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1 Image Formation Model

We repeat our model here from the paper for readability. The template image T and the distorted
image Ip is related by the followin equality:

Ip(W (x; p)) = T (x) (1)

where, W (x; p) is the deformation field that maps the 2D location of pixel x on the template
with the 2D location of pixel W (x; p) on the distorted image Ip.

1.1 Parameterization of Deformation Field W (x;p)

W (x; p) is parameterized by the displacements of K landmarks. Each landmark i has a rest
location li and displacement p(i). Both of them are 2-dimensional column vectors. For any x,
its deformation W (x; p) is a weighted combination of the displacements of K landmarks:

W (x; p) = x +
K∑
i=1

bi(x)p(i) (2)

whose bi(x) is the weight from landmark i to location x. Naturally we have
∑
i bi(x) = 1 (all

weights at any location sums to 1), bi(li) = 1 and bi(lj) = 0 for j 6= i. We can also write Eqn. 2
as the following matrix form:

W (x; p) = x +B(x)p (3)

whereB(x) = [b1(x), b2(x), . . . , bK(x)] is aK-dimensional column vector and p = [p(1),p(2), . . . ,p(K)]>

is a K-by-2 matrix. Each row of p is the displacement p(i)> of landmark i.

1.2 The bases function B(x)

Given any pixel location x, the weighting function bi(x) satisfies 0 ≤ bi(x) ≤ 1 and
∑
i bi(x) = 1.

For landmark i, bi(li) = 1 and bi(lj) = 0 for j 6= i.
We assume that B(x) = [b1(x), b2(x), . . . , bK(x)] is smoothly changing:

Assumption 1 There exists cB so that:

||(B(x)−B(y))p||∞ ≤ cB ||x− y||∞||p||∞ (4)

Intuitively, Eqn. 4 measures how smooth the bases change over space.

Lemma 1 (Unity bound) For any x and any p, we have ||B(x)p||∞ ≤ ||p||∞.

Proof

||B(x)p||∞ = max{
∑
i

bi(x)px(i),
∑
i

bi(x)py(i)} (5)

≤ max{max
i

px(i)
∑
i

bi(x),max
i

py(i)
∑
i

bi(x)} = ||p||∞ (6)

using the fact that
∑
i bi(x) = 1 for any x.

1.3 Image Patch

We consider a square R = R(x, r) = {y : ||x − y||∞ ≤ r} centered at x with side 2r. Given an
image I treated as a long vector of pixels, the image content (patch) I(R) is a vector obtained
by selecting the components of I that is spatially contained in the square R. S = S(x, r) is the
subset of landmarks that most influences the image content at I(R). The parameters on the
subset are denoted as p(S). Fig. 1 shows the relationship.

Since p(S) is a |S|-by-2 matrix, there are at most 2|S| apparent degrees of freedom for patch
I(R). How large is |S|? If landmarks are distributed uniformly (e.g., on a regular grid), |S| is
proportional to Area(R), or to the square of the patch scale (r2), which gives 2|S| ∝ r2.
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Figure 1: Notations. (a) The image I, (b) The image patch I(R) centered at x with side 2r.
(c) The subset S of landmarks that most influences the patch content I(R).

On the other hand, if the overall effective degree of freedom is d, then no matter how large
2|S| is, p(S) contains dependent displacements and the effective degree of freedom in R never
exceeds d. For example, if the entire image is under affine transform which has 6 degrees of
freedom, then each patch I(R) of that image, regardless of its scale and number of landmarks,
will also under affine transform. Therefore the degrees of freedom in I(R) will never exceed 6.

Given the two observations, we can assume:

Assumption 2 (Degrees of Freedom for Patches) The local degrees of freedom of a patch
(x, r) is min(d, 2|S|).

2 Main Theorem

2.1 Pull-back conditions

Like [1], the pull-back operation takes (1) a distorted image Ip with unknown parameter p and
(2) parameters q, and outputs an less distorted image H(Ip,q):

H(Ip,q)(x) ≡ Ip(W (x; q)) (7)

Ideally, H(Ip,q) is used to simulate the appearance of Ip−q without knowing the true parameters
p. This is indeed the case for p = q, since from Eqn. 1 we get H(Ip,p) = T . In general, it is
not the case for p 6= q. However, the difference is bounded [1]:

||H(Ip,q)− Ip−q|| ≤ C5||p− q|| (8)

for some constant C5 characterizing the amount of pull-back error. Similarly, we can also prove
the patch version:

Theorem 2 For patch (x, r), if ||p− q||∞ ≤ r, then

||H(Ip,q)(R)− Ip−q(R)|| ≤ η(x, r)r (9)

where η(x, r) = cBcqcGAreaj. Note cG = maxy∈R |∇Ip(y)|1, cq = r1
1−γ̄ and cB is defined in

Eqn. 4.

Proof For any y ∈ R = R(x, r), by definitions of Eqn. 7 and Eqn. 1, we have:

H(Ip,q)(y) = Ip(W (y; q)) (10)
Ip−q(y) = T (W−1(y; p− q)) = Ip(W (W−1(y; p− q),p)) (11)

Now we need to check the pixel distance between u = W (y; q) and v = W (W−1(y; p − q),p).
Note both are pixel locations on distorted image Ip. If we can bound ||u− v||∞, then from Ip’s
appearance, we can obtain the bound for |H(Ip,q)(y)− Ip−q(y)|.
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Denote z = W−1(y; p− q) which is a pixel location on the template. By definition we have:

y = z +B(z)(p− q) (12)

then we have ||y− z||∞ = ||B(z)(p− q)||∞ ≤ ||p− q||∞ ≤ r by Lemma 1. On the other hand, we
have:

u− v = W (y,q)−W (z,p) (13)
= y +B(y)q− z−B(z)p (14)
= B(z)(p− q)−B(z)p +B(y)q (15)
= (B(y)−B(z))q (16)

Thus, from Eqn. 4 we have:

||u− v||∞ ≤ cB ||y − z||∞||q||∞ ≤ (cB ||q||∞)r (17)

In the algorithm, q = p̂t is the summation of estimations from all layers 1 to t− 1. Therefore:

||q||∞ = ||p̂t||∞ = ||
t−1∑
j=1

p̃j || ≤
t−1∑
j=1

||p̃j || ≤ r1

1− γ̄ (18)

and is thus bounded. Thus we have:

|H(Ip,q)(y)− Ip−q(y)| = |Ip(W (y; q))− Ip(W (W−1(y; p− q),p))| = |Ip(u)− Ip(v)|(19)
≤ |∇Ip(ξ)|1||u− v||∞ (20)

where ξ ∈ Line−Seg(u,v). Collecting Eqn. 20 over the entire region R gives the bound. When
the algorithm runs, on the distorted image Ip, the rectangle R moves from the initial location
(when q = 0) to the final destination q = p.

Practically the pull-back error η(x, r) is very small and can be neglected.

2.2 Relaxed Lipchitz Conditions

We put a generalized definition of relaxed Lipchitz Conditions here. The definition of relaxed
Lipchitz conditions in our main paper is a special case for η(x, r) = 0.

Assumption 3 (Relaxed Lipchitz Condition with pull-back error η(x, r) > 0) There ex-
ists 0 < α(x, r) ≤ γ(x, r) < 1, A(x, r) > 0 and Γ(x, r) > A(x, r) + 2η(x, r) so that for any p1

and p2 with ||p1||∞ ≤ r, ||p2||∞ ≤ r:

∆p ≤ αr =⇒ ∆I ≤ Ar (21)
∆p ≥ γr =⇒ ∆I ≥ Γr (22)

for ∆p ≡ ||p1(S)− p2(S)||∞ and ∆I ≡ ||Ip1(R)− Ip2(R)||.

Here ||x||∞ ≡ maxi |xi|. The error η(x, r) is from the property of pull-back operation (See
Theorem 2).

2.3 Guaranteed Nearest Neighbor

Theorem 3 (Guaranteed Nearest Neighbor for Patch j) For any image patch (x, r), we
have subset S = S(x, r) and image region R = R(x, r). Suppose we have a distorted image I so
that ||I(R)− Ip(R)|| ≤ ηr with ||p||∞ ≤ r, then with

min

(
css

⌈
1
α

⌉d
,

⌈
1
α

⌉2|S|
)

(23)
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Figure 2: Illustration for proof of Guaranteed Nearest Neighbor.

number of samples properly distributed in the hypercube [−r, r]2|S|, we can compute a prediction
p(S) so that

||p̂(S)− p(S)|| ≤ γr (24)

using Nearest Neighbor in the region R with image metric. Here d is the effective degrees of
freedom while 2|S| is the apparent degrees of freedom.

Proof Since ||p||∞ ≤ r, by definition we have ||p(S)||∞ ≤ r and similarly ||q(S)||∞ ≤ r. Then
using Assumption 2 and applying Thm. 7 and Thm. 9, if the number of samples needed follows
23, then there exists a data sample q so that its slicing q(S) satisfies:

||p(S)− q(S)||∞ ≤ αr (25)

For k /∈ S, the value of q(k) is not important as long as ||q||∞ ≤ r. This is because by assumption,
the relaxed Lipschitz conditions still holds no matter how q(S) is extended to the entire landmark
set.

Fig. 2 shows the relationship for different quantities involved in the proof. Consider the patch
Ip(R), using Eqn. 21 and we have:

||Ip(R)− Iq(R)|| ≤ Ar (26)

Thus we have for the input image I:

||I(R)− Iq(R)|| ≤ ||I(R)− Ip(R)||+ ||Ip(R)− Iq(R)|| ≤ (A+ η)r (27)

On the other hand, since Inn(R) is the Nearest Neighbor image to I, its distance to I can only
be smaller:

||I(R)− Inn(R)|| ≤ ||I(R)− Iq(R)|| ≤ (A+ η)r (28)

Thus we have:

||Ip(R)− Inn(R)|| ≤ ||Ip(R)− I(R)||+ ||I(R)− Inn(R)|| ≤ (A+ 2η)r (29)

Now we want to prove ||p(S)− qnn(S)|| ≤ γr. If not, then from Eqn. 29 we have:

||Ip(R)− Inn(R)|| ≥ Γr > (A+ 2η)r (30)

which from Eqn. 22 is a contradiction. Thus we have

||p(S)− qnn(S)||∞ ≤ γr (31)

Thus, just setting the prediction p̂(S) = qnn(S) suffices.

Theorem 4 (Verification of Aggregation Step.) Supose we have estimations p̂(Sj) for over-
lapping Sj of the same layer covering the same landmark i (i.e., i ∈ Sj) so that the following
condition holds:

||p̂(Sj)− p(Sj)||∞ ≤ r ∀j (32)

Then the joint prediction
p̃(i) = mean{j:i∈Sj}p̂j→i(Sj) (33)

satisfies ||p̂(i)− p(i)||∞ ≤ r. As a result, ||p̂− p||∞ ≤ r.
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Proof By the property of || · ||∞, we have for landmark i:

||p̂j→i(Sj)− p(i)||∞ ≤ r (34)

Then we have

||p̃(i)− p(i)|| =
∥∥∥∥∥∥ 1

#{j : i ∈ Sj}
∑
j:i∈Sj

p̂j→i(Sj)− p(i)
∥∥∥∥∥∥ ≤ r (35)

2.4 Number of Samples Needed

Theorem 5 (The Number of Samples Needed) The total number N of samples needed is
bounded by:

N ≤ C3C
d
1 + C2 log1/γ̄ 1/ε (36)

where C1 = 1/minα(x, r), C2 = 21/(1−γ̄2) and C3 = 2 + css(d 1
2 log1/γ̄ 2K/de+ 1).

Proof We divide our analysis into two cases: d = 2K and d < 2K, where K is the number of
landmarks. d > 2K is not possible. We index patch (x, r) with subscript j, i.e., for j-th patch,
its Lipschitz constants are αj , γj , Aj , Γj , etc. Besides, denote [t] as the subset of all patches
that belong to the same layer t.

Case 1: d = 2K
First let us consider the case that the intrinsic dimensionality of deformation field d is just

2K. Then the root dimensionality d1 = 2K (twice the number of landmarks). By Assumption 2,
the dimensionality dt for layer t is:

dt = βr2
t =

d1

r2
1

r2
t = γ̄2t−2d1 (37)

Any patch j ∈ [t] has the same degrees of freedom since by Assumption 2, dj only depends on
rj , which is constant over layer t.

For any patch j ∈ [t], we use at most Nj training samples:

Nj ≤
(

1
αj

)dt
(38)

to ensure the contracting factor is indeed at least γj ≤ γ̄. Note for patch j, we only need the
content within the region Rj0 as the training samples. Therefore, training samples of different
patches in this layer can be stitched together, yielding samples that cover the entire image. For
this reason, the number Nt of training samples required for the layer t is:

Nt ≤ arg max
j∈[t]

Nj ≤ Cdt1 = C γ̄
2t−2d1

1 (39)

for C1 = 1/minj αj . Denote nt = C γ̄
2t−2d1

1 . Then we have:

N ≤
T∑
t=1

Nt ≤
T∑
t=1

nt (40)

To bound this, just cut the summation into half. Given l > 1, set T0 so that

nT0

nT0+1
= n1−γ̄2

T0
≥ l, nT0+1

nT0+2
= n1−γ̄2

T0+1 ≤ l (41)

Thus we have
T∑
t=1

nt =
T0∑
t=1

nt +
T∑

t=T0+1

nt (42)
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The first summation is bounded by a geometric series. Thus we have

T0∑
t=1

nt ≤ Cd1
1

T0∑
t=1

(
1
l

)t−1

≤ Cd1
1

1− 1/l
=

l

l − 1
Cd1

1 (43)

On the other hand, each item of the second summation is less than l1/(1−γ̄
2). Thus we have:

T∑
t=T0+1

nt ≤ l1/(1−γ̄2)T (44)

Combining the two, we then have:

N ≤ l

l − 1
Cd1

1 + l
1

1−γ̄2 T (45)

for T = dlog1/γ̄ 1/εe. Note this bound holds for any l, e.g. 2. In this case, we have

N ≤ 2Cd1
1 + C2T (46)

for C2 = 2
1

1−γ̄2 .
Case 2: d < 2K
In this case, setting d1 = 2K, finding T1 so that dT1 ≥ d but dT1+1 < d in Eqn. 37, yielding:

T1 =
⌈

1
2

log1/γ̄ 2K/d
⌉

+ 1 (47)

Then, by Assumption 2, from layer 1 to layer T1, their dimensionality is at most d. For any layer
between 1 and T1, Nt is bounded by a constant number:

Nt ≤ cssCd1 (48)

The analysis of the layers from T1 to T follow case 1, except that we have d as the starting
dimension rather than 2K. Thus, from Eqn. 46, the total number of samples needed is:

N ≤ (T1css + 2)Cd1 + C2T (49)

3 Sampling within a Hypercube

Theorem 3 is based on a design of sampling strategy so that for every location p in the hypercube
[−r, r]D, there exists at least one sample sufficiently close to it. Furthermore, we want to minimize
the number of samples needed for this design. Mathematically, we want to find the smallest cover
of [−r, r]D.

In the following, we provide one necessary and two sufficient conditions. The first is for the
general case (covering [−r, r]D entirely), while the second specifies the number of samples needed
if p is known to be on a low-dimensional subspace, in which we could have better bounds.

3.1 Covering the Entire Hypercube

Theorem 6 (Sampling Theorem, Necessary Conditions) To cover [−r, r]D with smaller
hypercubes of side 2αr (α < 1), at least b1/αDc hypercubes are needed.

Proof The volume of [−r, r]D is Vol(r) = (2r)D, while the volume of each hypercube of side 2αr
is Vol(2αr) = (2r)DαD. A necessary condition of covering is the total volume of small hypercube
has to be at least larger than Vol(r):

NVol(2αr) ≥ Vol(r) (50)
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Figure 3: Sampling strategies for Thm. 7 and Thm. 9. (a) Uniform sampling within a hypercube
[−r, r]D so that for any p ∈ [−r, r]D, there exists at least one training sample that is αr close to
p. (b) If we know that in addition to the constraint ||p||∞ ≤ r, p always lies on a subspace of
dimension d < D, then just assigning samples near the subspace within the hypercube suffices.

which gives:

N ≥ Vol(r)
Vol(2αr)

=
1
αD
≥
⌊

1
αD

⌋
(51)

Theorem 7 (Sampling Theorem, Sufficient Conditions) With d1/αeD number of samples
(α < 1), for any p contained in the hypercube [−r, r]D, there exists at least one sample p̂ so that
||p̂− p||∞ ≤ αr.
Proof Uniformly distribute the training samples within the hypercube does the job. In partic-
ular, denote

n =
⌈

1
α

⌉
(52)

Thus we have 1/n = 1/d1/αe ≤ 1/(1/α) = α. We put training sample of index (i1, i2, . . . , id) on
d-dimensional coordinates:

p̂i1,i2,...,id = r

[
−1 +

2i1 − 1
n

,−1 +
2i2 − 1
n

, . . . ,−1 +
2iD − 1

n

]
(53)

does the job. Here 1 ≤ ik ≤ n for k = 1 . . . D. So each dimension we have n training samples.
Along the dimension, the first sample is r/n distance away from −r, then the second sample
is 2r/n distance to the first sample, until the last sample that is r/n distance away from the
boundary r. Then for any p ∈ [−r, r]D, there exists ik so that∣∣∣∣p(k)− r

(
−1 +

2ik − 1
n

)∣∣∣∣ ≤ 1
n
r ≤ αr (54)

This holds for 1 ≤ k ≤ D. As a result, we have

||p− p̂i1,i2,...,iD ||∞ ≤ αr (55)

and the total number of samples needed is nD = d1/αeD.

3.2 Covering a Subspace within Hypercube

Now we consider the case that p lies on a subspace of dimension d, i.e., there exists a column-
independent matrix U of size D-by-d so that p = Uh for some hidden variable h. This happens
if we use overcomplete local bases to represent the deformation. Since each landmark is related
to two local bases, usually D/2 number of landmarks will give the deformation parameters p
with apparent dimension D.

In this case, we do not need to fill the entire hypercube [−r, r]D. In fact, we expect the
number of samples to be exponential with respect to only d rather than D.
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Definition 8 (Noise Controlled Deformation Field) A deformation field p is called noise-
controlled deformation of order k and expanding factor c, if for every p ∈ [−r, r]D, there exists
a k-dimensional vector (k ≥ d) v ∈ [−r,−r]k so that p = f(v). Furthermore, for any v1,v2 ∈
[−r, r]k, we have:

||p1 − p2||∞ = ||f(v1)− f(v2)||∞ ≤ c||v1 − v2||∞ (56)

for a constant c ≥ 1.

Note that by the definition of intrinsic dimensionality d, v could be only d-dimensional and still
p = f(v). However, in this case, c could be pretty large. In order to make c smaller, we can
have a redundant k-dimensional representation h with k > d.

Many global deformation field satisfies Definition 8. Here we consider two cases, the affine
deformation and the transformation that contains only translation and rotation.

Affine transformation. An affine deformation field p defined on a grid has d = 6 and
k = 8, no matter how many landmarks (D/2) there are. This is because each component of p
can be written as

p(k) = [λ1xk + λ2yk + λ3, λ4xk + λ5yk + λ6] (57)

for location lk = (xk, yk). Therefore, since any landmarks lk within a rectangle can be linearly
represented by the locations of four corners in a convex manner, the deformation vector p(k) on
lk can also be linearly represented by the deformation vectors of four corners (8 DoF):

p(k) = Akv =
4∑
j=1

akjv(j) (58)

with v is the concatenation of four deformation vectors from the four corners, 0 ≤ akj ≤ 1 and∑
j akj = 1. For any p ∈ [−r, r]D, v can be found by just picking the deformation of its four

corners, and thus ||v||∞ ≤ r. Furthermore, we have for v1,v2 ∈ [−r, r]k:

||p1 − p2||∞ = ||f(v1)− f(v2)||∞ ≤ max
k

4∑
j=1

akj ||v1(j)− v2(j)|| ≤ ||v1 − v2||∞ (59)

Therefore, c = 1.
Transformation that contains only translation and rotation. Similarly, for deforma-

tion that contains pure translation and rotation (d = 3), we just pick displacement vectors on
two points (k = 4), the rotation center and the corner as v. Then we have:

p(r, θ) = pcenter +
r

rcorner
R(θ)(pcorner − pcenter) (60)

= (I − r

rcorner
R(θ))pcenter +

r

rcorner
R(θ)pcorner (61)

where I is the identity matrix, R(θ) is the 2D rotational matrix and rcorner is the distance from
the center location to the corner. Here we reparameterize the landmarks with polar coordinates
(r, θ). Therefore, for two different v1 and v2, since r ≤ rcorner, we have:

||p1(r, θ)− p2(r, θ)||∞ ≤
∥∥∥∥(I − r

rcorner
R(θ))(pcenter,1 − pcenter,2)

∥∥∥∥
∞

(62)

+
∥∥∥∥ r

rcorner
R(θ)(pcorner,1 − pcorner,2)

∥∥∥∥
∞

(63)

≤ 2||pcenter,1 − pcenter,2)||∞ +
√

2||pcorner,1 − pcorner,2)||∞ (64)

≤ (2 +
√

2)||v1 − v2||∞ (65)

since | cos(θ)|+ | sin(θ)| ≤ √2. Therefore,

||p1 − p2||∞ = max
r,θ
||p1(r, θ)− p2(r, θ)||∞ ≤ (2 +

√
2)||v1 − v2||∞ (66)

So c = 2 +
√

2 ≤ 3.5.
Given this definition, we thus have the following sampling theorem for deformation parame-

ters p lying on a subspace that is noise-controlled.
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Theorem 9 (Sampling Theorem, Sufficient Condition for Subspace Case) For any noise-
controlled deformation field p = f(v) with order k and expanding factor c, with cssd1/αed number
of training samples distributed in the hypercube [−r, r]D, there exists at least one sample p̂ so
that ||p̂− p||∞ ≤ αr. Note css = dcek ⌈ 1

α

⌉k−d.

Proof We first apply Thm. 7 to the hypercube [−r, r]k. Then with d cαek samples, for any
v ∈ [−r, r]k, there exists a training sample vi so that

||v − vi||∞ ≤ αr

c
(67)

We then build the training samples {pi} by setting pi = f(vi). Therefore, from the definition
of noise cancelling, given any p ∈ [−r, r]D, there exists an v ∈ [−r, r]k so that p = f(v). By the
sampling procedure, there exists vi so that ||v − vi||∞ ≤ α

c r, and therefore:

||p− pi||∞ ≤ c||v − vi||∞ ≤ αr (68)

setting p̂ = pi thus does the job. Finally, note that⌈ c
α

⌉k
≤ dcek

⌈
1
α

⌉k−d ⌈ 1
α

⌉d
(69)

So setting css = dcek ⌈ 1
α

⌉k−d suffices (since dabe ≤ daedbe).

4 Finding optimal curve γ = γ(α)

Without loss of generality, we set r = 1. Then, we rephrase the algorithm in Alg. 1.

Algorithm 1 Find Local Lipschitz Constants
1: INPUT Parameter distances {∆pm} with ∆pm ≤ ∆pm+1.
2: INPUT Image distances {∆Im}.
3: INPUT Scale r and noise η.
4: ∆I+

m = max1≤l≤m ∆Il, for i = 1 . . .M .
5: ∆I−m = mini≤l≤M ∆Il, for i = 1 . . .M .
6: for m = 1 to M do
7: Find minimal l∗ = l∗(m) so that ∆I−l∗ > ∆I+

m + 2η.
8: if m ≤ l∗ then
9: Store the 4-tuples (α, γ,A,Γ) = (∆pm,∆pl∗ ,∆I+

m,∆I
−
l∗ )/r.

10: end if
11: end for

To analyze Alg. 1, we make the following definitions:

Definition 10 (Allowable set of A and Γ) Given α, define the allowable set Ã(α) as:

Ã(α) = {A : ∀m ∆pm ≤ α =⇒ ∆Im ≤ A} (70)

Naturally we have Ã(α′) ⊂ Ã(α) for α′ > α. Similarly, given γ, define the allowable set Γ̃(γ) as:

Γ̃(γ) = {Γ : ∀m ∆pm ≥ γ =⇒ ∆Im ≥ Γ} (71)

and Γ̃(γ′) ⊂ Γ̃(γ) for γ′ < γ.

Lemma 11 (Properties of ∆I+ and ∆I−) The two arrays constructed in Alg. 1 satisfy:

∆I+
m = min Ã(∆pm) (72)

∆I−m = max Γ̃(∆pm) (73)

Moreover, ∆I+
m is ascending while ∆I−m is descending with respect to 1 ≤ m ≤M .

10



Proof (a): First we show ∆I+
m ∈ Ã(∆pm). Since the list {∆pm} was ordered, for any ∆pl ≤

∆pm, , we have l ≤ m. By definition of ∆I+
m, we have ∆Il ≤ ∆I+

m. Thus ∆I+
m ∈ Ã(∆pm).

(b): Then we show for any A ∈ Ã(∆pm), ∆I+
m ≤ A. For any 1 ≤ l ≤ m, since ∆pl ≤ ∆pm,

by the definition of A, we have ∆Il ≤ A, and thus ∆I+
m = max1≤l≤m ∆Il ≤ A.

Therefore, ∆I+
m = min Ã(∆pm). Similarly we can prove ∆I−m = max Γ̃(∆pm).

Theorem 12 For each α = ∆pm, Algorithm 1 without the check α ≤ γ always gives the globally
optimal solution to the following linear programming:

min γ (74)
s.t. ∆Im ≤ A ∀∆pm ≤ α (or A ∈ Ã(α)) (75)

∆Im ≥ Γ ∀∆pm ≥ γ (or Γ ∈ Γ̃(γ)) (76)
A+ 2η < Γ (77)

which has at least one feasible solution (A→ +∞, γ → −∞,Γ→ −∞) for any α.

Proof Since there are M data points, we can discretize the values of α and γ into M possible
values without changing the property of solution.

(a) First we prove every solution given by Alg. 1 (without the final check) is a feasible
solution to the optimization (Eqn. 74). Indeed, for any α = ∆pm, according to Lemma 11,
A = ∆I+

m ∈ Ã(α), γ = ∆pl∗ , and Γ = ∆I−l∗ ∈ Γ̃(γ) and thus Eqn. 75 and Eqn. 76 are satisfied.
From the construction of Alg. 1, A+ 2η < Γ. Thus, the Algorithm 1 gives a feasible solution to
Eqn. 74.

(b) Then we prove Alg. 1 (without the final check) gives the optimal solution. If there exists
l′ < l∗ so that γ′ = ∆pl′ < ∆pl∗ = γ is part of a better solution (α, γ′, A′,Γ′), then Γ̃(γ′) ⊂ Γ̃(γ).
This means

A′ + 2η < Γ′ ≤ ∆I−l′ = max Γ̃(γ′) ≤ max Γ̃(γ) = ∆I−l∗ (78)

On the other hand, A = ∆I+
m = min Ã(α) ≤ A′ ∈ Ã(α). Then, there are two cases:

• ∆I+
m+2η < ∆I−l′ < ∆I−l∗ . This is not possible since the algorithm already find the minimal

l∗.

• ∆I+
m + 2η < ∆I−l′ = ∆I−l∗ . Then according to the algorithm, l′ = l∗.

which is a contradiction.

From Theorem 12, it is thus easy to check that the complete Algorithm 1 (with the check
α ≤ γ) gives the optimal pair (α, γ) that satisfies the Relaxed Lipschitz Conditions (Eqn. 21 and
Eqn. 22).

5 More Experiments

Fig. 4 shows the behaviors of our algorithm over different iterations. We can see with more and
more stages, the estimation captures more detailed structures and becomes better.

Fig. 5 shows how the performance degrades if only the bottomK layers are used for prediction.
We can see that each layer plays a different rule. Layer 3-4 seems to be critical for the synthetic
data since they have captured the major mode/scale of deformation.
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10.934074 9.694556 6.870912 4.065068 2.555294

10.830096 8.749503 6.417697 4.283149 2.577389

12.664164 9.052568 7.401009 5.070467 3.802439

8.968721 12.248940 5.515930 3.479620 2.133142

Test Image Initialization Iteration 1 Iteration 3 Iteration 5 Final Result

9.700289 8.678155 7.584708 4.101575 2.587239

11.256226 10.846395 7.610691 5.212512 3.858836

9.895126 9.452231 6.426392 4.245674 3.021973

Figure 4: Landmark Estimation at different iterations given by our approach.

12



10.934074 2.555294 2.541940 8.269434 8.991640 10.235116

10.830096 2.577389 2.914108 8.719922 9.245572 10.089482

12.664164 3.802439 7.211531 9.829800 11.809833 12.291305

8.968721 2.133142 2.024983 4.857615 6.928122 8.172354

9.700289 2.587239 3.420518 7.040868 8.798978 9.206888

8.418094 2.065650 2.121358 4.756471 6.454676 7.737799

11.256226 3.858836 5.117804 8.623931 9.622261 10.743973

10.509438 3.392445 3.120066 8.966320 9.366427 10.004485

Test Image With all layers Use layer 3-7 Use layer 5-7 Use layer 6-7 Use layer 7

Figure 5: Landmark Estimation using only last L layers of the hierarchy. Layer 3-4 is critical
for getting a good estimation of the landmarks on the synthetic data.
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