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Abstract Real-world surfaces such as clothing, water and
human body deform in complex ways. Estimating deforma-
tion parameters accurately and reliably is hard due to its high-
dimensional and non-convex nature. Optimization-based
approaches require good initialization while regression-
based approaches need a large amount of training data.
Recently, to achieve globally optimal estimation, data-driven
descent (Tian and Narasimhan in Int J Comput Vis , 98:279–
302, 2012) applies nearest neighbor estimators trained on a
particular distribution of training samples to obtain a glob-
ally optimal and dense deformation field between a template
and a distorted image. In this work, we develop a hierar-
chical structure that first applies nearest neighbor estimators
on the entire image iteratively to obtain a rough estimation,
and then applies estimators with local image support to refine
the estimation. Compared to its non-hierarchical version, our
approach has the theoretical guarantees with significantly
fewer training samples, is faster by several orders, provides a
better metric deciding whether a given image requires more
(or fewer) samples, and can handlemore complex scenes that
include amixture of globalmotion and local deformation.We
demonstrate in both simulation and real experiments that the
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proposed algorithm successfully tracks a broad range of non-
rigid scenes including water, clothing, and medical images,
and compares favorably against several other deformation
estimation and tracking approaches that do not provide opti-
mality guarantees.
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1 Introduction

Accurately finding dense correspondence between images
capturing deforming objects is important for many vision
tasks, such as 3D reconstruction, image alignment and track-
ing. However, estimating the parameters of nonrigid defor-
mation is hard due to its high-dimensionality and strong non-
convexity. Continuous optimization approaches (e.g. gradi-
ent descent orNewton’smethod) require no training but often
suffer from localminima,while regression-based approaches
(e.g., nearest neighbor) have guaranteed solutions (i.e., the
prediction p̂ satisfies ‖p̂ − p‖ ≤ ε, where p is the true para-
meters), only when O(1/εd) training samples are available.

Recently, Tian and Narasimhan (2012) proposed data-
driven descent which combines the best properties of both
continuous optimization and regression. They show that in
the presence of a generative model for deformation, the
training samples can be generated by simply deforming
the template using parameters from a particular distribu-
tion. Then a sequence of nearest neighbor predictions will
achieve the globally optimal solution, that is, find p̂ so that
‖p̂ − p‖ ≤ ε for the true solution p. This global solution
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Fig. 1 Illustrations of order of training sample complexity required for
estimating d dimensional deformation. a To achieve a guaranteed accu-
racy 1/ε, traditional regression-based approaches (e.g. Nearest neigh-
bor) require O(1/εd ) training samples. Data-driven descent (Tian and
Narasimhan 2012) requires O(Cd log 1/ε), decoupling the dimension-
ality from the accuracy. Our hierarchical framework for deformation

estimation achieves O(Cd
1 +C2 log 1/ε)with constantC1 much smaller

thanC andC2 independent of dimensionality. b Sample complexity per
iteration. A constant number of samples per iteration is needed in Tian
and Narasimhan (2012). The number of samples needed is a constant
for the first few iterations, and then decays double exponentially for our
algorithm

essentially warps the test image to the template.1 Further-
more, to achieve the accuracy of 1/ε, the number of samples
needed is O(Cd log 1/ε) for d dimensional warping, much
fewer than O(1/εd) required for general regressions. Intu-
itively, this approach captures the group-like structure in
deformation and uses the training sampleswhich are far away
from the test image for prediction. Their approach shows
good empirical results for local deformation, but fails to cap-
ture general deformation that includes both global and local
components (e.g., cloth moving and deforming).

In this paper, we develop a top-down hierarchical structure
for deformation estimation with global optimality guaran-
tee. First, the deformation field is parameterized so that the
deformation happening within a local image patch can be
predicted by the content of that patch, reducing the dimen-
sionality. Then, wemodel the nonlinear relationship between
the image content and the deformation parameters using a
novel Lipschitz criterion. With this criterion, all patches at
different locations and scales can be regarded as predictors
with guaranteed worst-case precisions. Finally, combining
these predictors together in a top-down hierarchical man-
ner leads to an overall predictor that can handle large and
high-dimensional deformation with both local and global
components.

Our contributions are threefold.First, our approach brings
down sample complexity to O(Cd

1 + C2 log 1/ε), which
increases very slowly for higher accuracy. In particular, the
number of samples required in each iteration stays constant
for the first few iterations (layers of hierarchy), and then
decays double exponentially (Fig. 1). Practically, our unop-
timized Matlab implementation is fast, achieving 3–4 fps on

1 Note that here the parameter norm ‖ · ‖ can be any norm, since if a
certain norm is ε-small, so do others.

real images. Second, compared to data-driven descent (Tian
and Narasimhan 2012), our sample complexity guarantee
is based on much weaker assumptions that can be verified
with an efficient algorithm. As a result, our constant C1 is
much smaller than the constant C in Data-driven descent.
Third, our work provides a rigorous theoretical analysis and
interesting insights for top-down coarse-to-fine hierarchical
structures. We believe that our analysis can be useful to ana-
lyzeother similar hierarchies proposed in the computer vision
community.

Our work not only has strong theoretical foundations, but
also demonstrates good quantitative and qualitative results
on real video sequences containing different types of defor-
mation, including clothing and water surface deformations
as well as medical images of internal organs. Our approach
outperforms optimization-based approaches such as Lucas–
Kanade (Lucas and Kanade 1981; Baker and Matthews
2004), Free-form registration (Rueckert et al. 1999) and
PatchMatch (Barnes et al. 2009) (note all approaches are
implemented in a coarse-to-fine manner), regression-based
approaches such as nearest neighbor and explicit shape
regression (Cao et al. 2012), feature-based approaches such
as SIFT, (Lowe 2004), tracking-based approaches such as
KLT (Lucas and Kanade 1981; Shi and Tomasi 1994), and
hybrid methods such as data-driven descent.

Limitations. Unlike previous approaches (Beauchemin and
Barron 1995; Barnes et al. 2009, 2010) that estimate non-
rigid pixel correspondences from two images, our approach
first requires training samples to build a hierarchical model,
and then applies the trained model to other images to obtain
pixel correspondence. However, the limitation can be over-
come if we know the template image and its deformation
model, from which the training samples can be generated. In
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this case, the proposed algorithm can estimate the correspon-
dences between two images.While the theory is applicable to
3D deformations with self occlusions, the generative model
may be complex and require accurate rendering tools to syn-
thesize training data.

2 Related Work

Optimization-based approaches (e.g., Baker and Matthews
2004; Matthews and Baker 2004; Rueckert et al. 1999)
usually reach a local minimum using gradient descent or
Newton’s method. Random initialization is used to improve
the quality of solutions on a heuristic basis. Regression-based
approaches aim to learn a mapping from the distorted image
to the deformation parameters using labeled training sam-
ples. The actual form of mapping could be nonparametric
like nearest neighbor, or parametric like linear (Matthews
and Baker 2004; Tan et al. 2014), random forest (Shotton
et al. 2011), boosted random fern (Cao et al. 2012), etc.
Feature-based approaches (e.g., SIFT,Lowe2004)find corre-
spondence by matching local features. Designing these local
features needs a balance between feature distinctiveness and
invariance under deformation.

Hierarchical structures have been used extensively in
vision. Typical scenarios include coarse-to-fine optimiza-
tion (Rueckert et al. 1999) for a better local solution,
interest point detection (Lowe 2004), multi-resolutional fea-
ture extraction (Lazebnik et al. 2006), biologically plausible
framework for object recognition (Serre et al. 2005) and so
on. Recently, it is also used in deep learning, showing the
state-of-art performance in image classification (Krizhevsky
et al. 2012). However, as far as we know, none of the previ-
ous works provides theoretical performance guarantees for
hierarchical structures.

Hierarchical optical flow (Beauchemin and Barron 1995)
also adopts a top-down coarse-to-fine approach to estimate
nonrigid deformation field. However, fundamentally, hier-
archical optical flow builds the computational model based
on non-convex optimization, and treats the coarse-to-fine
approach as a practical heuristic that might help escape from
local minima of the objective function with no theoretical
guarantees. In this work, by introducing training samples
and Lipschitz conditions, we show that the coarse-to-fine
approach is more than a heuristic for the optimization, but
has its own principles that deserve a different mathematical
framework.

Similar to our work, PatchMatch (Barnes et al. 2009,
2010) also estimates a possibly nonrigid deformation field
between two images. Initialized by a random deformation
field that contains a few good correspondences with high
probability, it propagates these good matches by nearest
neighbor search over local translation (Barnes et al. 2009)

or local scaling and rotation (Barnes et al. 2010). To over-
come local solutions, a random search is also used to jump
out of local optimal matches. These operations are done
interleavingly in a coarse-to-fine manner: the top level corre-
spondence is upsampled to be the initialization of lower level.
Multiple random initializations are proposed to improve the
quality of solution. Theoretical analysis has also been con-
ducted in Barnes et al. (2009) for finding correspondence
of a synthetic image pair, which has two distinctive regions
located at different locations. The analysis shows that the
expected number of random initializations used to extract
the correct correspondences remains a small constant, if the
distinctive region occupies a constant fraction of the image,
and is independent of the size of image. From our point of
view, if a large portion of the image is distinctive from its sur-
roundings, then under deformation the image will undergo
substantial change and Lipschitz condition naturally holds.
Therefore, our conditions subsume the assumption made in
the analysis (Barnes et al. 2009). In fact, our Lipschitz con-
dition is much more general. For example, it can also be
applied to synthetic examples containing two or more repet-
itive patterns deformed in a spatially correlated way, still
achieving global convergence. On the other hand, the analy-
sis in Barnes et al. (2009) would fail to show that PatchMatch
can get the correct solution. PatchMatch may sample the cor-
rect correspondence in a few iterations, or may converge to
the wrong but locally similar solution, even using a coarse-
to-fine framework.

3 The Image Deformation Model
Denote T as the template image and Ip as the distorted
image with deformation parameters p. The deformation field
W (x;p)maps the pixel location x on the template to the pixel
location W (x;p) on the distorted image Ip:

Ip(W (x;p)) = T (x) (1)

Similar to data-driven descent (Tian and Narasimhan
2012), we parameterize the deformation field W (x;p) by
a linear combination of a set of bases:

W (x;p) = x + B(x)p (2)

where B(x) = [b1(x), b2(x), . . . , bK (x)] are K deformation
bases and p are the coefficients. In general, Ip is globally
related to the parameter p, since a change of component k in
p may propagate to the entire image via bk(x).

3.1 Local Over-Parameterization

In this paper, we consider a local parameterization of the
deformation field W (x;p) by making each basis a sparse
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Fig. 2 Local parameterization of deformation. a, b The deformation
field is controlled by a set of landmarks on the template image. By
moving these landmarks, a deformed image is created. c Local para-
meterization. Each parameter p(i) encodes the 2D displacement of the
landmark i . d Displacement on any pixel x is interpolated using dis-

placements of nearby landmarks. e, f Image patch I (R), where the
image region is parameterized by location x and scale r , and its associ-
ated parameters p(S). In this paper, we study the nonlinear relationship
between the two

vector. At any 2D point x, its 2D deformation is determined
by a weighted linear combination of the displacements of
K landmarks (or control points), as shown in Fig. 2. More-
over, the farther away the landmark is from the query point
x, the smaller its weight. Formally, we write p(k) as the
displacement of k-th landmark, and use a K -by-2 matrix
p = [p(1),p(2), . . . ,p(K )]T to store 2K displacements.

From this setting, it is natural to see that the basis bk(x) is
sparse and its energy is concentrated around the rest location
lk of landmark k. At any location x, weights bk(x) are non-
negative and normalized (i.e.,

∑
k bk(x) = 1). Furthermore,

at the rest location of k-th landmark location lk, bk(lk) = 1
while bk(lk′) = 0 for k′ �= k. In practice, B(x) can be
any interpolation function, e.g., Thin-plate Spline (Bookstein
1989), B-spline (Rueckert et al. 1999), local linear interpo-
lation, etc.

In the case that we cover the image with a sufficient num-
ber of landmarks, due to strong positive correlations between
nearby landmark displacements, the actual dimensionality d
of the warping field could be much lower than 2K . Similarly,
if we select an image patch I (R) which contains a subset S
of landmarks, the local degrees d of freedom of a patch R are
also smaller than 2|S|, where |S| is the number of landmarks
within this region. We summarize this observation as follow:

Observation 1 The local degrees of freedom of a patch are
no more than min(d, 2|S|).

An interesting question is, if the degrees of freedom of a
patch are low, why is it necessary to use somany parameters?
Because in such a case, the parameter estimation procedure
can be factorized and achieves lower sample complexity.
Many previousworks (Tian andNarasimhan 2012;Matthews
and Baker 2004; Salzmann et al. 2008) also assume a sim-
ilar form of W (x;p). However, their parameters p, usually
given by dimensionality reduction procedures (e.g., PCA),
is not localized to spatial landmarks. In comparison, Eq. 2
is both a localized and over-parameterization of the defor-
mation field W (x;p), which leads to a further reduction of
training samples needed.

3.2 Generating Training Samples

From Eq. 1, given the parameter p, one can generate the
deformed image Ip from the template T . This is done by
assigning every pixel y of the deformed image Ip with the
pixel value on location x = W−1(y;p) of the template T .
HereW−1 is the inverse mapping from y = W (x;p) back to
x for afixedp.Note that due to the nonlinearity ofbk(x),W−1

may not be representable by the linear model (Eq. 2), but as
long as W−1 exists, samples can still be generated. Choos-
ing different parameters {pi } gives many training samples
{(pi , Ipi )}.

The major contribution of this paper, as described in the
next sections, is to properly distribute the training samples
and analyze the number of samples needed (i.e., sample com-
plexity) to achieve the globally optimal prediction of the
unknown parameters for a distorted test image.

4 The Relationship Between Image Evidence and
Distortion Parameters

4.1 Lipschitz Conditions

Given any deformed image Ip, to estimate p with theoretical
guarantees, we need to assume a positive correlation between
the image difference ΔI ≡ ‖Ip1 − Ip2‖ and the parameter
differenceΔp ≡ ‖p1−p2‖∞. HereΔI is computed by a cer-
tain imagemetric, whileΔp is computed in terms ofmaximal
absolute difference between landmark displacements. Intu-
itively, if two images are close, so are their parameters and
vice versa. Data-driven descent (Tian and Narasimhan 2012)
characterizes such a relationship using global Lipschitz con-
dition as below:

L1ΔI ≤ Δp ≤ L2ΔI (3)

where, L1 and L2 are two constants dependent on the tem-
plate T . Tian and Narasimhan (2012) shows that the ratio of
L2/L1 is a characteristic for samples complexity for guar-

123



48 Int J Comput Vis (2015) 115:44–67

anteed nearest neighbor prediction (see Eq. 4). For simple
images that contain one salient object with a clear back-
ground, L2/L1 is typically small and a few samples suffice.
For difficult images with repetitive patterns, L2/L1 is large
and a lot of samples are needed to distinguish among locally
similar-looking structures.

Note that in Tian and Narasimhan (2012), Eq. 3 is used
to model the relationship between global image appearance
and global parameters. However, Eq. 3 can be much broader.
Both the parameters and the appearance may cover the entire
image, or may only occupy a subregion of the image. In the
following, we will show that the fact that local appearance
changes with the local parameters will reduce the sample
complexity.

Note that throughout the paper, the word “correlation” is
used vaguely to represent the dependence between Δp and
ΔI . It could take the form of Eq. 3, or take the form of relaxed
Lipschitz condition (aswill be discussed later).Wedefine it in
such away to give provable bounds on the predicted accuracy
if the training samples are sufficiently dense. At the same
time, the conditions remain general and plausible in practice.

4.2 Sample Complexity Guarantee for Nearest Neighbor

Suppose we have training samples {p(i), I (i)
p } and want to

predict the parameter for a test image I with an unknown true
parameter p. The simplest way is to use the nearest neighbor
predictor: find I (i)

p′ in the training set that is closest to I , and
return the parameter p′ as the prediction p̂.

As a simple approach, nearest neighbor achieves guar-
anteed solution if we have a sufficient number of samples
distributed uniformly in the space. Specifically, with the Lip-
schitz condition, it is possible to estimate sample complexity
required for a prediction to be ε-close to the true value.

Theorem 1 (Sample Complexity for Nearest Neighbor)
If Eq. 3 holds, then with

⌈
L2

L1

r0
ε

⌉d

(4)

number of training samples, for an image Ip generated from
Eq. 1 with ‖p‖∞ ≤ r0, the predictor is able to make a pre-
diction p̂ that is ε-close to the true parameter p:

‖p̂ − p‖∞ ≤ ε (5)

Proof ByLemma 4, we can uniformly sample the hypercube
[−r0, r0]d in the parameter space so that for any ‖p‖∞ ≤ r0,
there exists (p(i), I (i)) so that

‖p − p(i)‖∞ = max
j

|p( j) − p(i)( j)| ≤ L1

L2
ε (6)

From the same theorem, the number of samples needed is
exactly Eq. 4. On the other hand, a nearest neighbor predic-
tion (pNN , IN N ) can only be closer to the test Ip in the image
space. Then by Lipschitz condition, we have:

‖IN N − Ip‖ ≤ ‖I (i) − Ip‖ ≤ 1

L1
‖p(i) − p‖∞ ≤ 1

L2
ε (7)

Again use Lipschitz condition and notice pNN is the output
prediction, we have:

‖p̂ − p‖∞ = ‖pNN − p‖∞ ≤ L2‖IN N − Ip‖ ≤ ε (8)

	


4.3 Nyquist Limit

In fact, despite the context of image deformation, Eq. 3 can
be used to characterize any input/output mapping and Theo-
rem 1, as a sufficient condition for nearest neighbor to work
theoretically, will still hold. Furthermore, without exploiting
any domain-specific knowledge, it is likely that O((1/ε)d)
is the best we can do. A substantial reduction of training
samples is impossible. The intuition is that the mapping
p �→ Ip, although locally smooth as required by theLipschitz
condition, could be arbitrary over the long range in the high-
dimensional space. To cope with such a flexibility, one needs
to densely place the training samples at every location of
the space, which naturally leads to the factor (1/ε)d . There-
fore, we call O((1/ε)d) the Nyquist limit since it reflects the
lower bound of information needed to completely encode an
arbitrary high-dimensional mapping, independent of specific
prediction algorithms (e.g., nearest neighbor, boosting, etc.).

4.4 Limitations of Global Lipschitz Conditions

Theentire analysis in data-drivendescent relies onTheorem1
and the global Lipschitz conditions. However, one shortcom-
ing of the global Lipschitz condition

L1ΔI ≤ Δp ≤ L2ΔI ∀p1,p2 : ‖p1‖∞, ‖p2‖∞ ≤ r0 (9)

is that it must hold for arbitrarily small ΔI and Δp. Thus
it (and also data-driven descent) fails in the following two
situations:

– Noisy images. Adding noise to a distorted image Ip
changes its appearance but not its parameters. As a result,
Δp ≈ 0 but ΔI is finite. This makes L1 → 0.

– Repetitive patterns. If an image resembles itself after
some transformation (e.g. translation/rotation), Δp is
finite but ΔI ≈ 0. This makes L2 → +∞.

Graphically these two cases are illustrated in Fig. 4d,
where L1 and L2 are inverse slopes of the two boundaries
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Rj0 Rj(p)
Rj0

IpIpT
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Fig. 3 Regions in template T and deformed image Ip. a Template
region R j0 of patch j on template image T . b R j0 on deformed image
Ip, the region is not changed while the deformed image changes with
respect to p. As a result, the image content Ip(R j0) also changes, from
which the parameters p(S j ) can be estimated. c On the other hand, the
region R j (p)moves in accordancewithp. The image content Ip(R j (p))

equals T (R j0) and remains constant (Eq. 1)

of the cone that covers all data. In both cases, the analysis
in Theorem 1 gives a trivial (infinite) bound on sample com-
plexity and global optimality cannot be guaranteed.

5 Relaxed Lipschitz Conditions

In this paper, we overcome these fundamental difficulties
by introducing a novel and more general hierarchical frame-
work. First, we introduce relaxed Lipschitz conditions that
handle the two situations in which global conditions fail.
Instead of using L1 and L2 to implicitly characterize ΔI -
Δp relationship, we model it explicitly with the trade-off
between sample density (the number of samples used per
dimension) and convergence rate (the relative improvement
of prediction upon the initial estimate) to build a guaranteed
predictor. High sample density allows higher convergence
rate but leads to high computation complexity. On the other
hand, low sample rate makes prediction faster, but leads to
low convergence rate.

Furthermore, the relaxed conditions are defined only on
the patches and assumed to be valid for small deformation
that does not move the patch too far away from its original
locations. Since the assumptions are weaker than the global
one, the conditions are more general.

Following these properties, predictors on large patches
can operate on large deformation but produce coarse pre-
diction, while predictors on small patches only work for
small deformation but could lead to refinedprediction. There-
fore, we could stack the deformation predictors together in
a coarse-to-fine hierarchy. Critically, the estimation of the
coarse predictors push the patches of thefinepredictors closer
to their true locations, enabling the fine predictors to work
properly. This establishes the “chain reaction” between suc-
cessive layers and yields a much better parameter estimator
that handles large deformation with precise prediction.

One main contribution of this paper, is to make these intu-
itions mathematically rigid and consistent.Wewill introduce
each component of the framework in the following sections.

5.1 Formulation

Toovercome the difficulties of the global Lipschitz condition,
we introduce a patch-wise relaxed Lipschitz condition that
characterizes the relation between the change of patch con-
tent ΔIp(R j0) and the subset of parameters Δp(S j ) of that
patch. Intuitively, this condition says that similar parameters
must yield similar appearance, while different appearance
must come from different parameters. If we draw a scatter
plot between ΔI and Δp (Fig. 4), then we see such a rela-
tionship could not grow too rapidly away from the origin but,
after a certain point, must stay well above zero.

To make the intuition concrete, we first introduce some
notations. As illustrated in Fig. 3, R j0 is the template region
for j-th patch and is fixedwhen p changes, while R j (p) is the
region that goes with p. S j is the subset of landmarks within
the j-th patch (Fig. 2e), and r j is the radius (or acceptance
range) of patch. SeeTable. 1 for a notation overview. Thenwe
formally define relaxed Lipschitz conditions independently
at each patch j as follows:

Assumption 1 (Relaxed Lipschitz condition for patch j)For
patch j with scale r j and pull-back error η j , there exists
4-tuples (α j , γ j , A j , Γ j ) with 0 < α j ≤ γ j < 1 and
A j + 2η j < Γ j so that for any p1 and p2 with ‖p1‖∞ ≤
r j , ‖p2‖∞ ≤ r j , we have:

Δp ≤ α j r j �⇒ ΔI ≤ A jr j (10)

Δp ≥ γ j r j �⇒ ΔI ≥ Γ j r j (11)

for parameter difference Δp ≡ ‖p1(S j ) − p2(S j )‖∞ and
image difference ΔI ≡ ‖Ip1(R j0) − Ip2(R j0)‖.
Here ‖x‖∞ ≡ maxi |xi | is the max-norm (or L∞ norm) of
a vector. Note that similar to Tian and Narasimhan (2012),
for those warps whose inversion cannot be parameterized by
the linear model (Eq. 2), the pull-back error η, as an addi-
tional error term introduced to compensate the image quality
loss when the image is warped to a less distorted version, is
greater than 0. For the first read, one could just treat η = 0
in all assumptions and theorems. For a deeper understand-
ing, we suggest the reader to consult the proof in Tian and
Narasimhan (2012) and Appendix 2.

Graphical Illustrations. As illustrated in Fig. 4a, Eq. 10
says all (Δp,ΔI ) left to the vertical line α j r j must be
below A jr j (in the red-shaded box); while the second part
says all (Δp,ΔI ) right to the vertical line γ j r j must be
above Γ j r j (in the blue-shaded box). Finally, the condi-
tion A j + 2η j < Γ j suggests that the bottom of blue is
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α γ
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α γ
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L2
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L2 → +∞

(a) (b) (c) (d)

Fig. 4 Relaxed Lipschitz Condition (Eqs. 10 and 11). a There are four
constants (α, γ, A, Γ ) capturing the correlations between ΔI and Δp
whenΔp is small (≤ αr ) or large (≥ γ r ).bMinimal γ without violating
the condition. c Global Lipschitz condition (Eq. 9). The two constants
L1 and L2 envelope the data points (Δp,ΔI ). d A noisy mapping

(Δp = 0 but ΔI �= 0) makes L1 = 0 while an one-to-many mapping
(ΔI = 0 but Δp �= 0) causes L2 = +∞. In both cases, global Lip-
schitz condition fails while relaxed Lipschitz conditions are still valid
with finite (α, γ, A, Γ )

always above the top of red (by somemargin). Intuitively, The
red box enforces that similar parameters must yield similar
appearances. Therefore, with sufficient (but finite) sampling
we could cover all possible appearances. On the other hand,
the blue box enforces two images similar in appearancemight
have similar parameters. This enables us to infer the parame-
ters of an unknown image from the nearest neighbor in the
appearance space.

Figure 5 gives more intuitions in the image/parameter
space rather than in the delta space, when both p and Ip
is one-dimensional. In Fig. 5c, all the blue rectangles depict
that the vertical oscillation of the function should not exceed
the upper/lower bound indicated by the rectangle. On the
other hand, in Fig. 5d, the function must go up after a plateau
indicated by the rectangle.

Trade-offs. From the definition, we can see that (α j , γ j )

is not unique. In particular, if (α j , γ j ) is a valid pair, so does
(α′

j , γ
′
j ) for α′

j ≤ α, γ ′
j ≥ γ . As we shall see in the next

section, we want the smallest gap between α and γ . This can
be achieved when A j and Γ j touch (Fig. 4b). For a given α j ,
we define theminimal, or tightest γ j given by the monotonic
curve γ j = γ (α j ), as shown in Fig. 6c.

The acceptance range r j . Different from the Lipschitz
conditions (Eq. 9), one important aspect of Eqs. 10 and 11
is that ΔI and Δp are only correlated up to the acceptance
range r j , i.e., ‖p‖∞ ≤ r j . This weaker condition makes it
possible to account for noise and parameter changes out-
side the subset S j that may influence the patch Ip(R j0)

without altering p(S j ). This also accounts for the case in
which two slightly different parameters share the same image
appearance. In both cases, the pair (α j , γ j ) is still well-
behaved while L2/L1 in Eq. 9 is not. Mathematically, r j
should be the maximal radius so that the relaxed Lipschitz
condition is satisfied for ‖p‖ < r j . Practically we just
choose r j to be the radius of the patch (e.g., if a patch is
of size a1-by-a2, then choose r j as min(a1, a2)/2), so that
the Relaxed Lipschitz Conditions will in general hold and

according to Theorem 2, the displacement can be predicted
accurately.

5.2 Empirical Estimation of Lipschitz Constants

Empirically, the constants in the relaxed Lipschitz condi-
tions (Eqs. 10 and 11) can be estimated from a set of image
differences {ΔIm} and corresponding parameter differences
{Δpm}. Both differences can be computed from training sam-
ples {(p(i), I (i))}. Since γ, A, Γ is actually a function of α,
what we estimate is a set of plausible 4-tuples, and most
importantly, the curve γ = γ (α). Note that we omit sub-
script j here for clarity.

For M pairs of image and parameters differences
{(Δpm,ΔIm)}, a brute-force search computes all plausible
4-tuples by enumerating all possible (α, γ ) to find feasible
ones. This takes O(M3) operations. Here we propose Algo-
rithm 1 which only costs O(M logM). The algorithm is also
illustrated in Fig. 6. Intuitively, we first sort the list of pairs
(Δp,ΔI ) in ascendingorderwith respect toΔp, thenwe scan
from the smallest Δp. For each Δpm , we find the smallest
(and tightest) sample index l∗ that satisfies Relaxed Lipschitz
Conditions. Δpl∗ thus gives the minimal γ achievable for
α = Δpm/r j . Hence the curve γ = γ (α). A nice property
of Algorithm 1 is that we only need to keep two pointers
(m and l∗) and scan the array once per pointer. It is also an
online algorithm: if the final curve is incomplete (e.g., γ is
still very small for largest α), due to insufficient number of
pairs, simply add more pairs with larger image distances and
resume the algorithm from latest l∗. Please see Appendix 1
for the correctness proof.

5.3 Guaranteed Prediction by Nearest Neighbor

Now let us study how the relaxed Lipschitz condition helps
nearest neighbor prediction.Wewish to knowhowwell patch
(x, r) can predict the deformation p(S)within its acceptance
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Table 1 Notations used in this paper

Images

I0 Template image

I An arbitrary 2D Image

x, x, y 2D pixel location, x = (x, y) is the vector form, while x and y are components.

Parameters

K The number of landmarks

S j A subset of landmarks. See Fig. 2(f). |S j | is the number of landmarks

p,q, p̂, p̃ Deformation parameters as a K -by-2 matrix. q and p̂ are for training samples parameters (or their summation)
(See Theorem 2)

p( j),px ( j),py( j) The j-th landmark displacement (1-by-2 vector) in parameter p. px ( j) and py( j) are its components

p(S j ) A |S j |-by-2 matrix that contains the landmark displacements in the subset S j

Ip A deformed image with ground truth deformation parameter p.

W (x; p) Deformation field parametrized by p. Given x and p,W (x; p) is a 1-by-2 vector

W−1(x; p) Fixing p, the inverse mapping from y = W (x; p) back to x. Not necessarily linear with respect to p

B(x) Deformation bases. B(x) = [b1(x), b2(x), . . . , bK (x)] where each column is a basis function.

d Degrees of freedom.

Lipschitz conditions

L1, L2 (Global) Lipschitz Constants proposed in Tian and Narasimhan (2012).

r j The radius of patch j

α Inverse of sample density

γ (One minus) convergence rate

A, Γ Constants in Relaxed Lipschitz Conditions

ΔI Scalar difference between two images I1 and I2,ΔI = ‖I1 − I2‖. ‖ · ‖ could be any norm

Δp Scalar difference between two parameters p1 and p2,Δp = ‖p1 − p2‖∞
Samples and algorithms

N Number of training samples

T Total number of iterations

(p(i), I (i)) A training pair. A deformed image I (i) and its ground truth parameter p(i)

{p(i), I (i)}Ni=1 A collection of training samples.

ε Prediction error. Inverse of prediction accuracy

C Constant terms in big-O notations

cSS Constant in Theorem 2 when modeling sampling complexity of deformation in a subspace. See Appendix 3

Miscellaneous

�x� Ceiling function, �x� is the smallest integer that is greater than or equals to x

‖p‖∞ Infinite norm. ‖p‖∞ = maxi ‖p(i)‖∞ = maxi max(|px (i)|, |py(i)|)

Ip

p

L1 = 0
L2 = +∞ΔI

Δp

Ip

p

Ip

p

Ip

p

Ar

αr
γr

Γr

(a) (b) (c) (d)

Fig. 5 More conceptual comparison in Lipschitz condition in one-
dimensional image/parameters space (Note that Fig. 4 is in the delta
space). a A (noisy) relationship between the parameters p and the
deformed image Ip. bGlobal Lipschitz condition (Eq. 9) cannot capture

such relationship due to “plateaus” and “cliffs” in the relationship. On
the other hand, relaxed Lipschitz condition is still valid, as long as c the
cliff is not too tall or d the plateau does not extend too much
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ΔI/r

Δp/rα γ

A
Γ

{ΔI+m}

{ΔI−
m}

Δp/r

α γ∗ = γ∗(α)

γ∗ = γ∗(α)

α

γ∗

γ = α

(a) (b) (c)

Fig. 6 Empirical estimation of constants in relaxed Lipschitz condi-
tions. a Relaxed Lipschitz conditions and four constants (α, γ, A, Γ ).
b From the data point (Δp,ΔI ), in Algorithm 1, we compute two
monotonously increasing function {I+

m } and {I−
m } (Note m is the dis-

cretized parameter difference Δp). Given each α, we thus obtain its
minimal γ ∗. c The curve γ ∗ = γ ∗(α), note that the curve is always on
top of the straight line γ = α

Algorithm 1 Find Local Lipschitz Constants
1: INPUT Parameter distances {Δpm} with Δpm ≤ Δpm+1.
2: INPUT Image distances {ΔIm}.
3: INPUT Scale r and noise η.
4: ΔI+

m = max1≤l≤m ΔIl , for m = 1 . . . M .
5: ΔI−

m = minm≤l≤M ΔIl , for m = 1 . . . M .
6: for m = 1 to M do
7: Find minimal l∗ = l∗(m) so that ΔI−

l∗ > ΔI+
m + 2η.

8: Store the 4-tuples:

(α, γ, A, Γ ) = (Δpm ,Δpl∗ ,ΔI+
m ,ΔI−

l∗ )/r

9: end for

range r (i.e., ‖p‖∞ ≤ r ). Without any training samples, a
trivial prediction p̂(S) = 0 yields a worst-case guaranteed
prediction error of r . Now the problem is: if wewant to obtain
a slightly better prediction, how many training samples do
we need?

Theorem 2 gives the answer. It shows that if the relaxed
Lipschitz conditions (Eqs. 10 and 11) hold, then a Nearest
Neighbor prediction with 1/α samples per dimension will
always reduce the error by a factor of γ < 1. Intuitively,
we first fill the 2|S|-dimensional hypercube [−r, r ]2|S| with
(1/α)2|S| training samples uniformly. Then, for any test sam-
ple I within the hypercube, there is I ′ whose parameter
difference is within αr . By one side of the Lipschitz con-
dition (Eq. 10), ‖I − I ′‖ ≤ Ar . The nearest neighbor of I ,
namely INN, is closer to I than I ′ to I . By the other side of
the Lipschitz condition (Eq. 11), the parameter of INN, which
is the prediction, is γ r close to the true parameters of I .

Theorem 2 (Guaranteed nearest neighbor) Suppose we
have a distorted image I close to Ip on the region R j0:

‖I (R j0) − Ip(R j0)‖ ≤ η j r j (12)

If ‖p‖∞ ≤ r j , then with

N j = min
(
css �1/α�d , �1/α�2|S|) (13)

number of samples uniformly distributed in the hypercube
[−r j , r j ]2|S|, we can compute a prediction p̂(S j ) so that

‖p̂(S j ) − p(S j )‖ ≤ γ j r j (14)

using nearest neighbor prediction on the image region
I (R j0).

Proof Since ‖p‖∞ ≤ r j , by definition we have ‖p(S j )‖∞ ≤
r j , that is, p(S j ) is within the hypercube of radius r j . Then
by applying Lemma 4 and Theorem 8 with α = α j , if the
number of samples needed follows Eq. 13, then there exists
a training sample whose set of parameters q is also within
the hypercube ‖q(S j )‖∞ ≤ r j , and satisfies:

‖p(S j ) − q(S j )‖∞ ≤ α j r j (15)

For k /∈ S j , the value of q(k) is not important as long as
‖q‖∞ ≤ r j . This is because by assumption, the relaxed Lip-
schitz conditions still holds no matter how q(S j ) is extended
to the entire landmark set.

Figure 7 shows the relationship for different quantities
involved in the proof. Consider the patch Ip(R j0), using
Eq. 10 and we have:

‖Ip(R j0) − Iq(R j0)‖ ≤ A jr j (16)

Thus we have for the input image I :

‖I (R j0) − Iq(R j0)‖
≤ ‖I (R j0) − Ip(R j0)‖ + ‖Ip(R j0) − Iq(R j0)‖
≤ (η j + A j )r j (17)

On the other hand, since Inn(R j0) is the Nearest Neighbor
image to I (R j0), their distance can only be smaller:

‖I (R j0)− Inn(R j0)‖ ≤ ‖I (R j0)− Iq(R j0)‖ ≤ (A j +η j )r j

(18)
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I(Rj0)

Ip(Rj0)
Inn(Rj0)

Iq(Rj0)

≤ ηjrj ≤ (Aj + ηj)rj

≤ Ajrj

I(Rj0)

Ip(Rj0)
Inn(Rj0)

Iq(Rj0)

≤ (Aj + 2ηj)rj

≤ (Aj + ηj)rj
≤ ηjrj

I(Rj0)

Ip(Rj0)
Inn(Rj0)

Iq(Rj0)
≤ (Aj + ηj)rj

≤ (Aj + ηj)rj

(a) (b) (c)

Fig. 7 Illustration of Theorem 2 and its proof. a Upper bound the
appearance distance between query image I (R j0) and image Iq(R j0)

in the training set. b Since Inn is the nearest neighbor in the training set,

its distance is even smaller. c Upper bound the appearance distances
between Ip(R j0) and Inn(R j0) to determine the precision of nearest
neighbor prediction

Thus we have:

‖Ip(R j0) − Inn(R j0)‖ (19)

≤ ‖Ip(R j0) − I (R j0)‖ + ‖I (R j0) − Inn(R j0)‖ (20)

≤ (A j + 2η j )r j (21)

Now we want to prove ‖p(S j ) − qnn(S j )‖ ≤ γ j r j . If not,
then from the Lipschitz condition (Eq. 11) we have:

‖Ip(R j0) − Inn(R j0)‖ ≥ Γ j r j > (A j + 2η j )r j (22)

which contradicts Eq. 21. Thus we have:

‖p(S j ) − qnn(S j )‖∞ ≤ γ j r j (23)

Thus, just setting the prediction p̂(S j ) = qnn(S j ) suffices. 	

From Theorem 2, the exponent of Eq. 13 is the degrees of

freedom mentioned in Obs. 1, which demonstrates the curse
of dimensionality. Note that the gap η j helps Theorem2work
out when the preceived image patch I (R j0) contains some
noise, compared to the true distortion Ip(R j0). From Eqs. 13
and 14, now both α and γ have their physical meanings: α

is the inverse of sample complexity per dimension, while γ

is the inverse of prediction accuracy. Ideally we want a large
α for lower sample complexity, and a small γ for higher
accuracy. However, the constraint α ≤ γ and the minimal
curve γ = γ (α) show there is a trade-off. Like L2/L1 in
Eq. 3, this trade-off reflects the difficulty level of images for
deformation prediction (See Sect. 8 for empirical validation).

6 Construction of Hierarchy

6.1 Intuition

According to Theorem 2, different image patches (x, r) show
different characteristics in their prediction guarantees: large
patches (large r ) can deal with large deformation but have

low precision of prediction, while small patches (small r )
only deal with small deformation but enjoy high precision.
Therefore, in order to estimate large deformation with high
precision, a natural way is to build a coarse-to-fine hierar-
chy of predictions as follows: the coarse layer (large patch)
reduces the prediction residue by a certain extent so that it is
within the acceptance range of the fine layer (small patch),
where the prediction is refined.

6.2 The algorithm

Following this intuition, we construct the hierarchical struc-
ture as follows. Within the same layer t , scale of patches is
fixed and denoted as rt . Let [t] contain all patches at layer
t . When going from top to bottom (t becomes large), the
scale rt of patches shrinks towards zero. The shrinking fac-
tor γ̄ = rt+1/rt is set to be

γ̄ ≡ max
j

γ j < 1 (24)

Algorithm 2 Hierarchical Deformation Estimation.

1: INPUT Training samples Tr j ≡ {(p(i), I (i))} for each image patch
j .

2: INPUT Test image Itest with unknown parameters p.
3: Set an initial estimation p̂0 = 0.
4: for t = 1 to T do
5: Set the current rectified image I t (x) = Itest(W (x; p̂t−1)).
6: for Patch j within layer t do
7: Find the Nearest Neighbor i∗ for patch I t (R j0):

i∗ = argmini∈Tr j ‖I t (R j0) − I (i)(R j0)‖
8: Set the estimation p̃tj (S j ) = p(i∗)(S j ).
9: end for
10: Aggregation: p̃t (i) = mean j :i∈S j p̃tj (i).
11: Update: p̂t (i) = p̂t−1(i) + p̃t (i) for all landmarks.
12: end for
13: Return final predictions p̂T (i) for all landmarks.

Figure 8 and Algorithm 2 illustrate the algorithm that esti-
mates the unknown parameter p given the test image Itest.
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Layer 1

Initialization NN Prediction Estimation

S1

NN Prediction
for subset S1

NN Prediction
for subset S2 Estimation

Layer 2

S2

Layer 3

p̂1 p̂2

Fig. 8 Work flow of our hierarchical algorithm for deformation estimation. On Layer 1, a global prediction is made and the estimation is updated.
On Layer 2, local deformation is estimated and aggregated. The procedure repeats until the last layer

For the first iteration, the test image Itest is directly com-
pared with the training samples generated from the entire
image with scale r1 to obtain the nearest neighbor prediction
p̂1. Then for the second iteration, we have a slightly less dis-
torted image Itest(W (x, p̂1)), fromwhichwe estimate p−p̂1.
Since ‖p − p̂1‖∞ is smaller than ‖p‖∞, its predictions can
be localized to smaller patches. Then this procedure is iter-
ated until the lowest layer. Similar to Tian and Narasimhan
(2012), Algorithm 2 will converge to the globally optimal
solution (Theorem 4), while the required number of samples
is O(Cd

1 + C2 log 1/ε) (Theorem 5).
Note that a less distorted image Itest(W (x; p̂t−1)), as the

input of layer t , is not necessarily the same as a distorted
image Ip−p̂t−1 generated directly from the template image.
Their difference is the pull-back error. Fortunately, similar
to Tian andNarasimhan (2012), the pull-back error decreases
when rt → 0 and global convergence guarantee still holds.
Theorem 7 summaries this property.

How much patch overlaps is not a critical part of the the-
oretical framework. However, in practice patch overlaping
allows a slower reduction of patch size from top layer to
bottom layer, making the entire framework workable in the
case of larger γ . In our experiment, patches could be sub-
stantially overlapped (note that Fig. 8 is only for illustrative
purpose).

Theorem 3 For jth patch with template region R j0 and
radius r j , if ‖p − q‖∞ ≤ r j and ‖q‖∞ ≤ cq , then

‖Ip(R j (q)) − Ip−q(R j0)‖ ≤ η j r j (25)

where η j = cBcqcG Area j . Note cG = maxx |∇ Ip(x)|1.
Note that R j0 is the template region while R j (q) is the
deformed region (See Fig. 3).

Proof See Appendix 2. 	


7 Analysis of the Algorithm

7.1 Global Convergence

As mentioned in Sect. 6.2, each iteration we reduce the error
by γ̄ . Therefore, the convergence is a natural consequence
from the intuition.

Theorem 4 (The global convergence theorem) If ‖p‖∞ ≤
r1 and r1/(1 − γ̄ ) ≤ cq , (where cq is defined in Theorem 3)
then the prediction p̂t satisfies:

‖p̂t − p‖∞ ≤ γ̄ t r1 (26)

As a result, the final prediction p̂T satisfies:

‖p̂T − p‖∞ ≤ γ̄ T r1 → 0 (27)

for a sufficiently deep hierarchy whose number of layer T →
+∞.

Proof First from the proof of Theorem 2, we can see the
prediction p̃ j given by j-th patch satisfies ‖p̃ j‖∞ ≤ rt for
j ∈ [t], since the prediction is picked from a hypercube
[−rt , rt ]2|S j |. Then, for the overall prediction p̂t at any layer
t , we have:

‖p̂t‖∞ =
∥
∥
∥
∥
∥

t−1∑

l=1

p̃l
∥
∥
∥
∥
∥

∞
≤

t−1∑

l=1

‖p̃l‖∞ ≤
t−1∑

l=1

rl ≤ r1
1 − γ̄

≤ cq

(28)

Then we prove the main result by induction. Suppose after
layer t is processed, the residue δpt ≡ p − p̂t satisfies:

‖δpt‖∞ ≤ rt+1 (29)

This is trivially true for t = 0 by the premise ‖p‖∞ ≤ r1 and
initialization of the algorithm p̂0 = 0. Now suppose Eq. 29
is correct for t − 1, then:
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– 1. By local pull-back inequality (Theorem 3), the bound
of current estimation p̂t (Eq. 28) and ‖δpt−1‖ ≤ rt , we
have:

‖I t (R j0) − Iδpt−1(R j0)‖
= ‖Itest(W (R j0; p̂t−1)) − Iδpt−1(R j0)‖
= ‖Itest(R j (p̂t−1)) − Iδpt−1(R j0)‖
≤ η j rt (30)

– 2. Since Eq. 30 together with the inductive hypothesis
‖δpt−1‖∞ ≤ rt satisfies the premise of Theorem 2, a
prediction p̃ j (S j ) from j-th patch yields:

‖p̃tj (S j ) − δpt−1(S j )‖∞ ≤ γ j rt (31)

– 3. From Eq. 31, we know for every landmark k:

‖p̃tj (k) − δpt−1(k)‖∞ ≤ γ j rt ∀k ∈ S j (32)

Then for every landmark k, the averaged prediction p̃(k)
over overlapping patch set S[k] = { j : j ∈ [t], k ∈ S j }
can also be bounded:

‖p̃t (k) − δpt−1(k)‖∞

=
∥
∥
∥
∥
∥
∥

⎛

⎝ 1

#S[k]
∑

j∈S[k]
p̂tj (k)

⎞

⎠ − δpt−1(k)

∥
∥
∥
∥
∥
∥∞

≤ 1

#S[k]
∑

j∈S[k]
‖p̂tj (k) − δpt−1(k)‖∞

≤ 1

#S[k]
∑

j∈S[k]
γ j rt ≤ γ̄ rt

– 4. Finally, the residue δpt after adding prediction p̃ of
layer t satisfy:

‖δpt‖∞ = ‖δpt−1 − p̃‖∞ ≤ γ̄ rt = rt+1 = γ̄ t r1 (33)

Therefore, Eq. 29 also holds for t . 	


7.2 The Number of Samples Needed

A natural question is, to achieve the condition of Theorem 4,
howmany samples are needed? Since the areas of patches, as
well as the number of landmarks |S|, decrease exponentially
by a factor of γ̄ 2 from top to bottom, the number of samples
needed, exponential to the degrees of freedom min(2|S|, d)

by Observation 1, stays the same until 2|S| ≈ d, and then
goes down double-exponentially. Therefore, by adding them
up, the top level samples dominate. The following theorem
makes the intuition rigid:

Theorem 5 (The number of samples needed) The total
number N of samples needed is bounded by:

N ≤ C3C
d
1 + C2 log1/γ̄ 1/ε (34)

where C1 = 1/min j α j ,C2 = 21/(1−γ̄ 2) and C3 = 2 +
cSS(� 1

2 log1/γ̄ 2|S|/d�+1). See Appendix 3 for the definition
of css .

Proof We divide our analysis into two cases: d = 2|S| and
d < 2|S|, where |S| is the number of landmarks. d > 2|S| is
not possible because of over-parameterization.

Case 1: d = 2|S|
First let us consider the case that the intrinsic dimension-

ality of the deformation field d is just 2|S|. Then the root
dimensionality d1 = 2|S1| (twice the number of landmarks).
By Observation 1, the dimensionality dt for layer t is pro-
portional to 2|St | and thus:

dt = d1
r21

r2t = γ̄ 2t−2d1 (35)

since |S j | goes down with r2t . Let [t] be the set of all patch
indices in layer t . Any patch j ∈ [t] has the same degrees
of freedom since by Observation 1, d j only depends on |S j |,
which depends on r j , a constant over layer t .

For any patch j ∈ [t], from Theorem 2, N j training sam-
ples suffice to ensure the contracting factor is indeed at least
γ j ≤ γ̄ :

N j ≤
(

1

α j

)dt
(36)

Note for patch j , we only need the content within the region
R j0 as the training samples. Therefore, training samples of
different patches in this layer can be stitched together, yield-
ing samples that cover the entire image. For this reason, the
number Nt of training samples required for the layer t is:

Nt ≤ argmax
j∈[t] N j ≤ Cdt

1 = C γ̄ 2t−2d1
1 (37)

for C1 = 1/min j α j . Denote nt = C γ̄ 2t−2d1
1 . Then we have:

N ≤
T∑

t=1

Nt ≤
T∑

t=1

nt (38)

To bound this, just cut the summation into half. First, nt
is a decreasing function with respect to t ; second, the ratio
between nt and nt+1 has the following simple form:

nt
nt+1

= C γ̄ 2t−2d1
1

C γ̄ 2t d1
1

= C γ̄ 2t−2(1−γ̄ 2)d1
1 = n1−γ̄ 2

t (39)
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Given l > 1, set T0 so that

nT0
nT0+1

= n1−γ̄ 2

T0
≥ l,

nT0+1

nT0+2
= n1−γ̄ 2

T0+1 ≤ l (40)

This means that before T0, nt decreases faster than (1/ l)t ,
while after T0, nt decreases slower. Thus if we break the
summation into two terms:

T∑

t=1

nt =
T0∑

t=1

nt +
T∑

t=T0+1

nt (41)

Then the first is bounded by a geometric series:

T0∑

t=1

nt ≤ Cd1
1

T0∑

t=1

(
1

l

)t−1

≤ Cd1
1

1 − 1/ l
= l

l − 1
Cd1
1 (42)

On the other hand, since n1−γ̄ 2

T0+1 ≤ l, each item of the second

summation is less than l1/(1−γ̄ 2). We thus have:

T∑

t=T0+1

nt ≤ l1/(1−γ̄ 2)T (43)

Combining the two, we then have:

N ≤ l

l − 1
Cd1
1 + l

1
1−γ̄ 2 T (44)

for T = �log1/γ̄ 1/ε�. Note this bound holds for any l, e.g.
2. In this case, we have

N ≤ 2Cd1
1 + C2T (45)

for C2 = 2
1

1−γ̄ 2 .
Case 2: d < 2|S|
In this case, setting d1 = 2|S|, finding T1 so that dT1 ≥ d

but dT1+1 < d in Eq. 35, yielding:

T1 =
⌈
1

2
log1/γ̄ 2|S|/d

⌉

+ 1 (46)

Then, byObservation 1, from layer 1 to layer T1, their dimen-
sionality is at most d. For any layer between 1 and T1, Nt is
bounded by a constant number:

Nt ≤ cssC
d
1 (47)

The analysis of the layers from T1 to T follow Case 1, except
that we have d as the starting dimension rather than 2|S|.
Thus, from Eq. 45, the total number of samples needed is:

N ≤ (T1css + 2)Cd
1 + C2T (48)

	


8 Empirical Upper Bounds for Images

Given a specific template and a specific family of defor-
mation, we can generate many deformed images and their
parameters (pi , Ipi ), compute all-pair image/parameter dis-
tances {Δpi ,ΔIi } and estimate the monotonous curve γ =
γ (α) like Fig. 4. This curve can help predict the theo-
retical difficulties of images for deformation estimation.
For simplicity, we set a constant and convergent contrac-
tion factor γ̄ = 0.95 and compute the largest α0.95 =
γ −1(0.95). Therefore, simple images have high α0.95, indi-
cating low sample complexity per dimension (1/α0.95), and
vice versa.

We randomly generate 1000 deformed samples and com-
pute all-pair distances. The deformation is 2D translation
and in-plane rotation (d = 3) up to ±π/8. We propose
Algorithm 1 which only costs O(M logM) to compute the
curve γ = γ (α), while brute-force search costs O(M3). See
Appendix 1 for correctness proof.

Figure. 9 shows each template and its N1 ≡ 1/α0.95.
We can clearly see that images with a salient object and
uniform background requires fewer samples, while images
with repetitive patterns and cluttered backgrounds require
more. In contrast, N2 ≡ L2/γ L1, as suggested in Tian
and Narasimhan (2012), is much higher in both cases.
Note that N1 and N2 are comparable quantities. They
both specify the number of samples needed per dimen-
sion for nearest neighbor to reduce the prediction error by
γ̄ .

With regard to the total sample complexity N , Theo-
rem 2 states that for easy images, N1 = 1/α0.95 ≈ 5
and N ≈ [5 · (2 + √

2)]4 = 84926 (See Appendix 3 for
details), while for hard images, 1/α0.95 ≈ 12 and N ≈
[12 · (2 + √

2)]4 = 2817654. Although in practice N may
be much smaller, the theoretical upper bound gives a sense
of difficulty levels of images.

9 Experiments on Simulated Data

9.1 Degree of Freedom of a Patch

We start with verification of Observation 1 that specifies the
relationship between the size of patch and the deformation
degrees of freedom.Figure 10 shows that deformationdimen-
sionality is indeed quadratically related to the patch size,
coincides with the observation. Here the deformation field
is generated from multi-variate Gaussian distribution with
correlation matrix Σx,x′ as follows:

Σx,x′ = exp

(

−‖x − x‖2
2σ 2

)

(49)
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(a)

(b)

Fig. 9 Exemplar images and the theoretical bounds for the number of
samples needed per dimension. For each bracket, N1 = 1/α0.95 is our
sample complexity bound per dimension, while N2 = L2/γ̄ L1 is from
data-driven descent (γ̄ = 0.95). N1 and N2 are comparable quantities
that both specify the number of samples required per dimension for

nearest neighbor to reduce the prediction error by γ̄ . Top row Images
with a salient object and clean background require only a few samples
per dimension.Bottom row Images with repetitive patterns requiremore
samples per dimension. In both cases, our bound is smaller than that
given by data-driven descent

Fig. 10 Verification of the
quadratic relationship between
patch size and dimensionality of
the deformation field W (x) − x.
a, b Weakly and strongly
correlated deformation field,
generated by Gaussian
distribution with spatially
correlated covariance matrices.
c The dimension of deformation
field within the patch indeed
grows quadratically with respect
to the size of patch
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where σ specifies the smoothness of the deformation field
(larger σ gives spatially smoother deformation). To esti-
mate dimensionality, we perform a SVD on 1000 patches
of deformation field, and find the number of dimensions
whose singular values sum up to 90 % of the total summa-
tion.

Figure 10 shows that a weakly-coupled deformation field
has higher dimensionality, while a strongly-coupled one
has lower dimensionality. In both cases, the dimensionality
grows quadratically with respect to the patch side, or linearly
with respect to the patch area.

9.2 Convergence Behavior

Now we show our algorithm works well for synthetic data.
Our approach adopts a hierarchical structure using a grid of
256 landmarks with γ̄ = 0.7 and T = 8 layers. We start
from using the entire image for prediction and then reduce
the patch size by γ̄ for the next layer. Once the patch size
is reduced, we thus find the subset S j of landmarks that are

inside the patches. This procedure is performed recursively
until each patch only covers a single landmark. Once the
patch arrangements are done, training follows. Since we use
nearest neighbor approach, training is essentially to extract
deformed patch samples from the template. We use global
affine transform plus Thin-Plate Spline (Bookstein 1989) as
bases functions with proper normalization. While our theory
gives an upper bound of the sample complexity, practically
350 training samples over all layers suffice for good perfor-
mance.

We artificially distorted 100 imageswith a 20-dimensional
global warping field specified in Tian and Narasimhan
(2012). For each image, its 10 distorted versions are gener-
ated with groundtruth random parameters. We thus compare
the estimation from Tian and Narasimhan (2012) and from
our approach based on groundtruth.

Figure 11 shows the performance comparison. Our algo-
rithm obtains much better performance and lower variance
compared to DDD with the same number of training sam-
ples. Note that the strong drop in error shows that our method
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Fig. 11 Performance of the proposed algorithm. Left Performance
comparison with data-driven descent (Tian and Narasimhan 2012).
Accuracy of our approach increases much faster than Tian and
Narasimhan (2012) with the same number of samples. To obtain the

same level of accuracy of our approach with 400 samples, (Tian and
Narasimhan 2012) requires 10,000 samples or more. Our approach also
has lower variance in performance. Right Convergence behavior of our
approach with different number of training samples

11.50 5.08 3.74
Initialization Iteration 5 Final resultTest image

Fig. 12 Demonstration of the iterative procedure of our algorithm.
Starting from initialization, the algorithm applies predictors of different
layers to estimate the landmark locations. Numbers on top show RMS
errors

achieves high accuracy by adding very few samples once it
starts to work. This coincides with our sample complexity
O(Cd

1 + C2 log 1/ε) and Fig. 1.

9.3 Deformation Estimation on Repetitive Patterns

We further test our approach on synthetic data containing
distorted repetitive patterns (Fig. 12), and compare it with
previous methods. From an undistorted template (240-by-
240), we generate a dataset of 200 distorted images, each
with labeled 49 points. The deformation field is created by
random Gaussian noise without temporal continuity.

The overall degree of freedom for this dataset is very high
(50 dimensions are needed to achieve<1pixel reconstruction
error). It is in general impossible to have a sufficient number
of samples for global optimality conditions to be satisfied.
However, practically our method still works well.

We compare our approach to the following previous
methods: Lucas–Kanade (LK) (Lucas and Kanade 1981;
Baker andMatthews 2004), data-driven descent (DDD) (Tian
and Narasimhan 2012), free-form registration (FF) (Rueck-
ert et al. 1999; Tan et al. 2014), explicit shape regression
(ESR) (Cao et al. 2012) and SIFT matching with out-
lier removal using RANSAC (SR) (Lowe 2004). LK and
DDD use a locally parametric deformation model. LK uses

Table 2 Performance comparison of different approaches, including
Lucas–Kanade (LK) (Lucas and Kanade 1981; Baker and Matthews
2004), data-driven descent (TN) (Tian and Narasimhan 2012), Free-
form registration (FF) (Rueckert et al. 1999), Explicit Shape Regression
(ESR) (Cao et al. 2012) and SIFT matching with outlier removal using
RANSAC (SR) (Lowe 2004).

LK TN ESR FF SR Ours

RMS 14.79 6.44 8.98 7.29 98.94 5.63

Sec/frame 11 77 0.012 35 1.25 0.10

Ours is the best performer and second best in time cost per frame

local affine bases of size 100-by-100, and DDD uses a
20-dimensional smooth bases of size 57-by-40 (Tian and
Narasimhan 2012). LK, FF and DDD compute dense defor-
mations. Our hierarchy outputs 256 predicted landmarks on
a regular grid. In all cases, estimated deformations are inter-
polated into 49 landmark locations for a fair comparison. The
KLT tracker (Lucas and Kanade 1981; Shi and Tomasi 1994)
requires temporal information and will be compared in the
real video sequence.

For one image, the RMS error is computed between the
estimated landmark locations p̂ and groundtruth locations p

as RMS =
√

1
K

∑K
i=1 ‖p(i) − p̂(i)‖2. For multiple images,

averaged RMS is reported.
Table 2 compares the performance. Due to repetitive pat-

terns, previous approaches fail to estimate the landmarks
correctly. SIFT matching fails completely. The prediction of
ESR is restricted to be on the linear shape subspace spanned
by the training samples. Thus, it is insufficient to use the
template to capture the subspace of a complex deformation
field. LK and FF are stuck in local maxima despite their
coarse-to-fine implementations. Our approach obtains the
best performance. Figure 12 shows the progression of our
algorithm. In terms of speed, our approach is the second best
only to ESR, which uses a fast boosting framework.
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Table 3 Performance on synthetic data if the first L layer of predictors
are switched off, showing the bottom layers play a critical role for
performance

L 0 1 2 3 4 5 6

RMS 5.63 5.20 5.14 5.83 6.72 7.95 8.74

3.74 9.31 10.88 11.19
layer 1-3 off layer 1-5 off layer 1-6 offUse all layers

Fig. 13 Performance changes if the first K layers are switched off.
When more layers are switched off, the algorithm is unable to iden-
tify global deformation and is essentially the same as local template
matching at each landmark

9.4 Influence of Multiple Layers

It is interesting to see how the performance changes if we
switch off the first L layers of predictors.As shown inTable 3,
the first two layers have less contribution on the performance
than the rest of the layers. On the other hand, the lower 6 lay-
ers indeed help the performance. Figure 13 demonstrates how
prediction from coarse layers (large patch) help the lower
layer (small patch) find correct correspondences in repetitive
patterns, justifying the hierarchy.

10 Real Experiments

We also apply our framework to real world scenarios such as
water distortion, cloth deformation and registration of med-
ical images. For real experiments, we still use γ̄ = 0.7 and
T = 8.However, the number of landmarksmight be different
for different video sequences, depending on their dimensions
and aspect ratios. In Fig. 14, contour tracking is achieved
by interpolating contour points from frame correspondences,
while the contour of the first frame is manually labeled. In
Fig. 15, the tracked mesh is shown.

The three water distortion sequences (Row 1–2 in Fig. 14,
Row 1 in Fig. 15) and one cloth sequence (Row 3 in Fig. 14)
are from Tian and Narasimhan (2012). Two cloth sequences
(Row 2–3 in Fig. 15) are from Taylor et al. (2010) and Moll
and Gool (2012). The medical sequence of cardiac magnetic
resonance images (4th row in Fig. 14) is from Zhang et al.
(2012). We also captured our own cloth sequence (Fig. 14),
5th row.

For the sequences on the 4th row of Fig. 14 and the 1st row
of Fig. 15, we use temporal information by adding training
samples generated from estimation of the previous frame.

These additional training samples help capture the drifting
appearance of the object/scene over time. This procedure
slows down the processing to 0.3–0.5 fps, yet is still faster
than previous approaches. For other sequences, our algorithm
runs at around 3–4 fps. Note that our method success-
fully estimates the deformations. In comparison, SIFT with
RANSAC only obtains a sparse set of distinctive matches,
not enough for estimating a nonrigid deformation (even if
we are using Thin-Plate Spline). Data-driven descent can
capture detailed local deformations but not global shifts of
the cloth without modeling the relationship between local
patches. KLT trackers lose the target quickly and localize
contour inaccurately.

We also quantitatively measure the landmark localization
error using the densely labeled dataset provided in Tian and
Narasimhan (2012), which contains 30 labeled frames, each
with 232 landmarks. In terms of RMS, LK gives 5.20, FF
gives 3.93, DDD gives 2.51 while our approach gives 3.29.
Our framework is only second toDDD,which ismuch slower.
The reason why the proposed approach is worse than DDD
in this particular dataset is three-fold. First, the groundtruth
landmarks of this dataset are not on a regular grid (but on
the corners), so we first place a regular grid, estimate the
deformation field on the grid and then interpolate back to the
groundtruth landmarks. As a result, interpolation errors may
be introduced. Also, since the datasets are text underwater,
there are quite a few uniform regions and landmarks on the
regular grid might not correspond to any locally distinctive
features. Finally, we stop the construction of hierarchy when
each patch only covers one landmark. Although it is good
for landmark prediction, local deformation happening close
to the landmarks might still not be estimated accurately.

We have tested our algorithm on existing datasets of
deformable objects proposed by Salzmann et al. (2007,
2008). Although no ground-truth is available, our perfor-
mance is close to their published results. For example,
we achieve 4.10 mean pixel distance difference in cush-
ion video (Salzmann et al. 2007) and 4.43 in bed-sheet
video (Salzmann et al. 2008). All video sequences are 404-
by-504.

10.1 A Comparison with PatchMatch

We also compare our approach with PatchMatch (Barnes
et al. 2009) using the official coarse-to-fine implementation2.
PatchMatch is a randomized algorithm that finds dense cor-
respondences between two images. Starting with a random
guess, in each iteration correspondences are propagated to
local neighbors until convergence. The intuition is that in
each random guess, with high probability a few matches are

2 Please check http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/
index.php for their source code.
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Sample Frame Our approach Data-Driven Descent KLT SIFT+RANSACTemplate

Fig. 14 Example contour localization results given by our approach,
data-driven descent (Tian and Narasimhan 2012), KLT (Lucas and
Kanade 1981; Shi and Tomasi 1994), and SIFT matching with
RANSAC (Lowe 2004). Each row is a video sequence, two from under-
water imaging, two from cloth deformation and the final one is from

medical imaging. For each dataset, one sample frame is shown. The
contours are drawn manually for the template image (1st column), and
are transferred to every video frame after the correspondencewas found.
Our approach is stable and better than other approaches. (Best viewed
in color)

Sample Frame Our approach Data-Driven Descent KLT FF SIFT+RANSAC

Fig. 15 Example dense correspondence results given by our approach, data-driven descent, KLT, free-form registration and SIFT matching with
RANSAC. Each row is a video, two from cloth deformation and one from underwater imaging. The mesh is a regular grid on the template
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Frame 23Frame 10

Frame 10 Frame 60

Template

Template

PatchMatch

PatchMatch

Our approach

Our approach

PatchMatch Our approach

PatchMatch Our approach

Fig. 16 Comparisonwith PatchMatch (Barnes et al. 2009) inwater dis-
tortion and cloth deformation. Column 1 (and 4) shows the deformed
image and Column 2 and 3 (or 5 and 6) show the x component of warp-
ing field W (x) given by PatchMatch and our approach, respectively.

PatchMatch gives roughly the correct estimation. However, details are
not estimated correctly due to repetitive patterns, as illustrated by the
discontinuous boundaries.On the other hand, our approach gives amuch
smoother solution

ΔI/r

Δp/rα γ

A
Γ

ΔI/r

Δp/r

ΔI/r

Δp/r

ΔI/r

Δp/r

(a) (b) (c) (d)

Fig. 17 Failure cases of relaxed Lipschitz conditions. a Relaxed Lipschitz conditions (Eqs. 10 and 11). b, c Failure cases, when Δp is large (or
small), there is no correlation between ΔI and Δp. d By restricting the parameter difference within some range, again the Relaxed Lipschitz
Condition can be used

correct. These correct matches will gradually propagate to
the entire image. To alleviate local maxima issues, corre-
spondences computed in the coarse level are thus used as an
initialization for the finer level, also in each iteration there is
a random search procedure that allows correspondences to
take a big step.

Figure 16 illustrates the warping field W (x) estimated
fromPatchMatch and fromour approach on deforming repet-
itive patterns. PatchMatch successfully estimates the global
deformation, but fails to correct matches between a local pat-
tern and a spatially incorrect but similar local pattern. Also
randomsearch does not help.On the other hand, our approach
gives smooth and consistent matches.

11 Limitations and Future Work

The relaxed Lipschitz condition is very general. It captures
the characteristics of a large range of relationships, no matter
it is linear or not, it is a mapping or not. However, there are
still mappings that cannot be model by the conditions. One
such example is illustrated in Fig. 17b: when the parame-
ter difference is smaller, the image difference is also small;

however, the image difference no longer makes sense when
the parameter difference is large. In this case, any legal tuple
(α, γ ) has γ > 1, and a NN predictor does not gives any
improvement over a trivial prediction. Indeed, the motiva-
tion of hierarchical structure in this paper, is to make sure
each NN predictor operates in the region that relaxed Lip-
schitz conditions make sense (Fig. 17d).

In this paper, all relaxed Lipschitz conditions are inde-
pendently assumed at each layer (Fig. 18a). Since all the
conditions are related to overlapping subsets of parameters
and subregions of images, these conditions themselves must
be related. For example, the 4-tuple (α j , γ j , A j , Γ j ) at patch
j may be a function of the 4-tuple at its children. Such a rela-
tionship leads to a reduction of the number of assumptions
(Fig. 18b). In its extreme, it might be the case that all such
conditions on the higher level can be derived from the con-
dition in the lowest level.

Second, instead of using just image pyramid as in this
paper, we may learn to build the image representations for
each layer to make Lipschitz conditions better. The relaxed
Lipschitz conditions resemble the optimization goal for dis-
tance learning and locality sensitive hashing. Therefore, it
may be possible to find better image representations or bet-
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(a) (b) (c) (d)

Fig. 18 Current work and possible extensions. a This work indepen-
dently assumes Lipschitz conditions at each layer. b Since all conditions
are related to sub-region of deformed image and subset of its control
points, there is a relationship between conditions of different layers.

c Instead of using image pyramid, we learn representations from the
data to optimize the conditions. d Layer-by-layer construction of repre-
sentations achieves both (b, c). Relationships are established between
consecutive layers, and representation can be tuned with data

ter distance metric on image appearance to maximize the
gap between Lipschitz constants α and γ , and thus make
deformation estimation easier with substantial fewer sam-
ples (Fig. 18c).

Even further, if we use the representation at layer t to com-
pute the representation of the higher layer t − 1, then layers
are now explicitly connected and their Lipschitz conditions
are directly related. This architecture (Fig. 18d) naturally
combines the previous two cases (Fig. 18b, c) and resem-
bles Deep Learning structures (e.g. Krizhevsky et al. 2012).
It would be interesting to explore the theoretical properties
suggested by Lipschitz conditions, and find theorems that
show the efficiency and effectiveness of deep structures.

This hierarchy works if the degrees of freedom are evenly
distributed in the image. If most degrees of freedom are
concentrated within a small region of the image, then this
hierarchymaynot reduce thenumber of samples needed.This
might not happen for smooth deformation on textured tem-
plate, however for irregular deformation where some regions
carry deformations of substantially high frequency than other
regions, a set of non-uniformly distributed landmarksmay be
needed.

This paper mainly addresses the estimation of 2D defor-
mation. The theory can be applied to 3D deformations with
self occlusions, however the associated complicated genera-
tive model may require accurate rendering tools for training
data synthesis.

For 3D deformation with self-occlusion and substantial
viewpoint changes, substantial works need to be done. Also,
we assume that the training distribution be specific so that
theoretical assertions can be made. When we only have
arbitrarily distributed training samples and no deformation
model, as a future work, a learning algorithm should be
designed to construct the hierarchical model automatically.

12 Conclusion

In this paper, we propose a novel hierarchical framework
that systematically explains how the coarse-to-fine approach

works in image deformation estimation. Based on our find-
ing, we construct an algorithm that achieve worst-case
guarantees for nonrigid deformation estimation, which from
optimization point of view, is nonlinear, high-dimensional
and non-convex. Compared to previous work (Tian and
Narasimhan 2012), the sample complexity of our approach is
O(Cd

1 +C2 log 1/ε), substantially smaller than that required
for brute-force nearest neighbor (O(1/εd)) and also data-
driven descent (Tian andNarasimhan 2012) (O(Cd log 1/ε))
that does not take hierarchy into consideration. To achieve
this goal, we propose relaxed Lipschitz conditions (Eqs. 10
and 11) at each patch and each level of hierarchy, which is
weaker and more general compared to the global Lipschitz
conditions.

Practically, unlike previous approaches (Beauchemin and
Barron 1995; Barnes et al. 2009, 2010), ours does need
training samples to build a hierarchical model. However,
the training samples can be generated from the template and
its specific deformation model, enabling the algorithm to be
used for finding correspondenceof two images.Wehavedone
extensive experiments on real and synthetic data to verify our
framework.
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Appendix 1: Correctness of Algorithm 1

Without loss of generality and for notation simplicity, we
omit the subscript j and set r j = 1. We first define the fol-
lowing quantities:

Definition 1 (Allowable set of A and Γ ) Given α, allowable
set Ã(α) is defined as:

Ã(α) = {A : ∀l Δpl ≤ α �⇒ ΔIl ≤ A} (50)

Intuitively, Ã(α) captures all plausible As that satisfy Eq. 10
for a given α. Similarly, given γ , the allowable set Γ̃ (γ ) is
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defined as:

Γ̃ (γ ) = {Γ : ∀l Δpl ≥ γ �⇒ ΔIl ≥ Γ } (51)

Intuitively, Γ̃ (γ ) captures all plausibleΓ s that satisfy Eq. 11.

The two allowable sets have the following properties:

Lemma 1 If α′ > α, then Ã(α′) ⊂ Ã(α). Similarly, if γ ′ <

γ , then Γ̃ (γ ′) ⊂ Γ̃ (γ ).

Proof The proof is simply by definition of the two sets. 	

Then we proceed to analyze the two arrays ΔI+

m =
max1≤l≤m ΔIl and ΔI−

m = minm≤l≤M ΔIl constructed in
Algorithm 1.

Lemma 2 (Properties of ΔI+ and ΔI− ) The two arrays
ΔI+ andΔI− constructed in Algorithm 1 are monotonously
increasing functions with respect to m, and ΔI−

m ≤ ΔI+
m for

every 1 ≤ m ≤ M (Fig. 6b). Moreover, we have:

ΔI+
m = min Ã(Δpm) (52)

ΔI−
m = max Γ̃ (Δpm) (53)

Proof Both ΔI+
m and ΔI−

m are monotonously increasing
since when m increases, ΔI+

m is the maximal value over a
larger set and ΔI−

m is the minimal value over a smaller set.
Also ΔI−

m ≤ ΔIm ≤ ΔI+
m .

Prove ΔI+
m ∈ + Ã(Δpm): For any Δpl ≤ Δpm , since the

list {Δpm} was ordered, we have l ≤ m. By the definition of
ΔI+

m , we have ΔIl ≤ ΔI+
m . Thus ΔI+

m ∈ Ã(Δpm).
Prove A ∈ Ã(Δpm),ΔI+

m ≤ A: For any 1 ≤ l ≤ m,
since Δpl ≤ Δpm , by the definition of A, we have ΔIl ≤ A,
and thus ΔI+

m = max1≤l≤m ΔIl ≤ A.
Therefore, ΔI+

m = min Ã(Δpm). Similarly we can prove
ΔI−

m = max Γ̃ (Δpm). 	

Theorem 6 For each m and α = Δpm, Algorithm 1 always
gives the globally optimal solution to the following linear
programming:

min γ (54)

s.t. A ∈ Ã(α)) (55)

Γ ∈ Γ̃ (γ )) (56)

A + 2η < Γ (57)

which has at least one feasible solution (A → +∞, γ →
−∞, Γ → −∞) for any α.

Proof (a) First we prove every solution given byAlgorithm 1
is a feasible solution to the optimization (Eq. 54). Indeed, for
any α = Δpm , according to Lemma 2, If we set the solution
to be the output of Algorithm 1:

(α, γ, A, Γ ) = (Δpm,Δpl∗ ,ΔI+
m ,ΔI−

l∗ ) (58)

Then since A = ΔI+
m ∈ Ã(α) and Γ = ΔI−

l∗ ∈ Γ̃ (γ ),
such a tuple satisfies Eqs. 55 and 56. From the construction
of Algorithm 1, A + 2η < Γ . Thus, Algorithm 1 gives a
feasible solution to Eq. 54.

(b) Then we prove Algorithm 1 gives the optimal solution.
Suppose there is a better solution (α, γ ′, A′, Γ ′). Obviously
A′ = A = min Ã(α). Note that any optimal solution of γ

must align with some Δpl . If there exists l ′ < l∗ so that
γ ′ = Δpl ′ < Δpl∗ = γ is part of a better solution, then we
have:

A′ + 2η < Γ ′ ≤ max Γ̃ (γ ′) ≤ max Γ̃ (γ ) = ΔI−
l∗ (59)

Therefore, we have ΔI−
l ′ = max Γ̃ (γ ′) ≤ max Γ̃ (γ ) =

ΔI−
l∗ . Since ΔI−

l ′ ≤ ΔI−
l∗ , there are two cases:

– A ≤ ΔI+
m + 2η < ΔI−

l ′ < ΔI−
l∗ . This is not possible

since the algorithm searching from m will stop at the
minimal l∗ that satisfies ΔI+

m + 2η < ΔI−
l∗ .

– A ≤ ΔI+
m + 2η < ΔI−

l ′ = ΔI−
l∗ . Then according to the

algorithm and monotonicity of ΔI−, l ′ = l∗.

There fore, l ′ = l∗ and (α, γ ′, A′, Γ ′) is given by Algo-
rithm 1. 	


From Theorem 6, for every α, Algorithm 1 always outputs
the smallest γ that satisfies the Relaxed Lipschitz Conditions
(Eqs. 10 and 11). Therefore, it outputs the curve γ = γ ∗(α).

Appendix 2: Local Pullback Operation

Similar to pull-back operation introduced in data-driven
descent (Tian and Narasimhan 2012), we can also introduce
local pull-back operation:

I (R j (q)) ≡ I (W (R j0;q)) (60)

In particular, for deformed image Iq and the moving region
R j = R j (q), we have

Iq(R j (q)) = Iq(W (R j0;q)) = I0(R j0) (61)

which gives back the template content. Similar to pull-
back inequality, we also have the following local pull-back
inequality:

Theorem 7 For jth patch with template region R j0 and
radius r j , if ‖p − q‖∞ ≤ r j and ‖q‖∞ ≤ cq , then

‖Ip(R j (q)) − Ip−q(R j0)‖ ≤ η j r j (62)
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where η j = cBcqcG Area j . Note cG = maxx |∇ Ip(x)|1 and
cB is a smoothness constant so that:

‖(B(x) − B(y))p‖∞ ≤ cB‖x − y‖∞‖p‖∞ (63)

To prove this, we start with the following lemma.

Lemma 3 (Unity bound) For any x and any p, we have
‖B(x)p‖∞ ≤ ‖p‖∞.

Proof

‖B(x)p‖∞ = max
x

{
∑

i

bi (x)px (i),
∑

i

bi (x)py(i)

}

≤ max

{

max
i

|px (i)|
∑

i

bi (x),max
i

|py(i)|
∑

i

bi (x)

}

= ‖p‖∞ (64)

using the fact that
∑

i bi (x) = 1 and bi (x) ≥ 0 for any x. 	

We now show Theorem 7 is correct.

Proof For any y ∈ R j0, by definitions of Eqs. 60 and 1, we
have:

Ip(R j (q))(y) = Ip(W (y;q)) (65)

Ip−q(y) = T (W−1(y;p − q))

= Ip(W (W−1(y;p − q),p)) (66)

Now we need to check the pixel distance between u =
W (y;q) and v = W (W−1(y;p − q),p). Note that both
are pixel locations on distorted image Ip. If we can bound
‖u − v‖∞, then from Ip’s appearance, we can obtain the
bound for |Ip(R j (q))(y) − Ip−q(y)|.

Denote z = W−1(y;p − q) which is a pixel on the tem-
plate. By definition we have:

y = W (z;p − q) = z + B(z)(p − q) (67)

then by Lemma 3 we have:

‖y − z‖∞ = ‖B(z)(p − q)‖∞ ≤ ‖p − q‖∞ ≤ r j (68)

On the other hand, the difference between u and v has the
following simple form:

u − v = W (y,q) − W (z,p) = y + B(y)q − z − B(z)p

(69)

= B(z)(p − q) − B(z)p + B(y)q = (B(y) − B(z))q

(70)

Thus, by the definition of cB (Eq. 63), we have:

‖u − v‖∞ ≤ cB‖y − z‖∞‖q‖∞ ≤ (cB‖q‖∞)r j (71)

Thus:

|Ip(R j (q))(y) − Ip−q(y)|
= |Ip(W (y;q)) − Ip(W (W−1(y;p − q),p))|
= |Ip(u) − Ip(v)| (72)

≤ |∇ Ip(ξ)|1‖u − v‖∞ ≤ cB |∇ Ip(ξ)|1‖q‖∞r j (73)

where ξ lies on the line segment connecting u and v. Col-
lecting Eq. 73 over the entire region R j (p) gives the bound.
	

Practically, η j is very small and can be neglected.

From Eq. 60, there is a relationship between the (global)
pull-back operation H(I,q) ≡ I (W (x;p)) defined in Tian
and Narasimhan (2012) and the local pull-back operation
I (R j (q)):

H(I,q)(R j0) = I (W (R j0;p)) = I (R j (q)) (74)

Therefore, to compute I (R j (q)) for all patches, just compute
the global pull-back image H(I,q) once and extract region
R j0 for every j-th patch on the pulled-back image.

Appendix 3: Sampling in High-dimensional
Subspace

Here we show how to count the number of ε-ball required
(i.e., sample complexity) to cover a hypercube [−r, r ]D in
a D-dimensional parameter space. Then we discuss how to
compute sample complexity if the parameters are on a d-
dimensional subspace within the hypercube. Both cases are
shown in Fig. 19.

Covering a D-dimensional Space

Lemma 4 (Sampling theorem, sufficient conditions) With
�1/α�D number of samples (α < 1), for any p in the hyper-
cube [−r, r ]D, there exists at least one sample p̂ so that
‖p̂ − p‖∞ ≤ αr .

Proof A uniform distribution of the training samples within
the hypercube suffices. In particular, let

n =
⌈
1

α

⌉

(75)

Thus we have 1/n = 1/�1/α� ≤ 1/(1/α) = α. For every
multi-index (i1, i2, . . . , iD) with 1 ≤ ik ≤ n, we put one
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(a) (b) (c)

Fig. 19 Sampling strategies in D-dimensional space. a Uniform sam-
pling within a hypercube [−r, r ]D so that for any p(S) ∈ [−r, r ]2|S|,
there exists at least one training sample that is αr close to p(S). b If

d < D, then just sampling the subspace within the hypercube suffices.
c Uniform sampling per dimension (See Lemma 4)

training sample on D-dimensional coordinates:

p̂i1,i2,...,id = r

[

−1 + 2i1 − 1

n
,−1

+2i2 − 1

n
, . . . ,−1 + 2iD − 1

n

]

(76)

Therefore, along each dimension, the first sample is r/n dis-
tance away from−r , then the second sample is 2r/n distance
to the first sample, until the last sample that is r/n dis-
tance away from the boundary r (Fig. 19c). Then for any
p ∈ [−r, r ]D , there exists ik so that
∣
∣
∣
∣p(k) − r

(

−1 + 2ik − 1

n

)∣
∣
∣
∣ ≤ 1

n
r ≤ αr (77)

This holds for 1 ≤ k ≤ D. As a result, we have

‖p − p̂i1,i2,...,iD‖∞ ≤ αr (78)

and the total number of samples needed is nD = �1/α�D . 	


Covering a Manifold in D-dimensional Space

Nowweconsider the case thatp lies on amanifoldM embed-
ded in D-dimensional space. This means that there exists a
function f (linear or nonlinear) so that for every p on the
manifold and within the hypercube [−r, r ]D , there exists
a d-dimensional vector v ∈ [−r, r ]d with p = f (v). For
example, this happens if we use over-complete local bases to
represent the deformation. Note that the function f is onto:

(
[−r, r ]D ∩ M

)
⊂ f ([−r, r ]d) (79)

In this case, we do not need to fill the entire hyper-
cube [−r, r ]D , but rather fill the d-dimensional hypercube

[−r, r ]d , which requires the number of samples to be expo-
nential with respect to only d rather than D. To prove this, we
first define the expanding factor c regarding to the mapping:

Definition 2 (Expanding f actorc ) The expanding factor
c for a mapping f is defined as:

c ≡ sup
v1,v2∈[−r,r ]d

‖ f (v1) − f (v2)‖∞
‖v1 − v2‖∞

(80)

We thus have the following sampling theorem for defor-
mation parameters p on a manifold:

Theorem 8 (Sampling theorem, sufficient condition in the
manifold case) With cSS�1/α�d samples distributed in the
hypercube [−r, r ]d , for any p ∈ M, there exists at least one
sample p̂ = f (v̂) so that ‖p̂− p‖∞ ≤ αr . Note cSS = �c�d .
Proof We first apply Theorem 4 to the hypercube [−r, r ]d .
Then with � c

α
�d samples, for any v ∈ [−r, r ]d , there exists a

training sample v(i) so that

‖v − v(i)‖∞ ≤ αr

c
(81)

We then build the training samples {p(i)} by setting p(i) =
f (v(i)). For any p ∈ [−r, r ]D , there exists an v ∈ [−r, r ]d
so that p = f (v). By the sampling procedure, there exists
v(i) so that ‖v − v(i)‖∞ ≤ α

c r , and therefore:

‖p − p(i)‖∞ ≤ c‖v − v(i)‖∞ ≤ αr (82)

setting p̂ = p(i) thus suffices. Finally, since �ab� ≤ �a��b�,
we have:

⌈ c

α

⌉d ≤ �c�d
⌈
1

α

⌉d

(83)

and the conclusion follows. 	


123



66 Int J Comput Vis (2015) 115:44–67

p(top left) p(top right)

p(bottom right)p(bottom left)

p(k) =
4

j=1

akjp(j)
k

p(center)

p(corner)

r, θ

(a) (b)

Fig. 20 Finding (meta)-control points to parameterize the deformation
manifold. aAffine deformation within a rectangle. The intrinsic dimen-
sion is 6 while we pick four points (d = 8) to represent the landmark
displacement with expanding factor c = 1. Note that picking just three

points will also characterize affine, but with a much larger expanding
factor c. b Deformation that includes translation and rotation. We pick
two points (d = 4), leading to an expanding factor c ≤ 2 + √

2

We can see from the proof that c plays a quite important
role for the number of samples needed. To make c smaller,
d is not necessarily the intrinsic dimension of the manifold,
but can be slightly more. Theorem 8 applies to any parame-
terization of the manifold M.

Let us compute c for some global deformation fields. For
example, an affine deformation field within a rectangle para-
meterized by D/2 landmarks is always 6-dimensional. To
make c smaller, we (meta)-parameterize the field by 4 meta
control points (d = 8) sitting at the four corner of the rec-
tangle (Fig. 20a). In this case, any landmark displacement
p(k) within this rectangle can be linearly represented by the
locations of four corners in a convex manner:

p(k) = Akv =
4∑

j=1

akjv( j) (84)

Here v is the concatenation of four deformation vectors
[p(top_left),p(bottom_left),p(top_right),p(bottom_right)]
from the four corners, 0 ≤ akj ≤ 1 and

∑
j ak j = 1. For any

p ∈ [−r, r ]D, v can be found by just picking up the defor-
mation of its four corners, and thus ‖v‖∞ ≤ r . Furthermore,
we have for v1, v2 ∈ [−r, r ]k :

‖p1 − p2‖∞ = ‖ f (v1) − f (v2)‖∞

≤ max
k

4∑

j=1

akj‖v1( j) − v2( j)‖∞ ≤ ‖v1 − v2‖∞ (85)

Therefore, c = 1. The reason why we pick four corners, is to
ensure allweights in linear combinations are between 0 and1.

Similarly, for 3-dimensional deformation with pure trans-
lation and rotation, as used in Sect. 8, we can just pick v as
the concatenation of two landmark displacements: the rota-
tion center p(center) and the corner point p(corner) whose
rest location is the most distant to the center than other land-
marks (Fig. 20b). Denote rcorner as the distance. For other

landmark displacement p(k) whose index k can be parame-
trized by polar coordinate (r, θ), we have:

p(r, θ) = p(center) + r

rcorner
R(θ)(p(corner) − p(center))

(86)

= (I d − r

rcorner
R(θ))p(center) + r

rcorner
R(θ)p(corner)

(87)

where I d is the identity matrix, R(θ) is the 2D rotational
matrix and rcorner is the distance between the rest location of
the center to that of the corner. Therefore, for two different
v1 and v2, since r ≤ rcorner, we have:

‖p1(r, θ) − p2(r, θ)‖∞

≤
∥
∥
∥
∥

(

I − r

rcorner
R(θ)

)

(p1(center) − p2(center))

∥
∥
∥
∥∞

+
∥
∥
∥
∥

r

rcorner
R(θ)(p1(corner) − p2(corner))

∥
∥
∥
∥∞

≤ 2‖p1(center) − p2(center))‖∞
+√

2‖p1(corner) − p2(corner))‖∞ (88)

≤ (2 + √
2)‖v1 − v2‖∞ (89)

since | cos(θ)| + | sin(θ)| ≤ √
2. Therefore,

‖p1 − p2‖∞ = max
r,θ

‖p1(r, θ) − p2(r, θ)‖∞

≤ (2 + √
2)‖v1 − v2‖∞ (90)

So c = 2 + √
2 ≤ 3.5. This constant is used in Sect. 8 to

compute the number of samples required by the theory.
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