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Abstract

Turbulence near hot surfaces such as desert terrains and
roads during the summer, causes shimmering, distortion
and blurring in images. While recent works have focused
on image restoration, this paper explores what information
about the scene can be extracted from the distortion caused
by turbulence. Based on the physical model of wave prop-
agation, we first study the relationship between the scene
depth and the amount of distortion caused by homogenous
turbulence. We then extend this relationship to more prac-
tical scenarios such as finite extent and height-varying tur-
bulence, and present simple algorithms to estimate depth
ordering, depth discontinuity and relative depth, from a
sequence of short exposure images. In the case of gen-
eral non-homogenous turbulence, we show that a statistical
property of turbulence can be used to improve long-range
structure-from-motion (or stereo). We demonstrate the ac-
curacy of our methods in both laboratory and outdoor set-
tings and conclude that turbulence (when present) can be a
strong and useful depth cue.

1. Introduction
The visual manifestations of clear air turbulence occur

often in our daily lives — from hot kitchen appliances like
toasters and ovens, to plumes of airplanes, to desert terrains,
to roads on hot summer days, to the twinkling of stars at
night. The shimmering and distortion observed are caused
by random fluctuations of temperature gradients near warm
surfaces. In this case, the image projection of a scene point
viewed through turbulence is no longer a deterministic pro-
cess, and often leads to poor image quality.

Several works in remote sensing and astronomical imag-
ing have focused on image correction through turbulence.
For atmospheric turbulence, the distorted wavefronts arriv-
ing from stars can be optically corrected using precisely
controlled deforming mirror surfaces, beyond the angular
resolution limit of telescopes [16]. For terrestrial imaging
applications, recent works have proposed to digitally post-
process the captured images to correct for distortions and to
deblur images [6, 3, 4, 9, 26]. Optical flow based methods
have been used further to register the image sequences to
achieve modest super-resolution [18].

While previous works have focused on what turbulence
does to vision, this article addresses the question of what
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Figure 1. Random fluctuations in the refractive index of a medium
cause the perturbation of a light wave radiating from a scene point.
The resulting image projections of the scene point over time are
also random. The longer the distance of a scene point from the
camera, the greater the variance of its image projection.

turbulence can do for vision. In other words, what informa-
tion about the scene can be extracted when viewed through
turbulence? Based on the physical model of wave propa-
gation, we study the relationship between the scene depth
and the amount of distortion caused by homogenous tur-
bulence over time (see an intuitive illustration in Fig 1).
Then, we extend this relationship to more practical scenar-
ios of finite extent and height-varying turbulence, and show
how and in what scenarios we can estimate depth ordering,
depth discontinuity and relative depths. Although general
non-homogenous turbulence does not directly yield depth
information, its statistical property can be used along with a
stereo camera pair to improve long-range depth estimation.

The input to our techniques is a sequence of short expo-
sure images captured from a stationary camera (or camera
pair). Depth cues are obtained by first tracking image fea-
tures and then by computing the variances of tracker dis-
placements over time. Any feature tracking algorithm can
be applied, such as that based on template matching. We
verify our approaches in both laboratory and outdoor set-
tings by comparing against known (ground truth) distances
of the scene from the camera. We also analyze how the
depth cue estimation is influenced by the parameters of the
imaging system, such as aperture, exposure time and the
number of frames. The depth information computed is sur-
prisingly accurate, even when the scene and camera are not
within the turbulent region. Hence, we believe that turbu-
lence should not be only viewed as “noise” that an imaging
system must overcome, but also as an additional source of
information about the scene that can be readily extracted1.

1While not the focus of this work, the short exposure (noisy) and dis-
torted input images can be combined using a dense image alignment ap-
proach [21] to improve image quality (see Supplementary material).

1



1.1. Related Work

Characterizing the structure of turbulence is one of the
open problems in physics, with a long research history,
starting from the early methods of Kolmogorov [10]. For
this work, we reference multiple textbooks by Kopeika [12],
Tatarskii [20], Ishimaru [8] and Roggemann [16]. To our
knowledge, the key physical model (Eqn. 3) in these texts
has not been exploited by the computer vision community.

Direct measurement of turbulent media has received
much attention in fluid dynamics. Shadowgraph and
Schlieren imaging [17, 24] techniques are often used to cap-
ture the complex airflow around turbines, car engines and
airplanes wings. Image displacement observed in turbulent
media has been shown to be proportional to the integral of
the refractive index gradient field. This property is exploited
in a tomographic approach [5] with many views to com-
pute the density field of the medium from image displace-
ments of known backgrounds. This approach, called Back-
ground Oriented Schlieren (BOS) imaging [23, 22, 15], has
emerged as a new technique for flow visualization of den-
sity gradients in fluids. Such approaches have also been
used to render refractive volumes of gas flow [2]. Similarly,
there has been work [13] that aims to estimate the shape of a
curvy refractive interface between two media (water and air,
for example) using stereo and known backgrounds. In con-
trast, our work exploits image displacements to extract the
depths cues of an unknown scene using an image sequence
captured from a single viewpoint.

2. Characterization of Turbulence
Turbulence causes random fluctuations of the refractive

index n(r, t) at each location r in the medium and at time
t. From Kolmogorov’s seminal work [10, 11], n(r, t) forms
a random field in space-time and can be characterized by a
structure function D(r1, r2, t) that computes the expected
squared difference of refractive index at two distinct spatial
locations r1 and r2:

D(r1, r2, t) = 〈|n(r1, t)− n(r2, t)|2〉 . (1)

For stationary turbulence, the structure function is constant
over t, i.e., D(r1, r2, t) = D(r1, r2). Stationary turbulence
is homogeneous if D(r1, r2) = D(r), where r = r1 − r2.
This means that the structure function depends only on the
relative displacement of the locations. Homogenous tur-
bulence is isotropic if the structure function is spherically
symmetric, i.e., D(r) = D(r), where r = ||r||. From di-
mensional analysis, Kolmogorov shows that the structure
function follows a 2/3 power law [20]:

D(r) = C2
nr

2/3, (2)

where, the constant C2
n reflects the strength of turbulence.

For non-homogeneous turbulence, C2
n is a function of abso-

lute location. A non-turbulent atmosphere has C2
n = 0.
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Figure 2. The phase difference of an incident wave (e.g., the phase
of point B leads that of A) at the aperture determines the angle-
of-arrival α (AoA) and in turn, the center of the diffraction kernel,
i.e., the location of the projected scene point in the image plane.

In general, the strength C2
n of turbulence depends on a

variety of environmental and physical factors, such as tem-
perature, pressure, humidity and wavelength of light, which
in turn depend on the time of day (less during sunset and
sunrise, more at mid-day), cloud cover (less during cloudy
day and more during cloudy nights), and wind patterns. An
empirical relationship between these factors and refractive
index changes can be found in Kopeika’s textbook [12].

3. Image Formation through Turbulence
When an electromagnetic wave propagates through a tur-

bulent medium, it undergoes random fluctuations in both
amplitude and phase. The perturbed phase determines the
angle-of-arrival (AoA) of the light incident at the camera,
which in turn fixes the projected location of the scene point
in the image (Fig. 2). Mathematically, the propagation of an
electric field under the influence of the turbulence structure
function in Eqn. 2 can be obtained by solving Maxwell’s
equations. Since most surfaces and sources of interest to
computer vision are at finite distances from the camera and
produce divergent waves, we will consider the propaga-
tion of spherical waves. Then, following the derivations
in [12, 8], the variance 〈α2〉 of the angles-of-arrival of the
waves from a scene point at distance L from the camera is
obtained by integrating along the line of sight:

〈α2〉 = 2.914D−1/3
∫ L

0

C2
n(z)

( z
L

)5/3
dz, (3)

where, D is the diameter of the aperture. The actual fluctu-
ation 〈δ2〉 of the projected image location can be computed
using the relation δ = f tanα where, f is the focal length
of the camera. For small angles, δ ≈ fα .

In the following, we will discuss three important special
cases of the above image formation model. We will ad-
dress the general case of non-homogeneous turbulence in
Section 7. First, consider a scenario where both the camera
and the scene of interest are immersed in a homogeneous
turbulence medium (for example, a road scene with vehi-
cles on a hot summer day), as illustrated in Fig. 3(a). Since
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Figure 3. Image formation through turbulence. (a): Both the cam-
era and the scene are immersed within a homogeneous turbulence
region. (b): The camera and/or scene are outside the turbulence
region.

C2
n is a constant, we can integrate Eqn. 3 to obtain:

〈α2〉 = 2.914D−1/3C2
n

∫ L

0

( z
L

)5/3
dz

=
3

8
K2

nL, (4)

where, K2
n = 2.914D−1/3C2

n. So, the variance of pro-
jected positions of the scene point in the image plane over
time is directly proportional to the distance L between the
scene point and the camera. Setting aside the issue of spa-
tial resolution, this linear relationship determines depth with
constant precision for all distances within the turbulence re-
gion. By comparison, in stereo, the depth precision falls as
the square of the distance from the camera to the scene.

In many scenarios, like the plume of an aircraft or
a steaming kettle, the source of turbulence may not ex-
tend over the entire line-of-sight from the camera to the
scene. In this case, we will assume local homogeneity,
i.e., C2

n is a constant within a short range and zero else-
where. For convenience, we decompose L into three parts:
L = Ls+Lt+Lc, as illustrated in Fig. 3. Ls is the distance
between the scene point and the turbulence region, Lt is the
path length within the turbulence region and Lc is the dis-
tance between the camera and the turbulence region. Once
again, we can integrate Eqn. 3 to obtain the analytic form:

〈α2〉 =
K2

n

L5/3

∫ Lt+Ls

Ls

z5/3dz

= K2
n

3

8L5/3

(
(Lt + Ls)

8/3 − L8/3
s

)
. (5)

Letting 〈α2
relative〉 = 3

8L5/3

(
(Lt + Ls)

8/3 − L8/3
s

)
allows

us to write in short:

〈α2〉 = K2
n〈α2

relative〉. (6)
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Figure 4. The variance of the angle-of-arrival predicted by Eqn. 6
under different experimental settings. For each curve, the cam-
era and the extent of turbulence (Lc and Lt) are fixed, while the
scene depth (Ls) is varied. Each curve represents a monotonically
increasing function of scene depth that converges to a fixed vari-
ance (at infinity). The dashed black line is the linear relation in the
special case when Lc = Ls = 0.

If we fix the camera location Lc and the turbulence region
Lt, and move the scene point away from the camera, the
variance is a monotonically increasing function with respect
to L, as shown in Fig. 4. From this, we observe that the vari-
ance increases even if the scene moves away from the turbu-
lence region. This is a counter-intuitive result that cannot be
explained by ray optics (hence, the usage of “waves” in this
article). The variance, however, converges to a fixed value
〈α2
∞〉, when the scene point is infinitely far away from the

camera (e.g., a distant star). This can be seen by taking the
limit Ls →∞ in Eqn. 6 to obtain:

〈α2
∞〉 = K2

n lim
Ls→∞

3

8L5/3

(
(Lt + Ls)

8/3 − L8/3
s

)
= K2

nLt. (7)

In this case, the light emitted by the scene point can be mod-
eled as a plane wave.
Height-varying turbulence. In practice, the air turbulence
may not be homogenous in the entire field of view. For
example on an asphalted road, the turbulence is more severe
near the road surface than away from it. We model this
effect by writing the strength of turbulence as a smoothly
varying function of height h, yielding a separable model:

〈α2〉 = K2
n(h)〈α2

relative〉. (8)

Typically, C2
n(h) (or K2

n(h)) decreases with respect to h.

4. Depth cues from an Image Sequence
In this section, we investigate what depth cues can be ob-

tained from the observed variance of image displacements
of scene points. The input to all our algorithms is a se-
quence of images of a stationary scene viewed through tur-
bulence by a fixed camera. Once the images are captured,
we track a sparse set of distinctive feature points on the
scene. While any feature-tracking algorithm may be used,
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Figure 5. Experimental setup: Three adjacent electric cooking
griddles are heated up to 400 degrees Fahrenheit to create hot air
turbulence. A camera observes a scene through the turbulence.
By varying the temperature, we can emulate a variety of outdoor
turbulence strengths and path-lengths of several kilometers.

we adopt a simple frame-to-frame template matching ap-
proach. To handle image blurring caused by turbulence, we
also add blurred versions of the templates. The variance of
the image location of each tracked point is then computed.

For a fixed configuration of camera and extent of the
homogeneous turbulence region, the model (Eqn. 6) is a
monotonic smooth function of scene depth. Thus, both
depth ordering and discontinuities (like two buildings far
apart) of the scene can be readily obtained from variances.
In particular, detecting such discontinuities can be useful to
segment the scene into different depth layers (planes).

On the other hand, a more quantitative measurement,
such as relative depth between scene points, requires ad-
ditional assumptions. Note that absolute depth cannot be
computed without knowing the turbulence strength, C2

n.
Thus, without loss of generality, we will assume Lt = 1.
When the camera and scene are immersed in turbulence
(Lc = Ls = 0), the linear variance-depth relationship
(Eqn. 4) allows us to obtain relative depth by taking vari-
ance ratios to eliminate the unknown constant K2

n. In gen-
eral, if Lc, Ls and K2

n are known, depth can be obtained
by inverting Eqn. 6. By monotonicity of the model, only a
unique depth can be obtained from a given variance.

However, in practice, these constants are usually un-
known. Thus, for N scene points we have N + 3 unknowns
(N depths plusLc, Ls andK2

n) butN equations. Consider a
scene with repetitive patterns (windows on a building, street
lamps, cars parked on a street), then the depths {Li}Ni=1 of
the N points follow an arithmetic sequence:

Li = L0 + i∆L (9)

Thus, N depths {Li}Ni=1 are parameterized by 2 variables,
L0 and ∆L. As a result, only 2 + 3 = 5 scene points suffice
to estimate (using numerical optimization) both the relative
depths and the extent of the turbulence region.

In the case of height-varying turbulence, we need to es-
timate the height-varying function K2

n(h) as well as the
scene depth. Fortunately, if the height is aligned with the
y-axis of the image, then separating depth from height can
be achieved by treating each scan-line individually.
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Figure 6. Left: LEDs are immersed in the turbulence region.
Right: The relationship between the variance of LED projections
and their ground truth depths is very close to linear (correlation
coefficient is 0.987), and is consistent with the model (Eqn. 6).

5. Laboratory Experiments
We performed several experiments in a controlled lab-

oratory environment to validate the theory. A flat cooking
griddle of size 52cm × 26cm is used to produce and main-
tain uniform heat of up to 400 degrees Fahrenheit, across the
flat surface. In the experiment setup (Fig. 5), multiple such
griddles are placed side by side to increase the path-length
of turbulence. The three griddles set at maximum tempera-
ture produce roughly the same shimmering as a kilometer of
natural turbulence in the desert. By controlling the number
of griddles and the temperature, a wide range of turbulence
strengths seen outdoors can be emulated. In all experiments,
variances are estimated by capturing a 20-30 seconds long
video sequence of the scene at 30 fps.

5.1. Quantitative Evaluation
Variance-depth linearity within turbulence region. 50
equally-spaced LEDs are placed 5 cm above the hot griddle
(in the turbulence region). One end of the stick is closer
to the camera while the other is farther away. Fig. 6 shows
the variances computed for each LED projection onto the
image plane averaged over 3 experimental trials. Consistent
with the model (Eqn. 6) when Ls = Lc = 0, indeed the
relationship between the depth (represented by the indices
of LED) and the variances is linear with a high correlation
coefficient of 0.987. A similar experiment that estimates the
depth of a curvy line on a sphere is also shown in Fig. 7.
Identifying depth discontinuity. In this experiment, we
place two checker-board patterns vertically at two distinct
depths (Lnear and Lfar) and measure variances of the key
points on the scene. We conducted four experiments with
different settings of Lnear and Lfar (Table 1). All were cap-
tured in the same setting of f/11 with exposure 1/2000,
while the zoom was varied to include the entire scene within
the field of view. Fig. 8 illustrates the variance discontinuity
by two separate parametric fittings of the key points on two
checker-boards in one experiment. Clearly, the depth dis-
continuity can be detected from the variance discontinuity.
Validation of the physics model (Eqn. 6). As shown in
Fig. 8, due to height variations of the turbulence, the vari-
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Figure 8. Experiments with two planar checker-boards placed at different distances from the camera. Due to space limit, we only show 1
(Exp.2) of the 4 experiments, and leave the remaining in the supplementary material. The experimental setting can be found in Table 1.
The first column shows a sample distorted frame, the second and third columns show two views of the variance distribution of the corners
of the checker-boards. From the figures, variances changes due to depth discontinuity and height is obvious. We detect the discontinuity
and fit smooth surfaces to the variances. The ratio of variances of the two depth planes are then computed and quantitatively compared to
the ground truth (Table 1).
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Figure 9. Depth estimation of equally spaced points on an inclined planar scene. A sample distorted frame due to turbulence is shown on
the left. On the right, are two views of the variance distribution of a sparse set of key points and a smooth function fit illustrating the near
planar geometry. From this, it is possible to predict the relative depths of the scene points (assuming the length of the turbulence region to
be 1). For evaluation, the relative depth estimated is converted to actual depth by using the actual length (196cm) of turbulence region. The
estimated slope of the plane is 0.517 cm per 10 pixels in horizontal direction, compared to the ground truth value 0.529 cm per 10 pixels.
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Figure 7. Ellipse fitting on a video sequence capturing a curve on
the sphere through turbulence. Ideally the projection of the LEDs
forms an ellipse on the image plane. Left: A sample frame of the
captured video sequence. Right: Average error in fitting is 12.6%.
The average fitting error between a covariant x and dependent
variable y is computed using

√∑
i(ŷi − yi)2/

√∑
i(ȳ − yi)2,

where ŷi is the fitted value of point xi and ȳ is the mean of y.

ance changes smoothly over the y-axis. However, the vari-
ance ratio computed by two points on two checker-boards
at the same scan-line is independent of height h, amount
of turbulence C2

n and aperture diameter D. On the other
hand, we can compute the theoretical variance ratios using
the ground truth value of L, Lc, Lt and model Eqn. 6,. The
measurement is consistent with the theory, validating the
model in all four settings (Table 1) that covers both cases
where the scene is within and outside the turbulence region.

No. Lc Lt Lnear Lfar Measured Predicted
Exp1 54 171 163 225 1.77 1.79
Exp2 74 173 183 382 3.60 3.52
Exp3 74 173 247 382 1.67 1.94
Exp4 74 173 247 320 1.56 1.55

Table 1. Columns 1-4 show the ground truth measurement (in cen-
timeters) for the four checker-board experiments. Columns 5-6
show the comparison between the measured (5th column) vari-
ance ratio and that predicted by the model (6th column). In all but
one case, the measurements are very accurate.

Depth estimation of equally spaced scene points. We es-
timate the depths of equally spaced points using the method
in Section 4. A horizontally slanted plane with a texture
of a building facade is placed behind the turbulence region.
Fig. 9 shows the two views of the computed variances at key
points and the surface fits that demonstrate the near planar
geometry. Assuming Lt = 1 (length of turbulence region),
relative depths of scene points can be computed. For valida-
tion, the estimated relative depths are converted to absolute
ones using the actual length (Lt = 196 cm) of the turbu-
lence region. The depth slope of the plane (∆L in Section 4)
is estimated as 0.517 cm per 10 pixels in the horizontal di-
rection, compared to the ground truth value of 0.529 cm per
10 pixels. Please see the supplementary material for videos.
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Figure 10. Influence of imaging parameters on the variance of the
corners of the checker-board pattern. (a) The variance estimates
converge with sufficient frames, showing that the turbulence is sta-
tionary during measurement. (b) The measured variance is similar
for different exposures, except for very long exposures where the
tracking performance degrades due to motion blur. (c) Consistent
with the model, the measured variance decreases significantly with
aperture size. (d) Insufficient image resolution results in much
lower variance estimation.

5.2. Influence of Imaging Parameters

The accuracy of the measured variance depends on many
imaging parameters. Larger aperture reduces the depth-of-
field, higher exposure time adds unwanted motion blur, and
low image magnification causes greater quantization of the
variance. Here we present an empirical study.

The estimate of the variance converges as the number of
captured frames increases. Fig. 10(a) shows the variance of
the 10 key points in Exp.1 with different numbers of frames
used. In our experiments, stable estimates are achieved us-
ing frames captured over 30 seconds using a 30 fps cam-
era. To study the effects of aperture, we vary the f/# from
f/3.7 to f/11, fix the exposure time at 1/8000s, and zoom
at the highest level. Fig. 10(c) shows a significant decrease
in variance as predicted by the model in Eqn. 6. The plot in
Fig. 10(b) shows the variances computed by changing only
the exposure time. Fig. 10(d) shows the effect of varying
focal-length. Here we normalize the variances by the pixel
size of the checker-board patterns to remove the effects of
image magnification. In these experiments, we have tried
to maintain the same noise level in the camera by maintain-
ing similar image brightness (by varying illumination inten-
sity). From these plots, aperture size is the main factor that
affects the estimation quality. However, since we take vari-
ance ratio as a depth measure, the effect of aperture size is
reduced (in theory, independent). Also, for very low magni-
fication (spatial resolution) or long exposure time (1/30s),
the variance estimate shows large degradation.

In addition, camera shaking can cause false displace-
ments leading to poor variance estimates. In general, this
is a hard problem and we will set it aside for future work.
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Figure 11. Sample frames of the outdoor experiments in the morn-
ing and afternoon. The targets are placed at different distances
from the camera.

6. Outdoor Experiments
Besides indoor experiments in a controlled environment,

we also conducted experiments outdoors in a desert region.
The imaging setup used for the experiments consists of a
Prosilica GC1380H camera and a Celestron C6 Telescope.
The focal length is 1500mm. A one-to-one ratio optical re-
lay is used between the telescope and the camera, without
changing the focal length of the main telescope. We placed
two standard contrast targets 110 meters and 160 meters
away from the camera and captured sequences of 300-400
images during mild turbulence (morning) and strong turbu-
lence (afternoon). We used a 30mm aperture in the morning
and a 10mm aperture in the afternoon, and varied the expo-
sure times between 0.5ms and 1ms.

We tracked a sparse set of points through each image
sequence and rejected outliers such as the static trackers of
the dirt on the CCD and high-variance erroneous trackers
near locally repetitive textures. The computed variances of
the trackers converge quickly (see supplementary material).

Table 2 shows the mean variance computed from all the
trackers of each image sequence, for each depth and imag-
ing setting. Since the amount of variance is relatively in-
variant to exposure change, we further averaged the vari-
ance over different exposures. If we take the variance ra-
tio between 110m and 160m, we obtain 1.6857 for 30mm
aperture in the morning and 1.5785 for 10mm aperture in
the afternoon. Both are close to the ratio of two distances
160/110 = 1.4545, verifying the dependence of turbulence
model on the depth. Besides, Table 2 also shows the stan-
dard derivation of variances in each video sequence. The
low standard deviation shows that the turbulence is indeed
homogenous on surfaces that are perpendicular to the op-
tical axis. Note we do not consider the height variation of
turbulence, since compared to the laboratory setting, the tar-
get occupies a much narrower field of view.



Morning Capture. Target 110meters away, 30mm aperture.
0.50ms exposure 0.75ms exposure 1.00ms exposure

4.32± 0.49 4.89± 0.46 4.79± 0.45
Average: 4.67

Morning Capture. Target 160meters away, 30mm aperture.
0.50ms exposure 0.75ms exposure 1.00ms exposure

8.23± 0.88 7.61± 0.67 7.75± 0.64
Average: 7.86

Afternoon Capture. 10mm aperture and 5ms exposure
Target 110meters away Target 160meters away

43.68± 7.50 69.37± 9.49

Table 2. Average variance (and its standard derivation) of track-
ers for outdoor experiment. The variance ratios between 160m
and 110m turbulence video are 7.86/4.67=1.6857 (30mm aper-
ture captured in the morning) and 69.37/43.68=1.5785 (10mm
aperture captured in the afternoon), close to the distance ratio
(160m/110m=1.4545), verifying our model.

7. Jitter-stereo in Nonhomogenous Turbulence
Until now, we have addressed depth estimation under ho-

mogenous and simple height-varying turbulence. However,
due to unpredictable temperature and humidity fluctuation,
turbulence cannot be guaranteed to be homogenous over a
large area and a long period of time. In this case, it is im-
possible to estimate depth using the model without knowing
the turbulence structure function. Instead, we will exploit a
general statistical property of turbulence along with a stereo
camera pair to improve long-range depth estimation.

Recall that binocular stereo estimates the depth of a
scene point by computing scene disparity across two views.
If a scene point is far away compared to the stereo baseline,
the disparity may be less than one pixel and the depth es-
timation may fail. However, in the presence of turbulence,
the location of the scene point “jitters” around its true loca-
tion in the image. But how do we estimate the true location
of a scene point without turbulence? It has been observed
that distribution of (even non-homogeneous) turbulence dis-
tortions is close to zero-mean. This is true even if the vari-
ance of each scene point is different. Thus, the mean posi-
tions of the tracked scene points are their most-likely posi-
tions when there is no turbulence. Furthermore, estimating
mean locations of trackers allows us to obtain the dispar-
ity possibly with sub-pixel accuracy, helping in long-range
depth estimation with a short baseline. This approach is also
similar in spirit to Swirski et. al [19] that estimates corre-
spondences in stereo using underwater caustics patterns.

In order to experimentally verify our approach, we cap-
tured two image sequences of a planar scene 110m away
from different view points, with baseline of less than 1m.
The two sequences were captured at different times when
the turbulence was significantly different. We tracked a
common sparse set of scene points in the two views and
compute the mean locations. We also verified that the
distribution of tracker displacements are zero-mean in all
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Figure 12. Distribution of x and y displacement of trackers in out-
door image sequence, computed over all trackers and all frames
from an image sequence in the afternoon. Consistent with our as-
sumption, they follows a zero-mean distribution.
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Figure 13. Jitter stereo in turbulence. (a) (Uncalibrated) disparity
computed from two video frames at a certain time, due to turbu-
lence, the disparity is noisy. Over the 319 frames, the correlation
coefficient varies from 0.632 to 0.954 with mean being 0.884 and
standard derivation being 0.054. (b) (Uncalibrated) disparity us-
ing mean tracker locations. The disparity is clearly linear (corre-
lation coefficient is 0.976).

our experiments (see Fig. 12). The disparities between
the mean-locations of corresponding trackers are then es-
timated. Note that the disparity of a scene point on a plane
is a linear function with respect to its x and y coordinates
on the image. The linear fit is strong with a correlation co-
efficient of 0.976 and is significantly better than computing
disparities on a per-frame basis, as shown in Fig. 13.

8. Comparisons with Depth-from-X
This work introduces turbulence as a new cue for scene

depth. So, it is instructive to discuss the parallels and differ-
ences between depth from turbulence and other depth-from-
X approaches in computer vision.

Structure from motion (SFM): SFM relies on estimating
the pixel disparity across different views of the scene that
reduces with depth. In the case of turbulence, variance of
projected scene point is measured from the same camera
position over time and monotonically increases with scene
distance. Thus, while SFM is suited for shorter distances
(for a fixed baseline), depth from turbulence is better in gen-
eral for a longer range and/or stronger turbulence. But if
the scene is outside the turbulence region, the depth preci-
sion degrades in the asymptotic region of the variance curve
(Fig. 4). At the same time, both approaches share the same
issues with finding and tracking corresponding features.

Depth from defocus or diffusion (DFD): In both cases, the
point-spread function varies across the scene. The extent
of the observed blur monotonically increases with distance
from the sensor in the case of turbulence and distance from
the focal/diffuser plane in the case of DFD [7, 25]. Depth
from turbulence requires capture of a temporal sequence of



images, and is similar to moving a pinhole across the aper-
ture of the lens to compute depth [1].

Structure from bad weather: Perhaps depth from fog
or haze [14] is most similar in spirit to depth from turbu-
lence. These approaches also use a single viewpoint, pro-
vide measures that are more reliable for scenes with long
distances, and are (mostly) independent of the scene re-
flectance properties. That said, there are also fundamental
differences. Turbulence is a statistical and temporally vary-
ing phenomenon, where depth cues are due to phase varia-
tions of the incident light rather than the intensity variations
as in fog. The environmental illumination (air light) pro-
vides a strong cue for depth from fog, whereas the specific
illumination geometry of the environment plays little or no
part in depth from turbulence.

9. Conclusion and Future Work
This article is an initial attempt at understanding what

depth cues can be extracted from optical turbulence. We
derived a simple relation between scene depths and vari-
ance of the projected scene points under turbulence. Our
experiments showed, somewhat surprisingly, that accurate
depth cues can be obtained from optical turbulence. There
are several avenues of future work including dense scene
reconstruction and image super-resolution from the image
sequence under turbulence. We wish to also study several
other related physical phenomena. The twinkling of stars
is caused primarily due to the changes in amplitude of the
incident wave that are distance-related as well. Aside from
temperature gradients, the chaotic movement of a medium
itself can cause turbulence. This type of phenomenon can
occur due to under water currents, due to strong wind flow
in the upper atmosphere, and due to air flow around engines.
We wish to build upon this work to apply to these scenarios.
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