, TL2, TL1L2

TL1L2 TL1, TL2, L1L2, TL1L2

TL1: texture and projector 1 mixture
TL2: texture and projector 2 mixture
L1L2: projector 1 and 2 mixture
TL1L2: texture, projector 1 and 2 mixture
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Step 1: Grow a sparse set of correspondences between the camera and the projectors using
a greedy correspondence growing algorithm [39]. This greedy growing strategy and the use of a
random illumination pattern allows us to establish dense correspondences everywhere except for
the mixed appearance regions.

Step 2: For a pixel that is close to the mixed region boundary, we exhaustively search its local
neighbors for patches on the illumination patterns and texture template that minimizes the cost
defined in Equation 5.6. The choice of possible combination of patches are given from Table ??.
The mixed boundary is defined as locations where the direct correspondences between camera
and projectors computed in Step 1 fail.

Depending on the motion of the objects, the range of the exhaustive search is set apriori.
Since the deformation between the template patches and the ones in the pure texture and illumi-
nation images could be large, we pre-warp them using the warping parameters of the parent point
before examining their contribution to the cost function for different hypothesized mixture.

5.3.3 Optimization
The initial warping parameters obtained in Section 4.2 are refined by minimizing Equation 5.6
with a standard Gauss-Newton method. Given the complexity of the decomposition, two heuris-
tics are applied to ensure accurate and convergence of the optimization.

Coordinate descent: Even with good initial guess, optimizing Equation 5.6 could be chal-
lenging due to its high dimensionality, e.g. two illumination patterns and the textured surface
mixing requires optimizing for 26 parameters per patch. We mitigate the problem by the coordi-
nate descent scheme where we alternate between optimizing for the warping parameters of one
source, say texture, and fixing the rest, say illumination pattern one and two.

Coarse to Fine Decomposition: Since both the texture and illumination images have high
spatial frequencies, a coarse to fine scheme of multiple Gaussian pyramid results in severe alias-
ing artifacts. However, since the texture surface usually has lower frequency content than the
illumination, the texture image must be decomposed at an appropriate scale to avoid drifting in
low frequency textured regions. Thus, we try different sizes of the local patch, arranged in de-
scending order, to handle the differences in scale of texture image. The process is terminated as
soon as a certain patch size yields successful decomposition.

5.4 Results on Synthetic Dataset
The performance of our approach is validated on synthetic cloth sequences containing a range
of texture frequencies. The cloth composed of 64,000 vertices is generated using the OpenCloth
engine [142] and can deform in subtle and non-rigid ways. Its physical size is 750×400mm2
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Figure 5.4: Part of the illumination pattern. The fiducial markers are embedded into the random
pattern to provide a sparse set of correspondences between the camera and the projector.

and is placed approximately 1250 mm away from the camera, which resembles our real exper-
imental setup. The non-rigidity of cloth makes dense decomposition and shape reconstruction
challenging. The all-white pattern is projected once in 30 frames. For all of our experiments,
this interleaving interval gives good trade-off between the temporal resolution of the results and
the moving speeds of the objects.

We set the camera and the projector resolution to 1920×1080 and 1280×800, respectively.
The decomposed patch size is varied from 21×21 to 15×15 with a step size of 2 to account
for different scale of the surface texture. We split the region of interest into sub-regions and
independently execute them to take advantage of the multi-core architecture of modern com-
puter. Since the runtime of the algorithm depends on the size of the patch and the size of the
image to be decomposed, we report the runtime in points per second unit. Decomposing texture-
illumination, illumination-illumination, and illumination-illumination-texture take on average
2009, 2152, 1535 points every second on a Quad-core i7 CPU, respectively. The 3D shapes
are estimated by triangulating the correspondences obtained after the decomposition. The results
are presented without any post-processing.

For a succinct description of the result, we use the following notations: TLi means tex-
ture and illumination pattern ith mixing; L1L2 means two illumination patterns mixing ; TL1L2

means texture and two illumination patterns mixing.
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5.4.1 Illumination pattern

Figure 5.4 shows one of our static bandpass random binary illumination pattern [55]. The size
of the speckle in this pattern can be tuned to provide suitable contrast for illuminating objects of
different size. Fiducial checkerboard markers are uniformly seeded at every 32 pixels inside this
pattern to provide set of sparse spatial correspondences. These correspondences are computed
using template matching along epipolar lines. Because the distance between these markers is
usually magnified in the camera image, these markers do not cause ambiguities in the propagation
process. For ease of implementation, a transition region is added to the side of the pattern to avoid
the boundary issue when only a partial illumination patch lies on the illumination pattern, which
commonly happens when multiple light patterns are mixed.

5.4.2 Qualitative Evaluation

We show our decomposition results on different texture frequency cloth: flower in Figure 5.5
and bear in Figure 5.6. The bear texture is very similar to the illumination pattern. This extreme
case violates the assumptions of any methods powered by independent component analysis or
smoothness prior. Thus, such methods are not applicable. The small but noticeable defects in the
decomposition of frame 2 do not expand during the greedy propagation and are fixed in frame
29. Hence, there is little-to-no drift in the estimated warping functions. Visually, the method
achieves better decomposition for higher frequency texture as there are less visible defects in the
highly textured bear than the flower cloth.

5.4.3 Quantitative Evaluation

Figure 5.7 shows our depthmap estimation of the flower and bear cloth at frame 29th, respectively.
Without our separation, the correlation score between the projector patch and its corresponding
patch in the observed image is very low in the mixed appearance regions. The depth estimated in
these regions is eliminated, which results in large holes in the 3D shape. By separating the pure
texture and illumination images, the proposed method accurately estimates the 3D shape with
the exceptions of places where strong foreshortening occurs. For a particular point, its depth is
retained only if its reprojection onto the projectors and camera images is less than 1 pixel error.

To better quantify the decomposition error, we compare the correspondences obtained after
the decomposition with those estimated on the synthesized pure illumination and texture images.
The pure illumination image is created by projecting the illumination pattern onto a textureless
cloth for each individual projector while keeping the others off. Texture image is obtained by tex-
turemapping the cloth with binarized Perlin-noise pattern generated by error-diffusion dithering
and projecting white light on the cloth. This binarized random pattern is known to give accu-
rate tracking results [16, 121]. We compute the spatial correspondences between camera and
projector on the pure illumination image and the temporal correspondences on the pure texture
image using patch-based matching methods [18]. These correspondences are the best possible
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Figure 5.5: Decomposition of the texture and illumination images from a synthetic flower cloth
sequence with interleaving pattern projected every 30 frames. We show insets of three types
of mixture: texture-illumination mixing, illumination interference, and texture and illumination
interference. The same regions of the observed images are magnified to show how its intricate
appearance changes over time. From the first row to the fourth row are the magnified regions
of the observed image, the estimated texture, the estimated illumination for projector 1, and the
estimated illumination for projector 2. Note that the small white spots in decomposed illumina-
tions, an indication of decomposition failure, at frame 2 are not expanding and have been fixed
in frame 29.
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Figure 5.6: Decomposition of the texture and illumination images from a synthetic bear cloth
sequence with interleaving pattern projected every 30 frames. We show insets of three types
of mixture: texture-illumination mixing, illumination interference, and texture and illumination
interference. The same regions of the observed images are magnified to show how its intricate
appearance changes over time. From the first row to the fourth row are the magnified regions
of the observed image, the estimated texture, the estimated illumination for projector 1, and the
estimated illumination for projector 2. Our method achieves better decomposition for higher
frequency texture as white spots showing missing data are less visible.
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Figure 5.7: Estimated depthmap of synthetic bear cloth sequence with interleaving pattern pro-
jected every 30 frames at the 29th frame . The depth map estimated with our decomposition
scheme not only shows its completeness but its high accuracy with respect to ground truth depth.

estimation at a given frame and hence, serve as ground truth.

We define our error metric as the normalized error in decomposing texture and illumination
images:

1

N

√( x̂i − xi
W

)2

+
( ŷi − yi

H

)2

, (5.8)

whereN is the number of points inside the mixed appearance regions, (x̂i, ŷi), and (xi, yi) are the
ground truth and the estimated correspondence locations, respectively. Depending on whether
the error of the illumination or texture is being evaluated, (W,H) could be either the resolution
of the projector or camera image.

We compute two metrics for measuring the difference between the current image and the
reference template: direct warp distance with respect to the template and the cumulative warp
distance computed along the deformation path from the reference template to the current image.
Since the motion of the cloth is quite repetitive, the second distance metric is needed to measure
the difficulty in estimating the warping parameters.

Figure 5.8 shows the warp distance and percentage of points successfully decomposed for
different type of appearance mixtures for the bear and flower cloth sequences along with the
distance of the current frame to its reference template as a function of the interleaving period.
Despite long interleaving period, the fraction of points decomposed does not experience signif-
icant drops. The texture decomposition error and the fraction of correspondences estimated for
flower sequence are not as good as for the bear sequence. This indicates that the algorithm per-
forms better with higher frequency texture. The explanation for this phenomenon is similar to
the optical flow problem: tracking highly textured surfaces exhibits less drift.

101



DRAFT

a) Warp distance c) Fraction of decomposed L1L2 d) Fraction of decomposed T L1L2 b) Fraction of decomposed T L 

Figure 5.8: Warping distance and the percentage of points successfully decomposed with respect
to the interleaving period. The larger the distance means difficult decomposition. The decom-
posed points are categorized into three types: texture and illumination, two illumination patterns,
and texture and two illumination patterns. The number of points successfully decomposed is sta-
ble over time. Because of its higher frequency texture, the bear cloth has higher percentage of
points decomposed than the flower cloth.

b) Normalized error for TL2 a) Normalized error for TL1 c) Normalized error for T L1L2 

Figure 5.9: The accuracy and robustness of the texture decomposition with respect to the
interleaving period. The normalized texture errors are classified into different type of mix-
tures: texture-illumination pattern 1, texture-illumination pattern 2, and texture-illumination-
illumination. Because of its higher frequency texture, decomposing the bear cloth sequence
yields better accuracy than the flower cloth.
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d) Projector 2 normalized error for TL2 f) Projector 2 normalized error for T L1L2 e) Projector 2 normalized error for L1L2 
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Figure 5.10: The accuracy and robustness of the illumination decomposition with respect to
the interleaving period. The normalized illumination errors for individual projectors are classi-
fied into different type of mixtures: texture-illumination,illumination-illumination, and texture-
illumination-illumination. Because of its higher frequency texture, decomposing the bear cloth
sequence yields better accuracy than the flower cloth.

We show the texture decomposition accuracy of our method for the bear and flower cloth
sequences on different type of mixed regions in Figure 5.9. Since the error does not increase
dramatically over time, our method does not require frequent interleaving. The maximum nor-
malized error for texture and multiple illumination patterns mixing is slightly higher than the mix
of the texture and only one illumination pattern. This is expected because of its high warping
complexity. While the bear cloth achieves better accuracy than the flower cloth when only one
projector is visible to it, the difference appears to be smaller when both projectors are visible.
This is because the multiple illuminations create more image gradient in the observed images,
only very accurate estimation of texture patch can re-synthesize the observed image.

Figure 5.10 shows our accuracy and robustness in decomposing the illumination. Despite
some sudden spikes, the effect of the interleaving period on the accuracy is minimal. Except for
the mixing between projector 2 and the texture, estimating the warping parameters for the bear
cloth is twice more accurate than the flower cloth. This behavior follows the trend of the previous
graphs.
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5.5 Results on Real Dataset
We conduct several experiments with real cloth sequences of different texture frequencies for
three different scenarios: one projector and textured object, two projectors and textureless ob-
ject, and two projectors and textured object. In the first case, we interleave the all-white pattern
every 30 frames. In the second case, since the two illumination patterns have provided the warp-
ing templates, no interleaving is needed. In the third case, we project the interleaving pattern
every 10 frames because of the complexity of the scene appearance. For all of our experiments,
the scenes are illuminated using a 1280×800 DLP View Sonic projector and the images are ac-
quired by the Canon XH-G1s HD 1920×1080 camera operating at 30fps. The camera and the
projectors are calibrated using the method of Vo et al [218]. The results are presented without
any post-processing.

5.5.1 Texture and Illumination Mixing
We validate our algorithm for the texture and illumination separating task on three textured cloth
sequences: flower, flag, and dog, arranged in increasing order of the texture frequency. Figure
5.11 shows the decomposition results. While the decomposed texture image can be imcompleted
for low texture frequency object, such as the flower shirt, such texture does not cause confusion
in the illumination decoding as the estimated illumination image contains few empty regions.
For high frequency texture object, such as the dog cloth, both the texture and illumination image
are well decomposed. Interestingly, even for seemingly textureless regions, as in the sleeves of
the flower shirt, the composite of the rough but textureless cloth and the illumination explains
the observed image well, which does not happen with pure illumination alone. This enables us
to recover the surface shape in such regions.

Since the flower shirt has relatively low texture frequency, without texture and illumination
separation, its 3D shape is best-estimated among the 3 sequences. However, the abrupt changes
in color at the boundary of the flowers still alter the appearance of the illumination pattern and
the estimated 3D shape cannot be completed. As the texture frequency increases, the chance of
reconstructing the surface shape in the mixed region decreases as shown for the flag and dog
cloths. With our separation algorithm, the 3D shape is accurately recovered even in the mixed
appearance regions for all three sequences. We obtain subtle 3D deformation, as vividly shown in
the flag shirt sequence. The shape information in such large holes cannot be accurately recovered
with any hole filling methods. These results, shown at frame 20 of the 30 frames interleaving
period, indicates that the decomposition algorithm suffers from little drifting over time. Thus,
infrequently interleaving is possible so that high temporal resolution of the estimated 3D surface
can be computed.

5.5.2 Two Illumination Mixing
We also validate the decomposition algorithm on the textureless shirt illuminated by two pro-
jectors, as shown in Figure 5.12, where the superposition of the illumination patterns is a well-
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Figure 5.11: Texture-Illumination decomposition of the real cloth sequences with 30 frames in-
terleaving. Due to the relatively low texture frequency of the flower shirt, its texture image cannot
be complete recovered. Yet, all the sequences, the illumination images are well computed. Com-
pared to the 3D shape without the separation scheme, detailed surface information is recovered
after texture and illumination separation. Please refer to our project website for the videos of the
results. 105
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Figure 5.12: Illumination decomposition and 3D shape of the real cloth sequences. Estimating
the 3D shape of the cloth in the mixed illumination regions is not possible without the decompo-
sition scheme. After the two illumination patterns are separated, the details of the folding cloth
are clearly revealed. The results are without any post-processing. Please refer to our project
website for the videos of the results.

known problem. In this setup, while we experimented with two different high frequencies illu-
mination pattern, the same patterns can be used as well, as shown in the next section. Since the
illumination patterns have provided the reference templates for the warp function, no interleav-
ing is needed. As can be seen, heavily distorted appearance of the illumination patterns in their
overlapping regions makes shape recovery impossible. However, after our decomposition, dense
and accurate shape information can be computed in a single-shot. The decomposition fails when
occlusion or strong foreshortening occurs.

5.5.3 Texture and Two Illumination Mixing

Figure 5.13 shows our decomposition results for the glove, flag, and dog sequences. The dog
sequence contains the highest texture frequency. As encoded in the mixture type image, the
scenes contain six different type of appearances: pure illumination from projector 1 (yellow),
pure illumination from projector 2 (pink), projector 1 and texture (red), projector 2 and texture
(green), projector 1 and projector 2 (light blue), and projector 1, projector 2, and texture (blue).
Such complication of the mixture types makes image decomposition challenging. Consequently,
while there could be places where the mixture types are not visually correct, the majority of them
happen in either the transition region of the illumination pattern (see Figure 5.4), the small but
homogeneous textured regions, or the occluding boundary. As can be seen in the decomposed
images, despite the simple imaging model, our approach can handle complex appearances of real
world textured objects illuminated by the two projectors. We believe this is due to the local block
decomposition strategy which is robust to global lighting variation.

Figure 5.14 shows the 3D shape of those cloth sequences. Without our separation scheme,
the estimated 3D shapes are largely incomplete with obvious holes. In contrast, after our de-
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Decomposed illumination L2 Decomposed illumination L2 Decomposed illumination L2 

Decomposed illumination L1 Decomposed illumination L1 Decomposed illumination L1 

Decomposed texture T Decomposed texture T Decomposed texture T 

Type of mixture Type of mixture 

Observed image at frame 8 Observed image at frame 8 Observed image at frame 8 

Type of mixture 

Figure 5.13: Decomposition of the real cloth sequences. The interleaving pattern is projected
every 10 frames. The scenes contain six different type of appearances: pure illumination from
projector 1 (yellow), pure illumination from projector 2 (pink), projector 1 and texture (red),
projector 2 and texture (green), projector 1 and projector 2 (light blue), and projector 1, projector
2, and texture (blue).
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3D shape with separation: view 2 3D shape with separation: view 2 3D shape with separation: view 2 

3D shape with separation: view 1 3D shape with separation: view 1 3D shape with separation: view 1 

Observed image at frame 8 Observed image at frame 8 Observed image at frame 8 

Figure 5.14: Estimated 3D shape for the cloth sequences. The interleaving pattern is projected
every 10 frames. No post-processing is applied. Without the decomposition, estimated 3D shapes
contain large holes that hole-filling methods cannot yield reasonable results. Conversely, our
decomposition scheme allows accurate 3D surface estimation with clearly visible 3D shape of
the folded cloth. Please refer to our project website for the videos of the results.
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Tracking on the decomposed texture Direct tracking on the observed image 

Figure 5.15: Benefit of texture separation for tracking. Applying the tracking algorithm directly
on the observed image results erroneous optical flow. Conversely, after texture separation, the
same tracking algorithm can faithfully show how the cloth is moving.

composition, the shape of the cloth is much better represented. While we could not obtain good
reconstruction at the texture and illumination mixing regions where there are abrupt intensity
changes at transition region the illumination patterns, the estimated shapes in the texture and two
illuminations mixing are visually plausible. Our estimated shape of folded cloth, which cannot
be obtained by hole-filling methods, appears naturally.

Figure 5.15 shows the benefit of texture separation for surface tracking. Because of the mixed
appearance, direct application of the patch based tracking algorithm [18] on the observed image
does not yield plausible optical flow. The directions of the flows are noisy and they do not any
dominant directions. Conversely, when the same tracking algorithm is applied on the decom-
posed texture image, the direction of the flow is less noisy and they faithfully present the true
motion of the cloth. Such motion tracking could be helpful to register shape to create a complete
3D model of the object.

Figure 5.16 shows the 3D shape obtained from the Kinect I sensor. For fair comparison with
the performance of the proposed method shown in the flag sequence (see Figure 5.13), the same
subject stands at a similar distance to the sensor. Visually, the quality 3D shape from our method
outperforms that of the Kinect. It is noteworthy that unless smoothing filter is applied to raw
Kinect results, the mesh generation fails as the surface normal computed from the raw point
cloud is too noisy.
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Kinect RGB 3D shape 

Figure 5.16: 3D shape from the Kinect. Note that smoothing filters has been applied to generate
the mesh from raw point cloud data.

5.6 Discussion
Since we use the texture warping parameters estimated in the previous frame as initialization,
empirically, we can robustly warp an observed patch to its reference template that is temporally
far away. Thus, only infrequent projection of the interleaving white frame is needed and the
obtained results have high temporal resolution. This strategy is analogous to the approach of
Tian and Narasimhan [208] who use less distorted patches to estimate globally optimal sets of
warping parameters. Clearly, since the interleaving sequence is dependent on the motion of the
object, the interleaving period has to be adapted to different applications. Nevertheless, in the
era 60-fps consumer-grade cameras, there is no need to interleave every other frame.

In spite of the greedy growing strategy, erroneous matches cannot propagate long as exam-
ined and thresholded by the cost function in Equation 5.6. Hence, our method avoids both the
global ambiguity of the illumination pattern and being stuck in regions where occlusion, sur-
face discontinuity, or severe foreshortening occurs. Moreover, since only a few seed points are
needed initially, the good correspondences in the current frame can quickly propagate to non-
decomposable regions in the earlier frames. Such automatic recovery from previous failures is
another important property of our method.

For objects with high frequency texture everywhere, the proposed algorithm will fail because
it cannot be properly initialized. Yet, such cases are rare and most objects have a mixture of low
and high frequency texture regions (see Figure 5.11). While our separation method may also fail
for objects with low frequency texture, the camera-projector correspondence can be established
to reconstruct 3D shape for those cases.

While we only show the results for a single deforming object, our algorithm is applicable to
general scenes containing multiple objects. As long as the seed points, i.e. correspondences es-
tablished in low frequency textured regions, are available on each object, these correspondences
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can propagate to the entire object. Nevertheless, because of the nature of the patch decompo-
sition approach, our algorithm cannot handle well the textured regions at the occluding boundary.

Theoretically, the decomposition model of Equation 5.1 can be generalized to more projec-
tors where the type of mixture grows exponentially. However, the increase in the number of
projector faces a diminishing return when random illumination pattern from multiple projectors
are averaged out. In such cases, the contrast of the observed mixed regions become too low and
our decomposition fails. Nevertheless, in practice, even for a surround structured light system,
as in [116], there are at most two projectors to illuminate any point on the object surface.

Lastly, due to the sequential nature of our decomposition, it does not run in realtime. Unless
knowledge about the surface geometry is known, reasonable initial guess of the optimization is
not possible. Using Deep Neural Nets (DNN) for coarse shape retrieval or illumination decod-
ing [77, 183] could lead to the next performance improvement for structured light system.

5.7 Summary
We present a single-shot approach to produce dense shape reconstructions of highly textured
objects illuminated by one or more projectors. Our key is an image decomposition scheme that
can recover the illumination image of different projectors and the texture images of the scene
from their mixed appearances. We focus on three cases of mixed appearances: the illumination
from one projector onto textured surface, illumination from multiple projectors onto a textureless
surface, or their combined effect. Our method can accurately compute per-pixel warps from the
illumination patterns and the texture template to the observed image. The texture template is
obtained by interleaving the projection sequence with an all-white pattern. The estimated warps
are reliable even with infrequent interleaved projection and strong object deformation. Thus, we
obtain detailed shape reconstruction and dense motion tracking of the textured surfaces.
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Chapter 6

Conclusion

6.1 Summary

Throughout this thesis, we have worked towards the goal of creating a computational pipeline
for automatic dynamic event reconstruction from multiple video cameras in unconstrained crowd
capture settings. This goal is challenging due to the current limited understanding of dynamic
motion reconstruction without geometric constraints and the ability to find reliable correspon-
dences across multiple cameras in the wild. The key to our solution is to exploit physical motion
dynamics (Chapter 2), shape deformation (Chapter 4 and 5), scene semantics (Chapter 3), and
their couplings (Chapter 4). We have validated the proposed algorithms on several large scale
datasets and achieved unprecedented results. We believe this thesis could have strong impacts on
many fields: movie industry, surveillance, media analytics, and crowd psychology understand-
ing.

6.2 Future Work

We see two exciting future directions that bring this thesis closer to daily consumers applications.
Looking back our pipeline in Figure 1.2, the future extensions can be broken down as shown in
Figure 6.1. These directions will be our guiding north star for the next 5 years.

6.2.1 Large Scale Dynamic Event Analysis

There are two big exciting trends in the current technological world: the online media sharing
platforms and the emergence of always-on AR glasses (e.g, Snap spectacles or Google Glass).
Each of these trends generates enormous visual data. While this thesis was aimed to tackle such
massive data organization problem directly, the actual implementation of such pipeline requires
a better tool for camera temporal alignment, faster and more reliable data association across mul-
tiple modalities, and the ability to reconstruct 3D object from a monocular camera. We believe
each of these problems is interconnected and progress in each dimension will benefit the others.
For example, a motion prior can improve temporal association, and better association from the
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Figure 6.1: Future extensions to tackle large scale media analytics and virtual scene browsing.

multiview systems reconstruct better 3D motion which is a data source for learning motion prior.

Temporal alignment: For all algorithms developed in this thesis, unless all cameras to be tem-
porally aligned to second-level accuracy, the algorithms cannot bootstrap itself (Chapter 3. How-
ever, the metadata of the videos available from media sharing platforms is severely biased in their
recording time depending on the wireless connection settings. It is also unclear how if the origi-
nal video framerate is preserved upon retrieval. These factors make temporal modeling difficult.
For passive visual data that are mined from the Internet, one interesting direction is to exploit
learning-based semantic action recognition [69, 70, 207] and scene summarization [92, 146, 242]
for rough camera alignment. For active data generated from AR glasses or a group of users run-
ning customized camera applications, temporal alignment must be done on-device using camera
API [13] and wireless network protocol [127]. This will give the highest alignment precision
with minimal computational cost.
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Robust object tracking and geometric-aware data association with deep learning: While
adaptive per-frame appearance descriptor really unlocks 3D motion tracking at unprecedented
scale and accurate tracking improve semantics detections. Unfortunately, these approaches are
only suited for offline applications. Furthermore, regardless of the training data scope, there will
always be testing data that falls outside the training data distribution. Such failure could be catas-
trophic for applications such as self-driving cars. To tackle the issues, the appearance descriptor
should be temporally resilient and the descriptor distribution could be multi-modal or keyframe-
based as inspired by SLAM [66, 160] and motion tracking systems [61]. Another interesting
direction is to build the geometric knowledge directly into the association network [176] and
exploit multiway graph matching for one-shot multiview association [100, 260].

Online camera pose relocalization of crowded scene: For any interesting dynamic event that
involves multiple human actively interacting with each other, the static objects in the background
such as buildings and walls are mostly occluded by humans. Since the number of static features
observed from multiple views is significantly smaller than the number of dynamic features, cam-
era localization is very challenging. There are few visual features of static objects available to
build a reliable model of the scene. As the number of people and the complexity of the activity
increases, both camera localization and human tracking become considerably more challenging
due to frequent occlusions and strong viewpoint and appearance variations. From a high-level
reasoning perspective, one potential approach to understand the geometry of the scene from the
same set of visual data is to associate the same person across different cameras and fuse the key-
point association with the static feature to constrain the camera relocalization.

Monocular dynamic 3D reconstruction using universal motion priors: While we specifically
assume the availability of multiview cameras, depending on the scale and the diversity of the
dynamic event, it often occurs that only a single camera can observe the object. While monocu-
lar 3D tracking is inherently ill-posed, we believe it can be constrained by better understanding
of the body motion and its physical environment (such as ground plane penetrations and object
collisions [247]), semantic 3D environment (such as affordance surfaces [88, 134]), social inter-
actions [113, 182], and even more subtle cues such as motion style changes due to the state of
emotion [175]. In case of active data, the reconstruction could be further constrained by account-
ing for the 6-dof ego-motion of the capturing devices or simply the IMU information [102].

6.2.2 Realistic Virtual Scene Browsing
Virtual scene browsing, as a direct product of 4D scene reconstruction, is probably the most ex-
citing application to the consumers. Unlike static scene browsing, the visual demand for dynamic
scene browsing is much higher because the browsing experience is mostly personal. Human eyes
are sensitive to those artifacts, especially for scenes familiar with themselves. Research in this
direction should tackle both the background scene and the foreground rendering using modern
deep learning approaches, which has strong potentials of exceeding classical texturemap render-
ing pipelines [74, 97, 154, 198].

Background rendering: Despite significant efforts in event reconstruction, artifacts in both
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Figure 6.2: Our early attempt for realistic full-body animatable human avatar. We build the
appearance learning on top of the statistical 3D human mesh representation and achieve coherent
and realistic appearance rendering from only a single few-minutes-long video data.

shape and motion may still occur, sometimes simply due to the lack of observations (insufficient
number of cameras). One very promising direction is to reconstruct the semantic 3D scene as
a whole [48, 93]. This approach leverages the generic prior in real-world object configurations
and produces reconstruction without holes. The reconstructions can be later realistified using by
learning image priors from the event itself [22, 173].

Foreground rendering: Even with a state of art laboratory multiview capture system, the current
state of art methods fail to create 3D human model that can fool the human perceptual system.
Clearly, such a task is out of reach for in-the-wild data. However, while intrinsic body parts
such as the face should remain faithful, other parts such as the hairs or clothing deformation
can be modified slightly during the view transition. Building on top of a statistical 3D human
body mesh fitting as a data presentation for learning the view dependence appearance, we have
achieved promising results for human rendering from single few-minutes-long video clip (See
Figure 6.2). We believe the learning could be further augmented with user-specific training data
from social media platforms to further constraint the appearance generation.
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Chateau. Deep manta: A coarse-to-fine many-task network for joint 2d and 3d vehicle
analysis from monocular image. arXiv preprint arXiv:1703.07570, 2017.

[41] Tatjana Chavdarova, Pierre Baqu, Stphane Bouquet, Andrii Maksai, Cijo Jose, Timur
Bagautdinov, Louis Lettry, Pascal Fua, Luc Van Gool, and Franois Fleuret. Wildtrack:
A multi-camera hd dataset for dense unscripted pedestrian detection. In The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[42] HJ Chen, J Zhang, DJ Lv, and J Fang. 3-d shape measurement by composite pattern
projection and hybrid processing. Optics express, 2007.

[43] Tongbo Chen, Hendrik PA Lensch, Christian Fuchs, and Hans-Peter Seidel. Polarization
and phase-shifting for 3d scanning of translucent objects. In CVPR, 2007.

[44] Tongbo Chen, Hans-Peter Seidel, and Hendrik PA Lensch. Modulated phase-shifting for
3d scanning. In CVPR, 2008.

[45] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection
network for autonomous driving. 2017.

[46] De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang, and Nanning Zheng. Person re-
identification by multi-channel parts-based cnn with improved triplet loss function. In
CVPR, 2016.

[47] Dong Seon Cheng, Marco Cristani, Michele Stoppa, Loris Bazzani, and Vittorio Murino.
Custom pictorial structures for re-identification. In BMVC, 2011.

[48] Ian Cherabier, Johannes L. Schonberger, Martin R. Oswald, Marc Pollefeys, and Andreas
Geiger. Learning priors for semantic 3d reconstruction. In ECCV, 2018.

[49] Falak Chhaya, Dinesh Reddy, Sarthak Upadhyay, Visesh Chari, M Zeeshan Zia, and
K Madhava Krishna. Monocular reconstruction of vehicles: Combining slam with shape
priors. In ICRA, 2016.

119



DRAFT

[50] Wongun Choi. Near-online multi-target tracking with aggregated local flow descriptor. In
ICCV, 2015.

[51] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discrimina-
tively, with application to face verification. In CVPR, 2005.

[52] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David Calabrese,
Hugues Hoppe, Adam Kirk, and Steve Sullivan. High-quality streamable free-viewpoint
video. TOG, 2015.

[53] Robert T Collins. Multitarget data association with higher-order motion models. In CVPR,
2012.

[54] Timothy F Cootes, Christopher J Taylor, David H Cooper, and Jim Graham. Active shape
models-their training and application. CVIU, 1995.

[55] Vincent Couture, Nicolas Martin, and Sebastien Roy. Unstructured light scanning to over-
come interreflections. In ICCV, 2011.

[56] Yuchao Dai, Hongdong Li, and Laurent Kneip. Rolling shutter camera relative pose:
Generalized epipolar geometry. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[57] Abir Das, Anirban Chakraborty, and Amit K Roy-Chowdhury. Consistent re-identification
in a camera network. In ECCV, 2014.

[58] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam: Real-
time single camera slam. TPAMI, 2007.

[59] Afshin Dehghan, Shayan Modiri Assari, and Mubarak Shah. Gmmcp tracker: Glob-
ally optimal generalized maximum multi clique problem for multiple object tracking. In
CVPR, 2015.

[60] Afshin Dehghan, Yicong Tian, Philip HS Torr, and Mubarak Shah. Target identity-aware
network flow for online multiple target tracking. In CVPR, 2015.

[61] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan Fanello,
Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David Kim, Jonathan Taylor,
et al. Fusion4d: Real-time performance capture of challenging scenes. TOG, 2016.
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