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Abstract Image alignment in the presence of non-rigid dis-
tortions is a challenging task. Typically, this involves es-
timating the parameters of a dense deformation field that
warps a distorted image back to its undistorted template.
Generative approaches based on parameter optimization such
as Lucas-Kanade can get trapped within local minima. On
the other hand, discriminative approaches like nearest-
neighbor require a large number of training samples that
grows exponentially with respect to the dimension of the pa-
rameter space, and polynomially with the desired accuracy
1/ε. In this work, we develop a novel data-driven iterative
algorithm that combines the best of both generative and dis-
criminative approaches. For this, we introduce the notion of
a “pull-back” operation that enables us to predict the pa-
rameters of the test image using training samples that are
not in its neighborhood (not ε-close) in the parameter space.
We prove that our algorithm converges to the global opti-
mum using a significantly lower number of training samples
that grows only logarithmically with the desired accuracy.
We analyze the behavior of our algorithm extensively using
synthetic data and demonstrate successful results on experi-
ments with complex deformations due to water and clothing.

1 Introduction

Images that capture non-rigid deformations of objects such
as water, clothing and human bodies, exhibit complex dis-
tortions (Fig. 1). Aligning or registering such images de-
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Fig. 1 Typical distortions caused by water fluctuation, non-rigid cloth
deformation and optical scanning of old manuscripts. Recovering from
different types of distortion is important for water surface shape esti-
mation, 3D reconstruction of deforming cloth and digitization of an-
cient documents.

spite the distortions is an important goal in computer vision
that has implications for tracking and motion understanding,
object recognition, OCR and medical image analysis. Typi-
cally, given a distorted image Ip (e.g., of a scene observed
through an undulating water surface) and its template T (the
scene observed when the water is still), the task is to esti-
mate the parameters p of a distortion model that warps the
image back to the template1.

Most techniques for non-rigid image alignment can be
classified into three broad categories, i.e., feature-based, gen-
erative and discriminative approaches. Firstly, feature match-
ing techniques aim to match a set of sparse local features in
the distorted image with those in the template [16,15,20].
Then, the parameters of a distortion model are estimated
from the matchings. These methods work well when the di-
mension d of the parameter space is low (e.g., 6 for affine),
but often fail in the presence of repetitive textures or high di-
mensional non-rigid distortions. Secondly, template match-
ing techniques obtain dense correspondence between a dis-

1 Other works [34,14,6] use a set of distorted images or videos as
the input and compute distortions and/or the template.
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torted image and its template by minimizing a non-convex
objective function J(p̃) = ||Ip−Ip̃||2 using numerical meth-
ods [3] that often converge to local minima. Thirdly, dis-
criminative approaches [7,1] learn a mapping M that di-
rectly predicts the distortion parameters p of a distorted im-
age Ip. As a classical example, the nearest-neighbor (NN)
approach finds the neighbor closest to Ip and the neighbor’s
parameters are used as the prediction. Thus, with sufficient
training samples it is possible to obtain the globally optimal
solution. However, an enormous number of training sam-
ples O((1/ε)d) are needed to achieve an accuracy of 1/ε

(i.e., ||p̃ − p|| ≤ ε for prediction p̃ and true p), resulting in
inaccurate prediction for high-dimensional distortions. This
phenomenon, known as the curse of dimensionality, remains
even in more advanced machine learning techniques.

In this work, we develop a novel data-driven algorithm
that combines the best of the generative and discriminative
approaches for distortion estimation. Our algorithm adopts
an iterative strategy that successively warps back the dis-
torted test image towards the template until convergence.
Unlike many previous works, we prove under mild condi-
tions the algorithm always reduces the amount of distortion
of a test image by a constant factor in each iteration, and
thus converges to the global optimum. By the term global
optimum, we mean it returns the global optimum solution
p̃∗ = p of the minimization problem J(p̃) = ||Ip − Ip̃||2,
where || · || could be any norm in the image space. Further-
more, the number of training samplesN , if distributed prop-
erly, is O(Cd log 1/ε), which grows logarithmically with
respect to the accuracy 1/ε (Note C is independent of ε.).
More importantly, the dimension d is decoupled from the
accuracy 1/ε, breaking the curse of dimensionality.

The intuition behind this result is that two distorted im-
ages with very different distortion parameters still can share
a large portion of the image content (albeit with different
permutations of pixels) and can help each other in predic-
tion. Using such training samples that are far away from the
test sample enables our algorithm to achieve the same ac-
curacy with much fewer samples compared to the nearest-
neighbor case.

Our framework can be applied to a broad class of 2D
image distortions including affine warps, and more complex
spatially nonlinear distortion (e.g. water and cloth deforma-
tion). In particular, our framework does not require the warp-
ing family to form a group, hence has fewer restrictions than
previous works [10,2,18,35] that use a similar “warp-back”
strategy.

We have extensively analyzed the performance of our
algorithm using synthetic experiments. Our theoretical anal-

ysis makes certain assumptions: (a) the form of the distor-
tion model is known a priori, the mapping M from the dis-
torted images to the parameters is one-to-one, and the train-
ing samples can be accurately generated from the template;
(b) the occlusions caused by distortions (e.g. cloth folding)
are negligible, (c) the artifacts of the imaging process such
as aliasing, motion blur and defocus arising due to scene
deformations are negligible. In practice, these restrictions
are not severe — our algorithm is still able to demonstrate
strong results on real experiments with complex deforma-
tions due to water fluctuation and cloth deformation, out-
performing several existing methods [34,23]. In the future,
we will explore broader applications such as face alignment,
3D registration of CT, markerless motion capture and pose
estimation.

2 Related Work

There has been a long and rich history of studying geomet-
ric transformations between two images. To list them all is
beyond the scope of this paper. In the following, we only
discuss the works that are most relevant to our approach.

Generative Approaches. Starting from the classical optical
flow algorithm by Lucas and Kanade [17], these approaches
minimize the function J(p̃) = ||Ip−Ip̃||2 with respect to the
parameter p̃. The intensity difference between the distorted
template Ip̃ under the current parameter estimate p̃ and the
test image Ip, is iteratively minimized until it reaches a local
minimum.

Under the same minimization framework, many succes-
sive works achieve faster convergence by using a constant
Hessian matrix. As a trade-off, restrictions on the type of
warping have to be placed. For example, the forward com-
positional approach [30] requires the warping to be compo-
sitional. The inverse additive method [10] requires the warp-
ing to be separable or spatially linear. Inverse compositional
approaches [2,18,35] require the warping to be both com-
positional and invertible. These conditions restrict the possi-
ble applications of these methods. Other methods, including
Active Appearance Models [5,18], Direct Appearance Mod-
els [12] and Difference Decomposition [9,27] are applicable
to a wider class of distortions and are fast. However, it is
not clear which function is minimized during iterations and
there is no guarantee for convergence.

Free-form medical image registration [23] adopts a mul-
tilevel approach in which distortion parametrized by a B-
spline is optimized to align two images at each level. The
resulting estimated distortion is nonparametric and hence no
predefined types of warping are required. But the algorithm
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may still be trapped within local optima. A Markov Random
Field can also be used to model image deformation [28],
but the underlying combinatorial problem is NP-hard and
approximate inference techniques, such as linear program-
ming relaxation or Tree-reweighted Message Passing, have
to be used to obtain an locally optimal solution. Recently, to
address the problem of local optima, a convex approxima-
tion to the objective function has been learned [19,36], but
whether it remains faithful under large distortions is unclear.

Discriminative Approaches. This research direction starts
from the idea of learning a direct mapping from the distorted
image to the template, based on a training set with known
distortion parameters. The simplest example is the nearest-
neighbor approach, while more advanced approaches include
Relevant Vector Regression [1], Gaussian Processes [38],
Boosting [4], Mixture of Experts [32], or using multiple re-
gressors chosen by the response of a gate classifier on the
distorted images [21]. However, all of them require many
samples to address the curse of dimensionality. Another way
to address this problem is to find a low-dimensional repre-
sentation (called “latent variables”) of the parameter space,
e.g. using PCA or GPLVM[29]. Then the prediction is made
in the low-dimensional space.

Feature-based Approaches. The third research direction
uses highly distinctive local features for sparse matching,
e.g. SIFT [16]. Being rotation and scale invariant, such lo-
cal features can be used to match images with large view-
point changes, under analytic transformations such as affine
or perspective, and with occlusions. Salzmann and Fua [24]
also use such local features to find the point correspondences
in the case of non-rigid deformation, but trustworthy local
matches are sparse and spatial models have to be included
to obtain denser correspondences [37,11].

Combining discriminative and generative approaches.
Since both generative and discriminative approaches have
their advantages and disadvantages, there have been many
attempts to combine both. One popular strategy [31,26] is
to first find a coarse estimation using the discriminative ap-
proach. Then, using this estimation as the initialization, a
generative method is applied in the second stage for refine-
ment. This requires that the first prediction be sufficiently
close to the global optimum. Randomly generated training
samples are also used in the iterative procedure, e.g. Hy-
perplane Approximation [13], which is similar in spirit to
our approach. However, they use a spatially linear distor-
tion model along with a linear estimator (hyperplane) that
does not guarantee global optimality. Also they do not relate
the distribution of random training samples to the conver-
gence of the algorithm. In Rosales and Sclaroff [22], from

candidate predictions made by multiple predictors, a gener-
ative model is used to choose the best one as the final output.
However, none of the above approaches have the theoretical
guarantees as in our work.

3 Distortion Model

We first describe the distortion model used in this work.
Given a template image T and a d-dimensional vector of
parameters p, a distorted image Ip is computed using a gen-
erating function G:

Ip = G(T,p) (1)

In particular, the template is at the origin of the parameter
space, i.e., T = I0 = G(T, 0) . We denote I as the mani-
fold that consists of all possible distorted images that can be
generated from Eqn. (1):

I =
{
Ip = G(T,p)

∣∣ ∀p ∈ Rd
}

(2)

The function G can be implemented using an image warp
W (x,p) that maps a pixel x to the position W (x,p). Typi-
callyW (x, 0) = x. The warpW (x,p) can be applied to the
template in either forward or backward direction:

GF(T,p) : Ip(W (x,p)) = T (x) (3)

GB(T,p) : Ip(x) = T (W (x,p)) (4)

Intuitively, the forward generating function pushes
every pixel x in the template to the location W (x,p) in
the distorted image, while the backward generating function
pulls the pixel located at W (x,p) of the template back to
the location x of the distorted image. A particular family of
distortions may satisfy either Eqn. (3) or Eqn. (4), but not
necessarily both. For invertible warpings, both representa-
tions are equally valid.

The main task of distortion estimation is to estimate the
distortion parameters p, if Ip, T andG (or warping function
W ) are known. In this paper, we will focus on occlusion-free
warps in the 2D image space and use a particular family of
distortions as follows:

W (x,p) = x+B(x)p (5)

where B(x) = [b1(x), . . . ,bd(x)] is a set of warp bases
that can be obtained a priori using either analytic models or
measured data or complex physical simulations. Such bases
B(x) can capture spatially nonlinear distortions. As a re-
sult, this warping family covers a broad range of distortions,
including affine transform, lens distortion, water distortion
and changes of facial expressions [18]. Note that Eqn. (5)
does not usually form a group. Our framework achieves global
convergence for this broad family of distortions.
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Fig. 2 Algorithm for distortion estimation. (a) The template (origin) T and distorted training images {Itr} with known parameters {ptr} are
shown in the parameter space. (b) Given a distorted test image, its nearest training image (Itr,ptr) is found. (c) The test image is “pulled-back”
using ptr to yield a new test image, which is closer to the template than the original one. (d) Step (b) and (c) are iterated, taking the test image
closer and closer to the template. (e) The final estimate p̃ is the summation of estimations in each iteration.

4 Iterative Algorithm for Distortion Estimation

In this section, we introduce the proposed algorithm for es-
timating parameters of the image distortion model.

4.1 The Intuition

Imagine a spaceship that wishes to return to the Earth. How-
ever, for some reason the navigation system is faulty and
does not know the coordinates of the Earth relative to the
current position. Fortunately, there are satellites around the
Earth. Each satellite broadcasts a signal containing its coor-
dinates, which can be received by the spaceship.

A straightforward way to localize the spaceship is to
find the strongest signal from the closest satellite, and treat
the received coordinates as its own. This is the well-known
nearest-neighbor approach. The accuracy of such approaches
heavily depends on how close the nearest satellite is to the
spaceship, or, the local density of satellites.

However, a fundamentally different and more efficient
way would be to drive the spaceship to another part of the
space by the amount of displacement that sends its nearest
satellite back to the Earth. If satellites are reasonably dense,
then the spaceship should go closer to the earth. The space-
ship can now receive new information at the new location,
find the nearest satellite again and continue to move accord-
ingly. With a proper distribution of satellites, the spaceship
can land on the Earth. The original location of the spaceship
can be estimated as the summation of all the consecutive
readings of the coordinates.

Let us briefly analyze this approach. Obviously, this ap-
proach is beyond nearest-neighbor since it uses satellites
that are far from each other, instead of just a nearby clus-
ter. Hence, it requires only a sparse distribution of satellites
around the original location of the spaceship, but a dense
distribution near the Earth. That is, a coarse estimation suf-

fices to bring the spaceship to the portion of the space with
more satellites, where the estimation can be further refined.
As a result, using fewer satellites can achieve the same ac-
curacy as compared to the nearest-neighbor approach.

4.2 The Algorithm

We can do the same for images, by regarding the Earth as
the template, the satellites as the training images (samples)
and the spaceship as the distorted test image. As illustrated
in Fig. 2, we start with the distorted test image I0 and dis-
torted training images {Itr} with known parameters {ptr}.
In each iteration k the algorithm finds the closest training
image (Iktr,p

k
tr) to the distorted image Ik in terms of image

metric and performs a “pull-back” operation H using pktr to
obtain a new image Ik+1, that is less distorted compared to
Ik and is closer to the template image T in the parameter
space. Then, the training sample nearest to Ik+1 is found,
the parameter estimation is updated and the procedure is it-
erated until the desired accuracy 1/ε is obtained, i.e., the
estimation is ε-close to the template. Finally, the estimate of
the distortion parameter p is given by the cumulative esti-
mation p̃Ktr . This algorithm is listed below.

Algorithm 1 The algorithm for distortion estimation
INPUT The training images {Iktr} with known parameters {pk

tr}.
The test image I0.
for k = 0 : K do

1. Find Ik’s nearest training image Iktr with known parameter pk
tr

i.e., Iktr = argmini ||Ik − Iitr||.

2. Set cumulative estimation p̃k
tr =

∑k
j=0 p

j
tr.

3. Set pulled-back test image Ik+1 = H(I0, p̃k
tr).

(a). For invertible warpings, H is the inverse of the generating
function G.
(b). For non-invertible warpings, H is the one opposite to G.
E.g.,H = GF if the generating function isGB , and vice versa.

end for
OUTPUT p̃K

tr is the final estimation.
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To alleviate the possible error accumulation with suc-
cessive resampling (interpolation), we obtain Ik by pulling-
back the original test image I0 using the cumulative estima-
tion p̃k−1tr ≡

∑k−1
j=0 p

k
tr in each iteration.

In the following, we will analyze the three key compo-
nents of Alg. 1:

(1) How nearest-neighbor in the image space is related to
the nearest-neighbor in the parameter space.

(2) The pull-back operation H .
(3) The distribution and the number of training samples re-

quired for the algorithm to converge globally.

We finally give a proof of convergence if the three compo-
nents satisfy mild conditions. The idea of the proof is to
show after each iteration the norm of residue always shrinks
by a constant factor, and thus converges to zero. In other
words, it is a coarse-to-fine strategy in the parameter space.

To keep the intuition clear, we start with the family of
invertible warps. In this case, H is just the inverse operator
of the generating function G. This operator partially cancels
out the distortion in Ip by an amount of q, yielding a new
distorted image Ip−q that remains on the distortion manifold
I (Eqn. (2)). This substantially simplifies our analysis. Then
we generalize the conclusion to non-invertible warps that
take the form of Eqn. (5).

5 Global Optimality for Invertible Warping Case

In this section, we prove under the family of invertible warps,
including specific kinds of warps that form a group, such as
affine and projective transforms [9,35,2], that Alg. 1 con-
verges to the global optimum if the mapping between the
parameter space and the distortion manifold I is one-to-one,
and the training samples are properly distributed. We also
give an upper bound on the number of training samples as a
sufficient condition to instantiate this distribution.

5.1 Nearest-Neighbor in the Image Space

Let us consider the set of distorted images whose distortion
parameters p are within the sphere Sr0 = {Ip, ||p|| ≤ r0}.
The origin of this space corresponds to the undistorted tem-
plate image T . Let M be the unknown one-to-one mapping
function predicting the parameters p given the image Ip:

M(Ip) ≡ p (6)

Note M is only defined on I (Eqn. (2)) and is undefined
on images which cannot be generated from the distortion

model (Eqn. (5)). This is acceptable in the case of invertible
warping, since the partially undistorted images always lie on
I.

Unlike the spaceship metaphor, we can no longer apply
nearest-neighbor in the parameter (coordinate) space since
the parameter of the test image is unknown. Instead, we find
the nearest-neighbor according to an image metric, hoping
that it will also give a close image in the parameter space.
For this, we require the two metrics to be closely corre-
lated, i.e., two images that are far or near in the parameter
space have to be also far or near in the image space. Math-
ematically, this can be represented by the following Lip-
schitz continuity condition: there exist two universal con-
stants 0 < L1 ≤ L2 < +∞ so that for two images I and I ′

within I ∩ Sr0 :

L1||I − I ′|| ≤ ||M(I)−M(I ′)|| ≤ L2||I − I ′|| (7)

Without loss of generality, L1 and L2 are assumed to be the
tightest bounds.

Note that L1 = 0 is the case where two distinct images
I and I ′ share the same parameters, and L2 = +∞ is the
multi-valued mapping case in which a single image is asso-
ciated with multiple parameters. In both cases, the one-to-
one assumption is invalid and an infinite number of samples
would be required to obtain an accurate estimation.

5.2 The distribution of training samples

Consider the distribution of the training images so that they
are dense near the origin (template) and sparse at the pe-
riphery of the parameter space. Mathematically, given a dis-
torted image I ∈ I generated from the distortion model with
||M(I)|| ≤ r, we assume that there always exists a training
image Itr ∈ I so that:

||I − Itr|| ≤ βr/L2 (8)

where β < 1. Eqn. (8) shows the density decays when mov-
ing away from the template to the peripheral of the param-
eter space (increasing r). With this condition, the following
theorem shows Alg. 1 always yields a global optimum esti-
mation for any test distorted images within Sr0 .

Theorem 1 (The global convergence of Alg. 1 in the in-
vertible warping case.) If Eqn. (7) and Eqn. (8) hold with
β < 1, then Alg. 1 computes an estimated mapping function
M ′K(I) ≡ p̃Ktr =

∑K
k=0 p

k
tr so that for ||M(I)|| ≤ r0:

||M ′K(I)−M(I)|| ≤ βK+1r0 (9)

where 1− β is the rate of convergence.
In particular, M ′K(I)→M(I) if K → +∞.
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Fig. 3 The number of samples needed to fill a given sphere ||p|| ≤ r

is independent of r since the allowed prediction uncertainty (shown in
gray solid circle) is proportional to r. As a result, only a small neigh-
borhood of the originO (the template) requires dense sampling. This is
the key to decouple the accuracy from the dimension of the parameter
space, which is not attainable for the nearest-neighbor and regression-
based approaches.

In contrast, in the nearest-neighbor case, the training images
have to be distributed uniformly in the parameter space to
achieve optimal performance for any test sample distribu-
tions.

Please see Appendix A for the detailed proof. The intu-
ition of the proof is similar to the spaceship metaphor. With
the density condition (Eqn. (8)) and the right-hand side of
the Lipchitz condition (Eqn. (7)), it is guaranteed that in iter-
ation k, the parameter difference between Ik and its nearest-
neighbor is bounded by β||M(Ik)||. As a result, the norm of
such difference goes down exponentially with k and the al-
gorithm converges to the true distortion parameters.

5.3 The number of training samples

An interesting question is how many samples are needed
to satisfy the density condition (Eqn. 8). We now show the
number N of required training images grows only logarith-
mically with respect to the prediction accuracy 1/ε.

For this, we define the concept of ball-covering.

Definition 1 (Ball-Covering) A d-dimensional sphereDr1 =

{||p|| ≤ r1} of radius r1 is said to be covered with a set of
small spheres {Di

r2} of radius r2 < r1, if for any p ∈ Dr1 ,
there exists at least one small sphere Di0

r2 so that p ∈ Di0
r2 .

Given this definition, we have the following lemma:

Lemma 1 To fill a d-dimensional sphere of radius r1,
O((r1/r2)

d) small spheres of radius r2 suffice.

The proof is trivial. We now present a sufficient condition
for Eqn. (8) to hold:

Lemma 2 For a given radius r, if the sphere ||I − T || ≤
r1 ≡ r/L1 in the image space can be covered by smaller
spheres of radius r2 ≡ βr/L2, then Eqn. (8) holds.

Proof If we could achieve this covering, then given any dis-
torted image I ∈ I such that ||M(I)|| ≤ r, we would have

r ≥ ||M(I)|| = ||M(I)−M(T )|| ≥ L1||I − T || (10)

using the left-hand side of Eqn. (7) and M(T ) = 0. Thus
I satisfies ||I − T || ≤ r/L1 and by the definition of ball-
covering, there exists at least one small sphere in the image
space centered at Itr so that ||I− Itr|| ≤ r2 = βr/L2, which
matches the condition of Eqn. (8). ut

Now let us consider how many small spheres (or essen-
tially, the training samples) are required for ball-covering in
Lemma 2. Use Lemma 1, it turns out that the following num-
ber of samples suffices to satisfy the condition of Lemma 2:

O

((
r1
r2

)d)
= O

((
L2

βL1

)d)
(11)

Crucially, this is independent of r (See Fig. 3). Thus, if
Alg. 1 terminates inK iterations,O(K(L2/βL1)

d) samples
would suffice.

On the other hand, using Eqn. (9), we can compute K =

dlog(r0/ε)/ log(1/β)e − 1 for a given accuracy 1/ε. As a
result, the total number N(ε, β) of training images that is
sufficient to make Alg. 1 converge to the true parameters
(global optimum) is the following:

N(ε, β) = O

[(
L2

βL1

)d
log r0/ε

log 1/β

]
(12)

A large β implies fewer training samples in each iteration
but requires more iterations to achieve the same accuracy,
and vice versa. The optimal β∗, which is independent of ε,
can be obtained by minimizing Eqn. (12).

Note for any L1 and L2 that satisfy Eqn. (7), follow-
ing the same reasoning, we conclude the number of training
samples is bounded above by Eqn. (12). The tightest bound
is given by largest L1 and smallest L2 satisfying Eqn. (7).

As a result, Eqn. (12) grows logarithmically with re-
spect to the accuracy 1/ε. In contrast, with a similar anal-
ysis, nearest-neighbor requires O((L2/εL1)

d) samples for
the same accuracy. In Fig. 5(b), we show the significant dif-
ferences in performance between the two methods on syn-
thetic data. Intuitively, the existence of a generating function
G substantially restricts the degree of freedom of its inverse
mapping M . Thanks to this, we can establish M with good
accuracy using significantly fewer samples.
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6 Global Optimality for Non-Invertible Warping

So far, we have discussed the case where the warpingW (x,p)

is invertible. Under this assumption, each intermediate undis-
torted image Ik lies on the manifold I. This greatly simpli-
fied our discussion. In the case of non-inverible warping, we
can still arrive at the same global convergence conclusion
with the same order of training samples. To achieve this, we
need to address a central technical problem:

How to characterize the intermediate undistorted im-
ages Ik in Alg. 1 that no longer lie on the manifold I.

Specifically, by “characterization”, we mean the two fol-
lowing sub-problems:

– How to define the parameters of Ik?
– How far could Ik be from the manifold I?

The first problem determines whether in each iteration, the
estimated parameters remain reasonable, and the second de-
termines whether the nearest-neighbor operations remain valid.
In the following, we will show that the first sub-problem
can be addressed by properly extending the domain of the
inverse mapping M , and the second can be addressed by
defining a generalized inverse operator as the pull-back op-
eration H in Alg. 1.

6.1 An Extension of the Inverse Mapping M

We first show that an extension of the inverse mapping M
to the entire image space that satisfies the bi-Lipchitz condi-
tions (Eqn. (7)) is impossible.

Here is a proof by contradiction. Let us assume M is
now defined everywhere satisfying Eqn. 7. Recall that I
contains all the distorted images generated from G. We thus
pick an image I /∈ I but very close to the template image
T (i.e. ||I − T || ≤ η, for some small η > 0). Finding such
image is easy since the dimension d of the manifold is typ-
ically much lower than the dimension of the entire image
space. For example, one could swap two pixels in T to pro-
duce I .

Since M is defined in the entire image space, let q ≡
M(I). If ||q|| ≤ r0, then we have Iq ∈ I ∩ Sr0 and by
Eqn. (7) we have:

L1||I − Iq|| ≤ ||M(I)−M(Iq)|| = ||q− q|| = 0 (13)

which implies L1 = 0 since Iq is on the manifold but I is
not. On the other hand, if ||q|| > r0, then by Eqn. (7) we
have:

r0 < ||q|| = ||M(I)−M(T )|| ≤ L2||I − T || ≤ L2η (14)

Since η could be arbitrarily small, L2 = +∞. Thus, for an
image outside the manifold, both conditions in Eqn. (7) may
not be satisfied simultaneously.

Fortunately, the following (weaker) extension of M is
sufficient for proving a generalized version of the conver-
gence theorem.

(a) The following bi-Lipchitz condition holds on the mani-
fold I ∩ Sr0 . That is, for I, I ′ ∈ I, we have:

L1||I − I ′|| ≤ ||M(I)−M(I ′)|| ≤ L2||I − I ′|| (15)

(b) In the entire image space, the following (single-sided)
Lipchitz condition holds. That is, for I /∈ I or I ′ /∈ I,
we have:

||M(I)−M(I ′)|| ≤ L2||I − I ′|| (16)

So, outside I ∩ Sr0 , only the right-hand side of Eqn. (7)
holds. Constructing this extension is easy. Note the only case
that makes L2 = +∞ is that in the entire image space there
exists M(I) 6= M(I ′) for I = I ′, or M is a multi-valued
mapping. So any (single-valued) function M that is defined
on the image space and satisfiesM(Ip) = p on the manifold
I is a legitimate extension with a finite L2.

The intuition behind is that in order to keep the number
of training samples finite in the parameter space, it is re-
quired that the bi-Lipchitz conditions (Eqn. 15) hold on the
manifold. However, outside the manifold what we need is
just a continuity condition that bounds the distance between
parameters using the distance between images.

6.2 The pull-back operator H for non-invertible warping

The warping family in the form of Eqn. (5) generally does
not form a group and is not invertible. Thus it is impossible
to findH that takes q as input and maps Ip to a less distorted
image H(Ip,q) that is on I.

However, if we allow H(Ip,q) to be outside I, then
there exists a simple construction of H so that the differ-
ence betweenH(Ip,q) and Ip−q is bounded (see Appendix
B for the construction of pull-back functions):

||H(Ip,q)− Ip−q|| ≤ R||p− q|| (17)

where R is dependent on the maximum gradient of both the
template and the bases, and is independent of p and q. As
the estimate q gets closer and closer to the true p, H(Ip,q)

indeed approaches I and concides with the template when
q = p, as indicated in the right-hand side of Eqn. (17). In
particular, H(Ip,p) = T . Thus we call H generalized in-
verse.
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The mild requirement of generalized inverse enables Alg. 1
to deal with broader warping families than many previous
works [35,2,10]. Please see more detailed discussion in Sec-
tion 11.

The pull-back operation H that satisfied Eqn. (17) can
be constructed as follows. For forward distortion (Eqn. (3)),
we use backward warping with the same bases; for backward
distortion (Eqn. (4)), we use forward warping with the same
bases. For details, please see the Appendix B.

6.3 The Generalized Theorem for Convergence

With a proper extension of M (Eqn. (15) and Eqn. (16)) and
the pull-back function H returning a less distorted image
that is close enough to the manifold I, we can prove the
following generalized theorem for non-invertible warping:

Theorem 2 (The global convergence of Alg. 1 in the gen-
eral case.) If Eqn. (15), Eqn. (16), Eqn. (17) and Eqn. (8)
hold and γ ≡ 2RL2 + β < 1 , then Alg. 1 computes an
estimated mapping function M ′K(I) ≡ p̃Ktr =

∑K
k=0 p

k
tr so

that for ||M(I)|| ≤ r0:

||M ′K(I)−M(I)|| ≤ γK+1r0 (18)

where 1− γ is the rate of convergence.
In particular, M ′K(I)→M(I) if K → +∞.

We verify that γ < 1 on synthetic data in Section 8.2.
The required number of training samples can be com-

puted in a similar fashion as in the previous section, us-
ing the same ball-counting arguments. The only difference
is that in the general case, since the rate of convergence is
slower due to the additional factor 2RL2, more training sam-
ples are required:

N(ε, R, L1, L2, β) = O

[(
L2

βL1

)d
log r0/ε

log 1/γ

]
(19)

However, compared to Eqn. (12), they are of the same order.

7 Possible Extensions to Algorithm 1

Using features. Instead of the raw image I , one can also use
features φ(I) for nearest-neighbor search. In this situation,
L1 and L2 are defined between the feature space and the
parameter space:

L1||φ(I)− φ(I ′)|| ≤ ||M(I)−M(I ′)|| ≤ L2||φ(I)− φ(I ′)||
(20)

With this definition, Theorem 1 and Theorem 2 still hold. A
good image feature corresponds to a smaller ratio of L2/L1.
This means that the feature metric is more correlated to the
parameter metric. If they are perfectly correlated (L1 = L2),
then fewest training samples are required.

Using generative approaches as the second stage. When
the parameter estimation is very close to the true value, one
could use a generative approach to save samples without be-
ing trapped into local optima. In such a case, Algorithm 1
can be regarded as a discriminative approach that gives a
good initialization.

KNN nearest-neighbors. In practice, due to the constant
factor (L2/βL1)

d, the N given by Eqn. (19) can still be a
large number. In this situation, usingKNN nearest-neighbors
with weighted voting (i.e., kernel regression) can further re-
duce the required samples, as shown in Fig. 5(e).

Fast nearest-neighbors. ForN training samples andK iter-
ations, the time complexity of a naı̈ve implementation of Al-
gorithm 1 is O(NK). Currently it takes 5 seconds for a rec-
tification of 300 by 300 image withN = 1000 training sam-
ples and K = 20 iterations using our unoptimized Matlab
codes on a Pentium Core 2 machine with a single core. How-
ever, many methods used in retrieving approximate nearest-
neighbors, such as locality sensitive hashing (LSH), can be
applied to reduce the complexity substantially.

Incorporating temporal knowledge. Although Algorithm 1
does not assume temporal relationship between two distorted
images, when dealing with distorted video sequence, tempo-
ral continuity can be easily incorporated as follows: after the
parameter p̃t of the current frame It is estimated, we add a
new synthetic training pair (p̃t, Ip̃t

) to the training set and
proceed with the next frame It+1. If p̃t is an accurate es-
timation, then It+1 is similar to Ip̃t

by temporal continuity
and will be pulled-back directly near the origin (template) in
just one step. If p̃t is not accurate, adding a perfectly labeled
training pair will not hurt the performance of the algorithm
and does not cause drifting that often occurs in frame-to-
frame tracking approaches.

Active training samples. It is possible to include new train-
ing images using the generating function G after the test
image is known. The temporal continuity described above
is an example. More generally, the parameters p̃ estimated
by any regression-based method (e.g., Relevant Vector Re-
gression [1] or Gaussian Processes [38]), associated with the
synthetic image Ip̃ can be used as a training pair. Multiple
regressors may also be used. Then, our algorithm simply se-
lects the one closest to the test in the image metric. Note this
is similar in spirit to [22] in which multiple regressors are
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Fig. 4 Some template images used in synthetic experiments. (See Section 8)
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Fig. 5 The effects of four different factors on the performance of the algorithm in terms of relative squared error ||ptrue−p̃||22/||ptrue||22. (a) Average
convergence behavior computed over all test images. (b) The more training images, the better the performance. Note our method performs much
better than nearest-neighbor given the same number of samples. (c) Estimation is more accurate if the training samples are more concentrated near
the origin (template). (d) Performance drops when the test image is significantly more distorted than all the training images (The black dotted
line shows the average magnitude of distortions ||ptr|| in the training images). (e) Using KNN-nearest-neighbor with weighted voting reduces the
number of training samples further.

used for candidate predictions which are then verified by a
generative approach.

8 Analysis of the algorithm using simulations

8.1 Data synthesis

In order to verify the properties of our algorithm, we per-
form synthetic experiments where the true distortion param-
eters are known. We simulated distortions on 100 randomly
selected images, some of which are shown in Fig. 4. The
warps are of the form given by Eqn. (5), where B(x) are
composed of d = 20 orthonormal bases computed by apply-
ing PCA on randomly generated smooth deformation fields
by Gaussian Processes. For each of the 100 template im-
ages, we synthesize N = 1000 distorted images for the
training set and 10 for the test set. Note that a total of 1000
test samples are involved in the simulation and should be
sufficient to justify our approach. Algorithm 1 is applied to
each test image to obtain the relative (squared) error e =

||ptrue − p̃||22/||ptrue||22.
In the following, we discuss how to generate the warping

bases and training samples.

Generation of PCA bases. The Gaussian Processes used
to generate deformation field has zero mean and covariance

function k(x1,x2) = exp
(
−||x1 − x2||2/2σ2

)
. x1 and x2

are locations of pixels and σ is a hyper-parameter that keeps
the deformation smooth.

From the generated deformation field, we apply PCA
and pick the first 20 eigenvectors as the deformation bases.
The standard deviations of the 1-st and 20-th principle com-
ponents are s1 = 11.63 and s20 = 7.95 respectively. This
shows that the energy is evenly distributed among 20 dimen-
sions, and there is no degenerated dimension. We use the
standard deviation in generation of training samples.

Generation of training samples. We follow Eqn. (8) in
generating training images. Eqn. (8) says once the train-
ing images are distributed, the distance between a randomly
picked image at radius r in the parameter space and its nearby
training image should be proportional to r. Thus the density
m(r) of training samples, as a function of r, is proportional
to 1/rd, where d is the dimension of the parameter space.

m(r) only characterizes the distribution along the radial
axis. The assumption (Eqn. (8)) is in a spherically symmet-
ric form and thus we set the angular distribution of training
samples to be spherically symmetric. Thus, the radial den-
sity ml(r) (the density function after marginalizing out all
the angular components) is:

ml(r) ∝ m(r)
dVold(r)

dr
∝ 1

r
(21)
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where Vold(r) is the volume of d-dimensional sphere ||p|| ≤
r. As a sanity check, if Algorithm 1 returns the parameter
with accuracy 1/ε, then along the radial axis, the training
samples must be distributed along the interval [ε, r0]. By in-
tegrating ml(r) on this interval, we obtain:∫ r0

ε

ml(r)dr ∝ log r0 − log ε = log r0/ε (22)

which is of the same order as Eqn. (12) (and Eqn. (19)).
Finally, Fig. 6 shows the distribution ml(r).

From Eqn. (21) we thus obtain an algorithm for sam-
pling training distributions. There are two practical issues.
Firstly, in order to show how the shape of training distri-
bution affects the performance, instead of directly sampling
from the distributionml(r) (Fig. 6), we first sample r from a
uniform distribution and exponentiate r by the shape param-
eter δ. For δ > 1, this will also yield a distribution peaked
around the origin, and in particular when δ → +∞ it will
give exactly the 1/r fall-off. Secondly, instead of using a
uniform r0 for all PCA coefficients, using the standard de-
viation of each PCA basis will increase the sampling effi-
ciency.

Algorithm 2 Sampling training images
INPUT The required accuracy ε, the standard derivations S =

diag(s1, s2, . . . , sd) of each PCA directions, the shape parameter
δ and the number N of training samples.
for n = 1 : N do

Draw sample r from a uniform distribution on [0, 1] and expo-
nentiate r by the shape parameter δ > 1. A large δ yields peaked
distribution around the origin.
Uniformly sampling the angular coordinates by drawing v from
multivariate normal dstribution v ∼ N (0, I) and normalize v so
that ||v|| = 1.
The n-th training sample pn

tr = rSv.
end for

Note that sampling using Algorithm 2 will yield the dis-
tribution that matches the outwards decaying shape as indi-
cated by Eqn. (8). However, a fairly large number of training
samples have to be drawn to achieve the density requirement
of Eqn. (8), i.e. β < 1. The actual number of training sam-
ples depends on the complexity of manifold I, the ratio of
L2/L1 and how effective the nearest-neighbor matching is.
In this experiment, we use N = 1000 if not explicitly men-
tioned and the algorithm works well.

Fig. 5(a) shows the successful convergence of our algo-
rithm averaged over all the test images. Fig. 7 shows ex-
ample images warped with different magnitudes of distor-
tion and the computed rectified images. Particularly, notice

0

D
en
si
ty

Fig. 6 The radial density distribution ml(r) of training samples. Sam-
pling from ml(r) (Algorithm 2) will yield the distribution that has the
same shape as Eqn. (8) (yet β could be larger than 1). On the other
hand, β, or the density of the distribution, is determined by the number
of samples drawn.

Distorted/Rectified, |p| = 20                     Distorted/Rectified, |p| = 30 

 Distorted/Rectified, |p| = 40                    Distorted/Rectified, |p| = 50

| |

| || |

| |

Fig. 7 Sample images distorted to various degrees and the recovered
rectified images. The template is shown in Fig. 4

the significant improvement in the most distorted example.
Fig. 8 illustrates an image distorted by a 60 degree rotation.
Even if a coarse-to-fine strategy is used, gradient-descent
methods like Lucas-Kanade can get stuck in a local mini-
mum due to the seemingly large displacement in the rotation
angle. However, our algorithm converges successfully to the
correct parameters in just 3 to 4 iterations.

8.2 Factors that affect the algorithm

There are four major factors that affect the performance of
the algorithm, including (a) the number N of training sam-
ples, (b) the number KNN of nearest-neighbors involved in
prediction, (c) the shape parameter δ of the distribution of
training images, and (d) the magnitude of distortion ||ptrue||
of the test images.

We set the default values of the four factors to be N =

1000, KNN = 10, δ = 2 and ||ptrue|| = 30. Fig. 5(b)-(e)
shows performance variations when perturbing one factor
and keeping the others constant. Fig. 5(b) shows better per-
formance is obtained with more training images. Although
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 Template            Distorted         Iteration 1(NN)      Iteration 2  

Iteration 3           Iteration 4          Convergence    Gradient-Based

Fig. 8 Successful convergence of our algorithm for affine transformed
image, given there is at least one training sample reaching that area. In
contrast, gradient-descent methods (like Lucas-Kanade [3]) get stuck
in local minima even with a coarse-to-fine strategy.
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Fig. 9 (a) The empirical distribution of relative prediction error γk
on test images in different iterations of the algorithm. 99.2% of the
γk is small than 1, justifying γ < 1 in Theorem 2; others are due
to insufficient samples. (b) The U-turn behavior in large distortion
(||ptrue|| = 50), when the resampling artifacts are severe.

nearest-neighbor behaves similarly, its performance is much
poorer for the same number of samples. Fig. 5(c) shows that
a high accuracy is obtained if training samples are concen-
trated around the origin (larger δ) given the test image is
within their range, as supported by the theoretical analysis.
Conversely, the performance drops gradually if a test image
is far away from the training set (Fig. 5(d)). Finally, Fig. 5(e)
shows that given the same set of training samples, perfor-
mance is better for KNN nearest-neighbor with large KNN.
In other words, for the same performance, the parameter pre-
diction using multiple neighbors requires fewer samples.

Verifying γ < 1 in Theorem 2. Fig. 9(a) shows how the
distribution of relative prediction errors on the test images
changes over iterations. The relative prediction error is de-
fined as γk ≡ ||pktrue − p̃ktr||/||pktrue||, which corresponds to
γ in our theoretical analysis in Theorem 2. For 99.2% of
the simulated distortions, the number of samples (1000) we
used are sufficient and γk < 1, indicating the algorithm’s
convergence. For the remaining 0.8%, the simulated distor-
tions were too large and without sufficient training samples,
hence γk ≥ 1 . The distributions of γk show that the rate of

Mild distortion (||p|| = 20)
ρP No occ 10% 20% 30% 40% 50%

l2-norm 0.0646 0.0644 0.0668 0.0729 0.0863 0.1196
l1-norm 0.0383 0.0419 0.0476 0.0599 0.0973 0.2440

Moderate distortion (||p|| = 30)
ρP No occ 10% 20% 30% 40% 50%

l2-norm 0.0587 0.0607 0.0651 0.0751 0.0939 0.1427
l1-norm 0.0363 0.0411 0.0481 0.0649 0.1195 0.2987

Large distortion (||p|| = 40)
ρP No occ 10% 20% 30% 40% 50%

l2-norm 0.0595 0.0630 0.0703 0.0853 0.1164 0.1981
l1-norm 0.0469 0.0508 0.0630 0.1009 0.2002 0.4207

Table 1 Relative squared errors of the estimated distortion of test im-
ages with salt & pepper noise. Note ρP is the percentage of contami-
nated pixels in the test image.

Mild distortion (||p|| = 20)
ρR No occ 10% 20% 30% 40% 50%

l2-norm 0.0646 0.0686 0.0796 0.1202 0.2488 0.5146
l1-norm 0.0383 0.0417 0.0486 0.0544 0.0858 0.6513

Moderate distortion (||p|| = 30)
ρR No occ 10% 20% 30% 40% 50%

l2-norm 0.0587 0.0656 0.0825 0.1369 0.2292 0.4659
l1-norm 0.0363 0.0431 0.0510 0.0772 0.1253 0.3055

Large distortion (||p|| = 40)
ρR No occ 10% 20% 30% 40% 50%

l2-norm 0.0595 0.0729 0.1021 0.1624 0.3028 0.5437
l1-norm 0.0469 0.0563 0.0821 0.1606 0.2937 1.2850

Table 2 Relative squared errors of the estimated distortion with rectan-
gle occluded test images. Note ρR is the percentage of occluded pixels
in the test image.

convergence slows down with increasing iterations. This is
because more samples would be required around the origin
to achieve a higher accuracy.

Performance under severe image resampling artifacts.
Recall that resampling artifacts are not considered in our
theoretical analysis. For large distortions where resampling
artifacts can be overwhelming, our algorithm may not have
the desired behavior. Interestingly, for many such cases, the
observed difference between the rectified image and the tem-
plate has the same shape as the actual distance between the
true parameters and the estimated parameters (see Fig. 9(b)).
Hence, we conjecture that the solution that produces mini-
mum error in the image metric among many iterations will
be a reasonable one, which is used as the stopping criterion
in the real experiments.

8.3 Performance in the presence of noise and occlusion

We also check the usability of our method in the presence
of noise and occlusion. In this experiment, we use the same
100 images as in Section 8.1. For each image, 1000 sam-
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(a) Performance under occlusions
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Fig. 10 Distorted test images with noise/occlusion and their rectifica-
tions. (a) Distorted images with rectangle-shaped occlusion. (b) Dis-
torted images with salt & pepper noise. Despite a large portion of the
distorted image is contaminated, our algorithm still obtains a reason-
able estimation of the distortion parameter and rectifies the image cor-
rectly. In all the results, we use the setting ρ = 30% and ||p|| = 30.
Note the algorithm is run on grayscale images and color is used here
merely for illustration. (Best viewed in color)

ples are generated as training and 10 samples as testing.
Each test image is contaminated with salt & pepper noise or
rectangle-shaped occlusion before our algorithm is applied.
To generate the salt & pepper noise, we randomly choose
a portion ρP of pixels in the test image and set their val-
ues randomly (uniformly distributed in [0, 1]). In the case of
rectangle-shaped occlusion, we choose a random position of
a rectangle whose area is a portion ρR of the entire image,
and fill in this rectangle with random noise that is uniformly
distributed in [0, 1]. We use two pixel-wise image metrics, l1
and l2-norm on grayscale images, for nearest-neighbor.

Table 1 and Table 2 show our method is relatively robust
to noise and occlusion in both cases. When the noise level is
10%-30%, our method still gives a reasonable estimation of
distortion, with slightly increased squared prediction errors
in the parameter space. Especially, l1 metric performs bet-
ter than l2 metric in the rectangle-shaped occlusion case for
occlusion rate up to 40%. Our method contrasts with many
gradient-based approaches, in which a robust distance mea-
sure or a reweighting scheme has to be involved, and the
initial parameters have to be carefully chosen.

9 Application I: Imaging through Water

The shapes of many deformable and time-varying interfaces
between two media with different refraction indices, such
as water surface, are very hard to measure directly. By per-
ceiving the distortion of underwater scene, human vision can
sense the fluctuation of the water surface qualitatively. In the
following, we show that using Algorithm 1, we can estimate
quantitatively the shape of the water surface, given both the

camera

scene

water 

surface

h(x, t)

x

x + Wt (x)

normal

Fig. 11 Image formation in the presence of water distortion. The scene
pixel at x+Wt(x) is perceived at location x in the distorted image.

appearance of the underwater scene when the water surface
is still and a distorted image due to water fluctuation. This
approach also works for a distorted video sequence by ap-
plying the same algorithm per frame. As a result, the shape
of the water surface can be estimated over time.

9.1 Distortion Bases

Since the water distortion is caused by the bending normals
of the water surface, its distortion bases can be obtained
by physical simulation of water. According to Snell’s law
(Fig. 11), under first-order approximation, we can relate the
distortionWt(x) to the height h(x, t) of the water surface at
each time t:

Wt(x) = η∇h(x, t) (23)

where η is a constant related to water height h0 when the
water surface is still, and relative refraction index between
air and water. When the maximum surface fluctuation

max
x,t
|h(x, t)− h0| (24)

is small compared to h0, the water surface is governed by
the following wave equation:

∂2h(x, t)

∂t2
= c2∇2h(x, t) (25)

where c =
√
gh0 is the velocity of wave (g is the gravity).

To simulate the wave equation, we use forward Euler
method with a periodic boundary condition. This strategy is
easy to implement and stable for small time step ∆t:

h(x, t+∆t) = 2h(x, t)−h(x, t−∆t)+c2∇2h(x, t)(∆t)2

(26)

where∇2h(x, t) is the Laplacian operator on the water height
image at time t. The initial conditions h(x, 0) and h(x, ∆t)
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Fig. 12 Two samples of 2-D Gaussian processes used as the initial
conditions of the wave simulator (Eqn. (25)).

are chosen to be a spatially correlated Gaussian Processes
in a 2-D grid, as illustrated in Fig. 12. More specifically,
h(x, 0) and h(x, ∆t) are sampled from a multivariate Gaus-
sian distribution N(h01, Σ) with each entry of the covari-
ance Σx,x′ inversely proportional to the spatial distance be-
tween x and x′:

Σx,x′ = exp

(
− ||x− x′||2

2σ2
synthesis

)
(27)

Note both the mean and variance of the Gaussian distri-
bution are independent of the absolute coordinates of spa-
tial locations. Thus the resulting initial condition is spatially
stationary. σsynthesis is set by visually comparing the ap-
pearance of a known underwater planar scene at the bottom
of the water tank with that from simulations. Importantly,
σsynthesis is independent of the underlying scene. In the sim-
ulation, we set c = 0.8 pixel/frame and σsynthesis = 10 pix-
els.

The simulator gives the time-evolving shape of the wa-
ter surface. Since the initial condition is spatially stationary,
and the wave equation is a time-invariant partial differen-
tial equation, we conclude that the evolving water surface
is both temporally and spatially stationary. Thus, it suffices
to capture the statistical properties on local patches. Based
on this insight, we randomly sample space-time coordinates
(x, t) and extract spatial patches (57 × 40) from Wt cen-
tered at x. Then PCA is applied to these sampled patches
to obtain the first 20 orthogonal principle modes B(x) =

[b1(x),b2(x), . . . ,b20(x)] of water distortion, which we
call water bases as shown in Fig. 13. The standard devia-
tions of the 1-st and 20-th principle components are 610.08

and 42.82 respectively. By construction, the bases are trans-
lation invariant.

9.2 Experimental Setup

The water experiment consists of video camera observing
vertically downward a 0.5m deep semi-transparent water tank
with a planar scene at the bottom. The tank is illuminated
from the side to avoid any surface reflections that are not
modeled. The water surface is manually disturbed using a
plastic ruler. The planar scene includes fonts of various sizes

X  component

Y  component

Fig. 13 The water bases B(x) = [b1(x),b2(x), . . . ,b20(x)]. For
both x and y components, the bases are sorted by their eigenvalues
in a descending order, from left to right and from top to bottom.

and natural textured underwater scene. The average dimen-
sion of distorted video sequences is around 350 × 250 with
500 frames. The variations of the dimension are due to a
manual preprocessing step to trim the image boundaries cor-
responding to the water tank.

We use the image taken under flat water surface as the
template. Since the water distortion is local, we partition the
image into overlapping patches and apply Algorithm 1 with
the water bases (Fig. 13) on each patch to obtain a local de-
formation field. The image distance is computed using l1
metric in grayscale after normalizing the pixel intensity into
[0, 1]. 10000 training samples are synthesized from the tem-
plate using the water bases, densely distributed around the
original but sparsely elsewhere, as described in Section 8.1.
For each distorted patch in the video sequence, 15 iterations
are performed to obtain the parameter estimation on the wa-
ter bases. Then these local deformation fields are stitched
together, resulting in a global deformation field. At the over-
lapping regions between patches, we average the local de-
formation fields given by neighboring patches to obtain a
smooth transition.

9.3 Results

Rectification of distorted images. We compared our al-
gorithm to several previous representative techniques: free-
form non-rigid image registration using B-splines [23], our
previous work of water tracking [34] and a baseline approach
in which we compute and match HOG (Histogram of Gra-
dient) descriptors and interpolate the sparse correspondence
using thin-plate interpolation to create a dense deformation
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Distorted images    Feature Matching  B-spline registration  Water Tracking      Our approach           Template 

Fig. 14 Rectification of water distortion on text images of different font sizes (from the top row to the bottom row: MiddleFonts, SmallFonts
and TinyFonts). Our approach outperforms HOG (Histogram of Gradient) feature matching, B-spline nonrigid registration [23] and yields slightly
better results with water tracking [34]. However, water tracking relies on the entire video frames, while ours only needs two images.

Fig. 15 Tracking a video sequence using estimated deformation fields. Although the underlying fish images are non-rigidly distorted, our method
can still track it without drifting, using only grayscale images (We show color images for better illustration). Note the contour of the object in the
first frame is manually labeled. See our website for the complete video sequence.

field. We also compare with the classic Lucas-Kanade method
with the same set of water bases plus a coarse-to-fine strat-
egy, as shown quantitatively in Section 9.4.

Fig. 14 shows the rectified images for a scene with text,
and Fig. 25, 26 shows the results for a scene with colored
textures. All the datasets, including three scenes with text
(tinyFont, middleFont and smallFont) and scenes with tex-
tures, can be downloaded in our website. Since only sparse
correspondences between two images are used, feature match-
ing gives an inaccurate interpolated deformation field and
fails to align details well. Nonrigid B-spline image registra-
tion [23] works better but fails occasionally on some image
regions due to local minima. Our previous method, water
tracking [34] produces better results than feature matching
and B-spline registration. Yet it requires a short video se-
quence (61 frames) to rectify a single frame. In contrast, our

method yields the best rectification results given only the
template and one distorted image at a time.

Video tracking. Using the estimated distortion, one can find
the corresponding points of an object’s contour at each video
frame, which gives the tracking result as shown in Fig. 15.
We can see that although the shape of the fish undergoes
large nonrigid distortions, our method still succeeded in track-
ing its contour reliably (note the first contour is manually
labeled).

Water surface reconstruction. According to Eqn. (23), the
deformation fields are proportional to the gradient of the wa-
ter height at any time. Hence, one can recover the height of
the water surface at each time using Frankot-Chellappa inte-
gration [8] on dense deformation fields of x and y directions.
Some sample reconstructions are shown in Fig. 16.

Please check more video results on our website.
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Fig. 16 Reconstructed water surfaces (dataset: SmallFonts) by spa-
tially integrating the water distortion (Best viewed in color).

9.4 Quantitative Evaluation

In addition to visual comparisons, we also do quantitative
comparisons to further verify our approach.

9.4.1 Reprojection error on images

Without groundtruth deformation fields, a convenient eval-
uation is to check whether the rectified frames concide well
with the template, which is the image reprojection error.
We compare our method with B-spline registration [23] and
Lucas-Kanade registration using the same water bases (Fig. 13)
and a coarse-to-fine strategy to avoid possible local minima.
To measure the distance between a rectified image I and the
template T , we compute the root-mean-square reprojection
error RMSintensity as follows:

RMSintensity =

√
1

n

∑
x

(I(x)− T (x))2 (28)

where n is the number of pixels in each image. Note the im-
age intensity is normalized into [0, 1] before different algo-
rithms are formally applied. For a video sequence, we com-
pute RMS for each frame and take the mean value over time.
Table 3 shows the result. We can see even with the same
bases, Lucas-Kanade still gets trapped into the local minima
and fails to give a low reprojection error. B-spline works
better yet our method performs the best.

Dataset Distorted
video

Lucas-
Kanade

B-spline
[23]

Our
method

TinyFonts 0.0720 0.0618 0.0553 0.0444
SmallFonts 0.1029 0.0624 0.0512 0.0461
MiddleFonts 0.1551 0.1092 0.0640 0.0597
Fish 0.0995 0.0831 0.0584 0.0527

Table 3 Comparison of the image reprojection error on different meth-
ods. All the errors are computed using RMS (See Eqn. (28)) and the
mean RMS over the entire video sequence (500 frames) is shown in the
table. Note the pixel intensity is normalized into [0, 1] before different
algorithms are applied. Thus the maximal possible reprojection error is
1 (black versus white images).

Template Frame #10 Frame #20

Fig. 17 Samples of landmark-labeled frames in dataset MiddleFonts.
Note the video frames and the template are 253 by 293. The first 30
frames are manually labeled, each with 232 landmarks.

9.4.2 Reprojection error on landmarks

The image reprojection error is not a perfect performance
measure; a distortion estimation algorithm may result in lower
errors by arbitrarily rearranging the pixels without consid-
ering the spatial smoothness constraints. To further verify
our method, we manually label m = 232 landmarks on the
first 30 frames of one of the underwater dataset, Middle-
Fonts (See Fig. 17 for sample labels), and compute root-
mean-square error RMSspatial between the landmark posi-
tions {xt

i} transformed from the template to the distorted
frame using the estimated deformation field, and the land-
mark positions {xd

i } that are labeled on the distorted frame:

RMSspatial =

√√√√ 1

m

m∑
i=1

||xt
i − xd

i ||22 (29)

Similarly, we compute mean RMS over 30 labeled distorted
frames. Table 4 shows the results. We can see our method
gives the smallest errors (measured in pixel), while other
generative approaches, such as Lucas-Kanade (with the same
set of bases) and B-spline, gives at least 60% higher errors.
Since the landmark correspondence is sparse, we also test
the performance of feature matching using HOG descrip-
tor. To minimize the matching ambiguity and using the prior
knowledge that the landmark positions are fluctuated around
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Distorted
video

Lucas-
Kanade

Feature
matching

B-spline
[23]

Our
method

mean RMS 6.3404 5.2040 3.9282 3.8212 2.5142

Table 4 Comparison of the landmarks reprojection error on different
methods. All the errors are computed using Eqn. (29) and in the table
the mean error over the 30 labeled video frames of the Middle-Font
dataset is shown. See Section 9.4.2 for detailed descriptions of each
listed method.
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Fig. 18 Histograms of landmark displacement errors using different
methods over 30 labeled frames, each with 232 landmarks. The dis-
placements in the distorted images (blue solid line) follow a flat and
Gaussian-like distribution. All the methods aim to push the distribu-
tion towards the origin. The Lucas-Kanade method (magenta line with
triangle) produces a error distribution with a heavy tail, indicating that
it often converges to local optima and many landmarks fail to align
well. Local dense feature matching (green line with circle) works bet-
ter, but the local ambiguity of HOG features leads to inaccuracy in the
alignment, as indicated by the sharp peak of the distribution located
at a region of positive errors. B-spline registration [23] (dashed red
line) works even better using a more powerful optimization technique
(BFGS) but still not as good as our method (black line with cross)
whose error distribution is more concentrated near the origin and with
a thinner tail.

their positions in the template, we match each HOG descrip-
tor located at x in the template with all the densely extracted
descriptors located in the vicinity of 11 pixels in the dis-
torted frame, and pick the best one as the matching result.
This approach yields better results than Lucas-Kanade and
comparable to B-spline, yet is still not as good as our ap-
proach. Finally, Fig. 18 gives a more detailed analysis of the
error distribution of different methods.

10 Application II: Cloth Deformation

Another interesting application of Algorithm 1 is to estimate
nonrigid cloth deformation. Given a video sequence with
deforming cloth, the goal is to estimate a dense and time-
varying deformation field between different frames, which
can be used for video tracking and 3D reconstruction.

10.1 Global motion and local deformation

In general, since cloth deformation behaves more globally
than water distortion, we use the following two-stage ap-
proach. In the first stage, we downsample the original video
(720× 480) by a factor of 2, apply local affine bases of size
200 × 200 and estimate its 6 parameters using our method.
This gives a coarsely undistorted video sequence. In the sec-
ond stage, we apply local random bases (100×100) with 40

dimensions to the undistorted sequence, and obtain the final
distortion estimation by distortion composition. We build
our own dataset acquired by manually perturbing a piece of
silk cloth with repetitive heart patterns.

In addition, we apply our method on the dataset offered
by the authors of [33] to obtain the dense deformation field,
which is used to reconstruct the 3D shape of the cloth. For
their datasets, we use a slightly different approach. We be-
gin by first using local trackers (mentioned below) to track
reliable interest points over time and manually pick the cor-
rect trackers to obtain a coarse dense deformation field with
thin-plate interpolation. Then local random bases are again
applied on the coarsely rectified video sequences for refined
estimation.

The local tracker. The local tracker we used is also based
on Algorithm 1. Given an interest point in the template (usu-
ally is the first frame of the deforming cloth sequence), a lo-
cal patch around it is cropped and 200 samples are generated
using affine warps. During tracking, we initialize the posi-
tion of the tracker as its position in the previous frame and
extract the patch around it, on which Algorithm 1 applies
to obtain the local deformation field that gives the position
of the tracker in the current frame. With an illumination-
invariant metric, this local tracker is robust to the shading
effects in the cloth video sequence. As a result, many of
the tracking trajectories are reliable and useful throughout
the video sequence. By manually picking the good ones, a
coarse yet representative deformation field can be built.

10.2 Results

Fig. 20 shows some sample frames of a rectified video se-
quence produced by our method on a piece of cloth with
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X-component

Y-component

Fig. 19 Estimated deformation fields for the cloth sequence with repet-
itive heart patterns. The first row shows the x-component while the sec-
ond row shows the y-component. The linear part in distortion fields is
the affine component, while the nonlinear part is the nonrigid compo-
nent. (Best viewed in color)

Video sequence of deforming cloth

Rectified frames using our approach

Rectified frames using B-spline registration

Fig. 20 Rectification of cloth deformation using different methods.
The first row shows the original video frames, the second row shows
the rectified video frames by our approach, and the last row shows the
rectification by B-spline registration [23]. As a generative approach, B-
spline registration converges to local minima; while our approach gives
good distortion estimation and rectifies the deformation correctly.

repetitive heart patterns. B-spline registration [23], as a gen-
erative approach, goes into local minima in multiple frames,
while our approach does not. Please watch the entire video
sequence on our website for a more thorough comparison.
Fig. 19 shows the estimated deformation fields. The affine
components are shown as the linear part of the deformation
fields, while the nonrigid components are shown as the non-
linear part, as clearly illustrated in this figure.

Fig. 21 shows the established correspondence on the data-
set from [33]. Our method captures the wavy structure on
the cloth in the first dataset and the bending structure in the
second dataset throughout the video sequence. The 3D re-
construction of the dataset can be found in [33].

11 Conceptual comparisons with previous methods

As mentioned before, our method is conceptually different
from many existing methods. In the following, we describe
this difference in a case-by-case study. To make the com-
parison and illustrations clear, we assume one-dimensional
parameter space. In such a case, all distorted images gen-
erated from the distortion model form a one-dimensional
manifold I (Eqn. (2)), shown as a curve in the image space
(Fig. 22(a)). The template (p = 0), the training samples and
the distorted test image Ip are identified as points on the
curve.

Generative/discrimative approaches. Fig. 22 shows the fun-
damental difference between our approach and generative
and discriminative approaches in the image space. Genera-
tive approaches initialized from the template (p̃ = 0) con-
verge to local optimum due to the complicated nonlinear
structure of the manifold I, as shown in Fig. 22(b). On the
other hand, discriminative approaches can get the global op-
timum given the condition that the training samples densely
cover the manifold I, as shown in Fig. 22(c). This may not
be a big deal if the manifold is one-dimensional, but will
require enormous number of training samples in the high-
dimensional case. Our approach achieves the same accuracy
with an iterative strategy and much fewer training samples
distributed in a radially decreasing way. The samples, espe-
cially those close to the origin, are heavily reused. While
the maximum distance of two nearby training samples has
to be O(ε)-close in the discriminative case, the maximum
distance between two training samples in our approach is
only required to be smaller than the “gap” of the curve and
independent of the prediction accuracy. The gap is implic-
itly encoded in the two universal constants L1 and L2 in
Eqn. (7).

Combining generative and discriminative approaches.
Fig. 23(c)-(d) shows the difference between our method and
previous methods combining the two approaches. Fig. 23(c)
shows the heuristic that uses the discriminative approach as
the initialization of the generative approach still leads to
local minima, while our approach converges to the global
optimum with the same distribution of training samples, as
shown in Fig. 23(d). Although we do not guarantee global
convergence with too few training samples, our approach
fails only if the nearest-neighbor estimation is globally wrong,
for example, predicting large negative values when the true
parameter is large positive in 1-D case. In contrast, the way
that the previous methods combine both approaches, as a
generative approach by nature, is more sensitive to the local
bumpy structures of the manifold I.



18

Fig. 21 Estimated 2D mesh on the video sequence of deforming cloth using our approach. The dataset in the first and the last row come from [33],
while the dataset in the middle row comes from [25]. (Best viewed in color)
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Fig. 22 Comparison with generative/discriminative approaches, illustrated in the image space. (a) The image space. The curve parameterized by p

is the set of all the distorted images I generated from the distortion model (Eqn. (2)), assuming one-dimensional parameter space. (b) Generative
approaches initialized at the template (p̃ = 0) converge to the local optimum. (c) Discriminative approaches obtain an ε-accurate estimation, if
the training samples densely cover the curve. (d) With much fewer samples than the discriminative approaches, our approach obtains the same
accuracy by iteratively refining the parameter estimation, as illustrated by the dashed red arrows.

Using warp-back strategies. Fig. 23(a)-(b) shows the fun-
damental difference between our approach and previous meth-
ods [35,2,10] with a similar strategy of successively warping-
back. An energy minimization framework is commonly used
in those methods. The standard gradient descent approach
yields a trajectory of less distorted images until it reaches
the template. By the formulation, the following two condi-
tions have to be met: (a) the warp-back operations are in the
warping family; (b) all the images on the trajectory have to
be on the manifold I, which is the set of all distorted images
generated from the distortion model. This is only possible if
the warping family forms a group.

For non-invertible distortion, if one condition is met then
the other is broken. This is the reason why previous methods
cannot handle non-invertible distortion as shown in Fig. 23(a).
However, our method can handle it by properly relaxing the
condition (b) so that (1) the trajectory of less distorted im-

ages is allowed to be off the manifold yet (2) the trajectory
converges to the manifold I when the parameter estima-
tion is close to the true value, and is guaranteed to hit the
template if the parameter estimation is perfect, as shown in
Fig. 23(b).

Sample distribution. The convergence property of our al-
gorithm is independent of the location of the test samples
within the sphere ||p|| ≤ r0, if the training samples are dis-
tributed as explained in Section 5.2. In other words, we at-
tain the guarantee of the worst-case performance. This dif-
fers from many previous methods that only work for a given
prior distribution. Furthermore, if the distribution of the pa-
rameters of real-world deformations of an object is known
a priori, then it can be combined with our sampling strategy
to reduce the number of training samples even further.
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Fig. 23 Left: Comparison with previous works [35,2,10] that also use warp-back strategy, illustrated in the image space. (a) Previous methods
use a restricted formulation that requires both the intermediate distorted images on the curve and the warp-back distortions in the warping family,
which is only possible for warping families that form a group. (b) Our approach allows the undistorted image off the curve during iterations and
still achieves global convergence. Right: Comparison with other methods that combine the generative and discriminative approaches. (c) Using
the discriminative approach to initialize the generative approach [26,31] still leads to local convergence due to the local irregularity of the curve.
(d) Using the same training set, our method converges to the global optimum.
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Fig. 24 Two important failure cases. (a) One-to-many mapping case.
The manifold I is (almost) self-intersecting. As a result, two similar
images have very different parameters, one large positive and the other
large negative. If we pull-back the test using the wrong parameter, then
Algorithm 1 diverges. Note this does not violate Theorem 2 since in
such cases, L2 → +∞ and many more train samples are required
especially near the ambiguous region to ensure each time the nearest-
neighbor procedure picks the correct one. (b) The test distorted image
is not on the curve. In such a case, the pull-back bound does not hold
(Eqn. (17)). As a result, the image sequence of successive warping-
back does not approach the manifold I and Algorithm 1 is not guaran-
teed to converge. This often happens in the case of occlusion, resam-
pling artifacts or an incomplete distortion model. Yet we empirically
show that in such cases, Algorithm 1 still gives decent results.

12 Failure cases

Algorithm 1 works if Eqn. (7) holds universally within the
sphere ||p|| ≤ r0. In the case of large distortions (r0 large),
the two positive constants (L1 and L2) take on their extreme
values (0 and +∞) and an infinite number of samples would
be required. Eqn. (17) can also fail due to resampling arti-
facts in large distortions. Although our analysis ignores oc-
clusions, it is possible to handle small occlusions using a
more robust image distance metric (e.g., l1-norm as shown
in Section 8.3), but for substantial occlusions, an explicit
model would be required. Some of the failure cases are sum-
marized in Fig. 24.

13 Future Work

Although the accuracy (1/ε) is decoupled from the dimen-
sion d of the parameter space, in Eqn. (19) there is still a con-
stant term that exponentially varies with d. To further reduce
the required number of samples, a local distortion model
may be used as in the case of our real experiments. How-
ever, better results can be obtained if we consider the cor-
relations of distortions among nearby image regions. Better
performance can also be obtained by using more distinctive
features instead of raw image pixels for the nearest-neighbor
search. In many scenarios, the bases B(x) can be learned
rather than be given beforehand. Finally, as a general frame-
work, our method can potentially be used to avoid local min-
ima in optimization tasks.

The algorithm can be used in many more applications,
such as optical scanning of text, human pose estimation,
marker-less motion capture and air turbulence. Yet in each
case, more works need to be done to handle application-
specific problems, such as self-occlusion, aliasing, cluttered
background and so on.
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Fig. 25 Rectification of water distortion on 3 different colored texture images. Our method yields the best rectification. Detailed comparison is
shown in Fig. 26 (Best viewed in color).
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Fig. 26 Detailed comparision between our approach and previous works [23]. (Best viewed in color)
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Appendix A

Proof of convergence of Algorithm 1 to the Global Optimum

Deformation 

manifold
Template

* *
pull-back operation

Fig. 27 Illustruation of Theorem 3.

Theorem 3 (The global convergence of Algorithm 1 in the invertible warping case.) If Eqn. (7) and (8) hold and β < 1,
then Algorithm 1 computes an estimated mapping function M ′K(I) ≡ p̃Ktr =

∑K
k=0 p

k
tr so that for ||M(I)|| ≤ r0:

||M ′K(I)−M(I)|| ≤ βK+1r0 (30)

where 1− β is the rate of convergence. In particular, M ′K(I)→M(I) if K → +∞.

Proof (Proof of Theorem 3) We set p̂k ≡ M(Ik), where p̂0 ≡ M(I0) is what we want to know. The estimation residual is
pk ≡ p̂0 − p̃k−1tr = p̂0 −

∑k−1
j=0 p

j
tr, and particularly p0 = p̂0.

In the following, we prove by induction that the norm of the residue ||pk|| ≤ rk ≡ βkr0 for any k.
Base case. In the base case, we have ||p0|| = ||p̂0|| ≤ r0 by the condition of this theorem.
Inductive case. Assume those conditions hold for k, in the following we prove they also hold for k + 1. Since Ik =

H(I0, p̃
k−1
tr ) = Ipk lies within the manifold I, by the dense condition Eqn. (8), there exists a training sample Iktr,a ∈ I that

is close to Ik:

||Ik − Iktr,a|| ≤
β||pk||
L2

(31)

That means for rectified image Ik at iteration k, there is at least one training sample that is close to it. Thus, the nearest-
neighbor Iktr of Ik must be even closer:

||Ik − Iktr|| ≤ ||Ik − Iktr,a|| ≤
β

L2
||pk|| (32)

Thus their parameter is also close according to Eqn. (7):

||M(Ik)− pktr|| = ||pk − pktr|| ≤ β||pk|| (33)

which means the difference of current residue pk and its estimation pktr is bounded by β||pk||. Note such difference pk−pktr
is precisely the residue pk+1 in the next iteration. By the induction hypothesis, we have:

||pk+1|| ≤ β||pk|| ≤ β2||pk−1|| ≤ . . . ≤ βk+1r0 → 0 (34)

ut
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Fig. 28 Illustruation of Theorem 4.

Theorem 4 (The global convergence of Algorithm 1 in the general warping case.) If Eqn. (15), Eqn. (16), Eqn. (17) and
Eqn. (8) hold and γ ≡ 2α+β < 1 (where α = RL2 and R is defined in Eqn. (17)), then Algorithm 1 computes an estimated
mapping function M ′K(I) ≡ p̃Ktr =

∑K
k=0 p

k
tr so that for ||M(I)|| ≤ r0:

||M ′K(I)−M(I)|| ≤ γK+1r0 (35)

where 1− γ is the rate of convergence. In particular, M ′K(I)→M(I) if K → +∞.

Proof (Proof of Theorem 4) We set p̂k ≡ M(Ik), where p̂0 ≡ M(I0) is what we want to know. The estimation residual is
pk ≡ p̂0 − p̃k−1tr = p̂0 −

∑k−1
j=0 p

j
tr, and particularly p0 = p̂0.

In the following, we prove by induction that the norm of the residue ||pk|| ≤ rk ≡ γkr0 for any k.
Base case. In the base case, we have ||p0|| = ||p̂0|| ≤ r0 by the condition of this theorem.
Inductive case. Assume those conditions hold for k, in the following we prove they also hold for k+1. By the pull-back

bound(Eqn. (17)), we have for Ik = H(I0, p̃k−1tr ):

||Ik − Ipk || ≤ R||pk|| (36)

Applying Eqn. (16) and we have

||M(Ik)− pk|| ≤ RL2||pk|| = α||pk|| (37)

Note that we cannot use the dense condition (Eqn. (8)) directly to show the existence of a training sample that is close to
Ik, since Ik is not necessarily lying on the manifold I. Thus, we focus on the image Ipk instead.

If there happens to be a training sample sitting at Ipk and we happen to pick it at iteration k, then the algorithm returns
the true parameter and terminates immediately with zero error. Without relying on pure luck, by the dense condition Eqn. (8),
there exists a training sample Iktr,a ∈ I that is close to Ipk ∈ I:

||Ipk − Iktr,a|| ≤
β||pk||
L2

(38)

Using triangle inequality in the image space and we have:

||Ik − Iktr,a|| ≤
(
R+

β

L2

)
||pk|| (39)

That means for rectified image Ik at iteration k, there is at least one training sample that is close to it. Thus, the nearest-
neighbor Iktr of Ik must be even closer:

||Ik − Iktr|| ≤ ||Ik − Iktr,a|| ≤
(
R+

β

L2

)
||pk|| (40)
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Thus their parameter is also close according to Eqn. (16):

||M(Ik)− pktr|| ≤ (RL2 + β)||pk|| = (α+ β)||pk|| (41)

Finally, applying triangle inequality again on Eqn. (41) and Eqn. (42):

||pk − pktr|| ≤ (2α+ β)||pk|| = γ||pk|| (42)

which means the difference of current residue pk and its estimation pktr is bounded by γ||pk||. Note such difference
pk − pktr is precisely the residue pk+1 in the next iteration. By the induction hypothesis, we have:

||pk+1|| ≤ γ||pk|| ≤ γ2||pk−1|| ≤ . . . ≤ γk+1r0 → 0 (43)

ut
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Appendix B

The pull-back operation H

The pull-back operation H is a generalized version of inverse operation for non-invertible warping. Similar to the gener-
ating function (Eqn. (3) and Eqn. (4)), the pull-back operation is also an image transform that takes one image Iinput and one
parameter p, and outputs another image Ioutput. The pull-back operation differs from the generating function in the sense
that it is operated in the reverse direction.

For example, in the forward case, while the generating function GF(Iinput,p) of warping pushes every pixel x of Iinput
to the destination located at W (x,p) in Ioutput, the corresponding pull-back function HF(Iinput,p) pulls every pixel from
location W (x,p) at the image Iinput back to x at Ioutput, as shown in Fig. 29(a).

Similarly, in the backward case, while the generating function GB(Iinput,p) of warping pulls every pixel W (x,p) of
image Iinput to the location x of Ioutput, the corrsponding pull-back functionHB(Iinput,p) pushes every pixel from location
x of Iinput to the location W (x,p) of Ioutput, as shown in Fig. 29(b).

From these definitions, we can see that HB = GF and HF = GB.
In both cases, an important special case is that for a distorted image Ip = G(T,p), H(Ip,q) = T for p = q, i.e.,

warping a template image T by parameter p, and pulling-back the distorted image using the same parameter, yields exactly
the template image T . This is trivial to prove from the definition of the pull-back operation, since each pixel that is pushed
forward is exactly the same pixel that is pulled back. However, this fact that “H is a point inverse function” is critical in
Algorithm 1 and the convergence analysis in Section 6.

x

W(x, p)

W(x, q)G

H

Forward Generation

x
W(x, p)

W(x, q)

G

H

Backward Generation

Image Image

Fig. 29 The mechanism of the pull-back operationH that transform Iinput to the output Ioutput via a parameter p. In the forward case, a pixel x in Iinput
is pushed to the position W (x,p) of the Ioutput by the generating function GF. The corresponding pull-back operation H do the opposite: it takes the
pixel value at W (x,q) in image Iinput, and stores it at position x in the resulting image Ioutput. In the case of p = q, the pixel pushed by G is the same
pixel pulled by H , yielding H(G(I,p),p) = T . A similar reasoning holds in the backward case.

In the general case when p 6= q, the pull-back operation H behaves not exactly like the inverse function, but is close to
it, as characterized by Eqn. (17). The following theorem shows the proof.

Theorem 5 (The Upper bound of the pull-back operation H) Suppose the (backward) distorted image Ip−q maps the
pixel at location LG in the template image T to the position y ∈ R2, and the pulled-back image H(Ip,q) = GF(Ip,q)

maps the pixel at location LH in the template image T to the same position y. Then we have the following bound if there
exists an x so that y = x+B(x)q (Or W (x,q) is onto):

||LG − LH ||1 ≤ R′||p− q||1 (44)

where R′ = 2B0 min(B1||q||1, 2), B0 = ||B||∞ and B1 = maxj maxx max(||∇bxj (x)||1, ||∇b
y
j (x)||1) is the gradient bound

of basis B(x) (Note: bj(x) = [bxj (x); b
y
j (x)] is a column vector at each x). Therefore, we have

||H(Ip,q)− Ip−q||∞ ≤ R||p− q||1 (45)

where R = R′Q1 and Q1 = maxx ||∇T (x)||1 is the gradient bound of the template T .
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Proof (Proof of Theorem 5) According to Fig. 29, H(Ip,q) essentially moves the pixel located at LH ≡ x+B(x)p on the
template T to the position x+B(x)q:

H : LH ≡ x+B(x)p −→ x+B(x)q (46)

This is valid for any x ∈ R2. On the other hand, for the pixel y on the distorted image Ip−q, it comes from the pixel located
at LG ≡ y +B(y)(p− q) in the template T :

G : LG ≡ y +B(y)(p− q) −→ y (47)

Since W (x,q) is onto, there exists x so that y = x+B(x)q, then Eqn. (47) becomes

G : LG ≡ x+B(x)q+B(x+B(x)q)(p− q) −→ x+B(x)q (48)

Note the destination(right) part of Eqn. (46) and Eqn. (48) are the same (y), while the difference between the source(left)
part of Eqn. (46) and Eqn. (48) is:

LG − LH = [B(x+B(x)q)−B(x)] (p− q) (49)

so we directly have the bound ||LG − LH ||1 ≤ 4B0||p − q||1 where B0 = ||B||∞ = maxx maxj max(|bxj (x)|, |b
y
j (x)|).

In addition, using intermediate value theorem, from Eqn. (49) there exists {ξx1 , ξ
x
2 , . . . , ξ

x
d} and {ξy1, ξ

y
2, . . . , ξ

y
d} on the 2D

line segment starting from x and ending at x+B(x)q so that:

Bx(x+B(x)q)−Bx(x) = qTB(x)T [∇bx1(ξ
x
1),∇bx2(ξ

x
2), . . . ,∇bxd(ξ

x
d)] (50)

By(x+B(x)q)−By(x) = qTB(x)T [∇by1(ξ
y
1),∇b

y
2(ξ

y
2), . . . ,∇b

y
d(ξ

y
d)] (51)

where Bx(x) = [bx1(x), b
x
2(x), . . . , b

x
d(x)] and By(x) = [by1(x), b

y
2(x), . . . , b

y
d(x)] are the x and y component of B(x).

Then:

|LxG − LxH | ≤ B1B0||q||1||p− q||1 (52)

|LyG − L
y
H | ≤ B1B0||q||1||p− q||1 (53)

where B1 = maxj maxx max(||∇bxj (x)||1, ||∇b
y
j (x)||1). Hence the bound. ut


