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Abstract

Image alignment in the presence of non-rigid distor-
tions is a challenging task. Typically, this involves esti-
mating the parameters of a dense deformation field that
warps a distorted image back to its undistorted template.
Generative approaches based on parameter optimization
such as Lucas-Kanade can get trapped within local min-
ima. On the other hand, discriminative approaches like
Nearest-Neighbor require a large number of training sam-
ples that grows exponentially with the desired accuracy. In
this work, we develop a novel data-driven iterative algo-
rithm that combines the best of both generative and dis-
criminative approaches. For this, we introduce the notion of
a “pull-back” operation that enables us to predict the pa-
rameters of the test image using training samples that are
not in its neighborhood (not 𝜖-close) in parameter space.
We prove that our algorithm converges to the global opti-
mum using a significantly lower number of training samples
that grows only logarithmically with the desired accuracy.
We analyze the behavior of our algorithm extensively using
synthetic data and demonstrate successful results on experi-
ments with complex deformations due to water and clothing.

1. Introduction
Images that capture non-rigid deformations of objects

such as water, clothing and human bodies, exhibit complex
distortions (Fig. 1). Aligning or registering such images de-
spite the distortions is an important goal in computer vision
that has implications for tracking and motion understand-
ing, object recognition, OCR and medical image analysis.
Typically, given a distorted image 𝐼p (e.g., of a scene ob-
served through an undulating water surface) and its template
𝑇 (the scene observed when the water is still), the task is to
estimate the parameters p of a distortion model that warps
the image back to the template1.

Most techniques for non-rigid image alignment can be
classified into three broad categories. The first category of
techniques match a set of sparse local features in the dis-
torted image with those in the template [13, 12, 17]. Then,

1Other works [23, 11, 6] use a set of distorted images or videos as the
input and compute distortions and/or the template.

Figure 1. Typical image distortions including water distortion,
cloth deformation and text distortion (OCR or Captcha). Given
a distorted image and an undistorted one (template), the goal is
to estimate a dense deformation field between them. Images are
adopted from [23, 21].

the parameters of a distortion model are estimated. These
methods work well when the dimension 𝑑 of the param-
eter space is low (eg., 6 for affine), but often fail in the
presence of repetitive textures or high dimensional non-
rigid distortions. Template matching techniques, such as
Lucas-Kanade [14], Active-Appearance Models [5, 15] and
free-form medical image registration [20], obtain dense cor-
respondence between a distorted image and its template
by minimizing a non-convex objective function 𝐽(p̃) =
∣∣𝐼p − 𝐼p̃∣∣2 using numerical techniques [3] that often con-
verge to local minima. A convex approximation to the ob-
jective function can be learned [16, 26], but whether it re-
mains faithful under large distortions is unclear.

On the other hand, discriminative approaches [7, 1] learn
a mapping 𝑀 that directly predicts the distortion parameters
p given a distorted image 𝐼p. As a classical example, the
Nearest-Neighbor (NN) approach finds the neighbor closest
to 𝐼p and the neighbor’s parameters are used as the pre-
diction. However, the well-known curse of dimensionality
shows that an exponential number of samples 𝑂((1/𝜖)𝑑) are
needed to achieve an accuracy of 1/𝜖 (i.e., ∣∣p̃ − p∣∣ ≤ 𝜖
for prediction p̃ and true p), resulting in inaccurate predic-
tion for high-dimensional distortions. This curse remains
even in more advanced techniques including Relevant Vec-
tor Regression [1], Gaussian Processes [27], Boosting [4]
or cluster-based regression [18].

The factor of (1/𝜖)𝑑 is generally unavoidable, since for
an arbitrary function f , f(x1) and f(x2) are generally un-
correlated if x1 and x2 are far apart in high-dimensional
space. However, two images that are distorted with very
different distortion parameters still can share a large portion
of the image content (albeit with different permutations of
pixels). As a result, the prediction of the test image can be
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made from the training images not in its neighborhood.
In this work, we draw upon the above insight to de-

velop a novel data-driven iterative algorithm that combines
the best of the generative and discriminative approaches for
distortion estimation. Our framework can be applied to a
broad class of 2D image distortions including affine warps,
and more complex spatially nonlinear distortion (e.g. wa-
ter and cloth deformation). The algorithm is based on the
notion of a “pull-back” operator that reuses training sam-
ples far away from the test image. We show under mild
conditions that our algorithm converges to the global opti-
mum using a significantly lower number of training samples
𝑁 = 𝑂(𝐶𝑑 log 1/𝜖) that grows only logarithmically with
the desired accuracy 1/𝜖 (𝐶 is independent of 𝜖). More
importantly, the dimension 𝑑 is decoupled from required
accuracy 1/𝜖, breaking the curse of dimensionality2. Our
approach is similar to [10] in terms of using randomly gen-
erated samples as training; however, [10] uses a spatially
linear distortion model along with a linear estimator (hy-
perplane) that does not guarantee global optimality.

We have extensively analyzed the performance of our al-
gorithm using synthetic experiments. Our theoretical anal-
ysis makes certain assumptions: (a) the form of the distor-
tion model is known a priori, the mapping 𝑀 is one-to-one,
and the training samples can be accurately generated from
the template; (b) the occlusions caused by distortions (e.g.
cloth folding) are negligible, (c) the artifacts of the imaging
process such as aliasing, motion blur and defocus arising
due to scene deformations are negligible. In practice, these
restrictions are not severe — our algorithm is still able to
demonstrate strong results on real experiments with com-
plex deformations due to water fluctuation and cloth defor-
mation, outperforming several existing methods [23, 20]. In
the future, we will explore broader applications such as face
alignment, 3D registration of CT and range scans.

2. The Pull-back operator for Images
2.1. Problem formulation

Given a template image 𝑇 and a 𝑑-dimensional vector
of parameters p, a distorted image 𝐼p is computed using a
generating function 𝐺:

𝐼p = 𝐺(𝑇,p) (1)

In particular, 𝑇 = 𝐼0 = 𝐺(𝑇, 0). The function 𝐺 can be
implemented using an image warp 𝑊 (x,p) (that maps a
pixel x to the position 𝑊 (x,p) and typically 𝑊 (x, 0) = x)
applied in either the forward or backward directions:

𝐺F(𝑇,p) : 𝐼p(𝑊 (x,p)) = 𝑇 (x) (2)
𝐺B(𝑇,p) : 𝐼p(x) = 𝑇 (𝑊 (x,p)) (3)

2Other works [19, 22] have combined generative and discriminative
approaches but without the desirable theoretical properties of our work.

Then, the main task of image registration is to estimate
the distortion parameters p given 𝐼p, 𝑇 and 𝐺 (or warp-
ing function 𝑊 ). In particular, we will focus on occlusion-
free warps in the 2D image space, which can cover not only
affine transformations but also more complex non-rigid dis-
tortions due to water fluctuation and cloth deformation.

2.2. The Pull­back operation

Our work is based on the following key insight: two dis-
torted images 𝐼p and 𝐼q share a significant amount of infor-
mation, even if their parameters p and q are far apart. We
introduce the notion of a pull-back operation that relates the
two distorted images through their parameters and the gen-
erating function 𝐺. More specifically3, the operation warps
the image 𝐼p using the parameter q to obtain a new image
𝐺B(𝐼p,q). In [24], we prove that 𝐺B(𝐼p,q) is close to a
less distorted image 𝐼p−q:

∣∣𝐺B(𝐼p,q)− 𝐼p−q∣∣ ≤ 𝑅∣∣p− q∣∣ (4)

for a broad class of warping functions of the form:

𝑊 (x,p) = x+𝐵(x)p (5)

Here, 𝑅 is a constant independent of p and q and 𝐵(x) =
[b1(x), . . . ,b𝑑(x)] are the warping bases that can be ob-
tained a priori using measured data or physical simulation.

Using Eqn. 4, in Section 3 we show that each successive
pull-back operation gives a lesser and lesser distorted image
until it reaches the template and the estimated parameters
converge to the global optimum. This result significantly
broadens the types of warps our algorithm can be applied
to and sets our work apart from several previous works [25,
2, 9] that compute possibly local optima for a restricted set
of warps. In particular, warps 𝑊 (x,p) that form a group,
such as affine and projective transform [8], are special cases
in Eqn. 4 with 𝑅 = 0.

3. Algorithm for distortion estimation
Based on the pull-back operation, we now present an it-

erative algorithm for distortion estimation. We start with the
distorted test image 𝐼0 and distorted training images {𝐼tr}
with known parameters {ptr}. In each iteration 𝑘, the algo-
rithm finds the nearest training image (𝐼𝑘tr,p

𝑘
tr) to the dis-

torted image 𝐼𝑘 and performs a pull-back operation using
p𝑘
tr to get a new image 𝐼𝑘+1, that is less distorted compared

to 𝐼𝑘. Then, the nearest training sample to 𝐼𝑘+1 is found,
the parameter estimation is updated and the procedure is it-
erated until convergence. To alleviate the possible error ac-
cumulation with successive resampling (interpolation), we

3This definition is for forward direction. For the backward direction,
the pull-back operation is defined as the forward generating function 𝐺F

and the upper bound Eqn. 4 is still valid.
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Figure 2. Algorithm for distortion estimation. (a) The template (origin) 𝑇 and distorted training images {𝐼tr} with known parameters
{ptr} are shown in the parameter space. (b) Given a distorted test image, its nearest training image (𝐼tr,ptr) is found. (c) The test image
is “pulled-back” using ptr to yield a new test image, which is closer to the template than the original one. (d) Step (b) and (c) are iterated,
taking the test image closer and closer to the template. (e) The final estimate p̃ is the summation of estimations in each iteration.

obtain 𝐼𝑘 by pulling-back the original test image 𝐼0 using
the cumulative estimation p̃𝑘

tr in each iteration. This is sum-
marized in the algorithm below and is illustrated in Fig. 2.

The intuition behind this algorithm is that, in each it-
eration the selected training image need not to be 𝜖-close
to the test (as in the case of Nearest-Neighbor); it suffices
to have the training images guiding the test image for a
part of the way toward the goal (template). Then, another
training image will continue to guide, and so on until the
goal is reached. The reason we can perform this distortion-
splitting is due to the existence of the pull-back operation.
As a result, the training images which are far away from
the test image in parameter space are reused. This obser-
vation is crucial to reducing the number of training images
and breaking the curse of dimensionality.

Algorithm 1 The algorithm for distortion estimation
INPUT The training images {𝐼𝑘tr} with known parame-
ters {p𝑘

tr}. The test image 𝐼0.
for 𝑘 = 0 : 𝐾 do

Find 𝐼𝑘’s nearest training image 𝐼𝑘tr with known pa-
rameter p𝑘

tr i.e., 𝐼𝑘tr = argmin𝑖 ∣∣𝐼𝑘 − 𝐼𝑖tr∣∣.
Set cumulative estimation p̃𝑘

tr =
∑𝑘

𝑗=0 p
𝑗
tr.

Set pulled-back test image 𝐼𝑘+1 = 𝐺B(𝐼
0, p̃𝑘

tr) =
𝐼0(𝑊 (x, p̃𝑘

tr)).
end for
OUTPUT p̃𝐾

tr is the final estimation.

3.1. Convergence property of the algorithm

We now prove that the above algorithm converges to the
true parameters, given sufficient number of samples and un-
der mild conditions.

Consider the set of all distorted images whose distortion
parameters p are within the sphere 𝑆𝑟0 : ∣∣p∣∣ ≤ 𝑟0. The
origin of this space corresponds to the undistorted template
image 𝑇 . In this section, we will show how to distribute the
training images within this sphere such that any test image
within 𝑆𝑟0 will be transformed to the origin (template) by
Alg. 1.

Let 𝑀 be the unknown mapping function that predicts
the parameters p given the image 𝐼p. We make the follow-
ing two assumptions:

1. The mapping 𝑀 is one-to-one and smooth. Math-
ematically, there exist two universal constants 0 < 𝐿1 ≤
𝐿2 < +∞ so that for two images 𝐼 and 𝐼 ′ within 𝑆𝑟0 :

𝐿1∣∣𝐼 − 𝐼 ′∣∣ ≤ ∣∣𝑀(𝐼)−𝑀(𝐼 ′)∣∣ ≤ 𝐿2∣∣𝐼 − 𝐼 ′∣∣ (6)

Note that a one-to-many mapping 𝑀 corresponds to 𝐿2 =
+∞, in which case an infinite number of samples are
needed to get an accurate estimation. Using the definition of
𝑀 : 𝑀(𝐼p−q) ≡ p− q and substituting Eqn. 4 into Eqn. 6,
we have:

∣∣𝑀(𝐺B(𝐼p,q))− (p− q)∣∣ ≤ 𝛼∣∣p− q∣∣ (7)

where p = 𝑀(𝐼) and 𝛼 = 𝐿2𝑅.
2. Training images are more densely distributed near

the origin. Unlike nearest neighbor that places the training
images uniformly in the space to achieve best worse-case
performance (leading to an exponential number of sam-
ples), we place the training images sparsely at the periph-
ery of 𝑆𝑟0 , and densely only near the origin. This distribu-
tion can be mathematically stated as follows: given 𝐼 with
∣∣𝑀(𝐼)∣∣ ≤ 𝑟, we assume that we can find a training image
𝐼tr so that

∣∣𝐼 − 𝐼tr∣∣ ≤ 𝛽𝑟/𝐿2 (8)

where 𝛽 < 1.
Then, we have the following Theorem 3.1 that proves the

convergence of our algorithm to the global optimum.

Theorem 3.1 If Eqn. 6, 7 and 8 hold and 𝛾 ≡ 𝛼 +
𝛽(1 + 𝛼) < 1, then Alg. 1 computes an estimated mapping
𝑀 ′

𝐾(𝐼) ≡ p̃𝐾
tr =

∑𝐾
𝑘=0 p

𝑘
tr so that for ∣∣𝑀(𝐼)∣∣ ≤ 𝑟0:

∣∣𝑀 ′
𝐾(𝐼)−𝑀(𝐼)∣∣ ≤ 𝛾𝐾+1𝑟0 (9)

where 1 − 𝛾 is the rate of convergence. In particular,
𝑀 ′

𝐾(𝐼) → 𝑀(𝐼) if 𝐾 → +∞.

That is, in each iteration the norm of the residual between
the estimated and true parameters is contracted by 𝛾, and
thus Alg. 1 converges. We verify that 𝛾 < 1 on synthetic
data in Section 4.2. See Appendix for the proof.
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Figure 3. The number of samples needed to fill a give sphere
∣∣p∣∣ ≤ 𝑟 is independent of 𝑟 since the allowed prediction un-
certainty (shown in gray solid circle) is proportional to 𝑟. As a
result, only a small neighborhood of the origin 𝑂 requires dense
sampling. This is the key to break the curse of dimensionality.

3.2. The number of training images needed

Using the strategy of Eqn. 8, we now show the number
𝑁 of required training images grows only logarithmically
with respect to the prediction accuracy 1/𝜖. Recall that
we are interested in populating the samples within a sphere
using more samples near the origin than in the periphery.
We know that in order to fill a 𝑑-dimensional sphere of ra-
dius 𝑟1, we require 𝑂((𝑟1/𝑟2)

𝑑) smaller spheres of radius
𝑟2 < 𝑟1. Secondly, in order to fill a sphere ∣∣𝑀(𝐼)∣∣ ≤ 𝑟
in the parameter space, it suffices to fill the sphere of
∣∣𝐼−𝑇 ∣∣ ≤ 𝑟/𝐿1 in the image space. This is because we have
𝑟 ≥ ∣∣𝑀(𝐼)∣∣ = ∣∣𝑀(𝐼)−𝑀(𝑇 )∣∣ ≥ 𝐿1∣∣𝐼−𝑇 ∣∣ using the left
side of Eqn. 6 and 𝑀(𝑇 ) = 0. Thus, only 𝑂((𝐿2/𝛽𝐿1)

𝑑)
samples are needed in order to satisfy Eqn. 8. Crucially,
this is independent of 𝑟 (See Fig. 3). Thus for 𝐾 iterations,
𝑂(𝐾(𝐿2/𝛽𝐿1)

𝑑) samples are needed.
On the other hand, using Eqn. 9, we compute 𝐾 =

⌈log(𝑟0/𝜖)/ log(1/𝛾)⌉ − 1 for a given accuracy 1/𝜖. As
a result, the total number 𝑁(𝜖, 𝛼, 𝛽) of training images is:

𝑁(𝜖, 𝛼, 𝛽) = 𝑂

[(
𝐿2

𝛽𝐿1

)𝑑
log 𝑟0/𝜖

log 1/𝛾

]
(10)

where, 𝛾 ≡ 𝛼 + 𝛽(1 + 𝛼) as defined in Theorem 3.1. A
large 𝛽 implies fewer training samples in each iteration but
more iterations, and vice versa. The optimal 𝛽∗, which is
independent of 𝜖, can be obtained by minimizing Eqn. 10.
As a result, Eqn. 10 grows logarithmically with respect to
the accuracy 1/𝜖. In contrast, Nearest-Neighbor requires
𝑂((𝐿2/𝜖𝐿1)

𝑑) samples for the same accuracy. In Fig. 4(b),
we show the drastic differences in performance on synthetic
data. Intuitively, the existence of a generating function
𝐺 substantially restricts the degree of freedom of its in-
verse mapping 𝑀 . Thanks to this, we can establish 𝑀
with good accuracy using significantly fewer samples.

3.3. Extensions of Alg. 1

Sample distribution. The convergence property of our
algorithm is independent of the distribution of the test sam-
ples within the sphere ∣∣p∣∣ ≤ 𝑟0, if the training samples are

distributed as explained before. This differs from many ap-
proaches that only work for a given prior distribution. If the
distribution of the parameters of real-world deformations of
an object is known a priori, then it can be combined with our
sampling strategy to reduce the number of training samples
even further.

𝐾NN nearest neighbors. In practice, due to the constant
factor (𝐿2/𝛽𝐿1)

𝑑, the 𝑁 given by Eqn. 10 can be a large
number. Using 𝐾NN nearest neighbors with weighted vot-
ing (i.e., kernel regression) can further reduce the required
samples, as shown in Fig. 4(e).

Incorporating temporal knowledge. Although Alg. 1
does not assume temporal relationship between two dis-
torted images, temporal continuity can be easily incorpo-
rated as follows: after the parameter p̃𝑡 of the current
frame 𝐼𝑡 is estimated, we add a new synthetic training pair
(p̃𝑡, 𝐼p̃𝑡) to the training set and proceed with the next frame
𝐼𝑡+1. If p̃𝑡 is an accurate estimation, then 𝐼𝑡+1 is simi-
lar to 𝐼p̃𝑡 by temporal continuity and will be pulled-back
directly near the origin (template) in just one iteration. If
p̃𝑡 is not accurate, adding a perfectly labeled training pair
will not hurt the performance of the algorithm and does not
cause drifting that often occurs in frame-to-frame tracking
approaches.

Regressor bag and active sampling. It is possible to in-
clude new training images using the generating function 𝐺
after the test image is known. The temporal continuity de-
scribed above is an example. More generally, the parame-
ters p̃ estimated by any regression-based method (e.g., Rel-
evant Vector Regression [1] or Gaussian Processes [27]), as-
sociated with the synthetic image 𝐼p̃ can be used as a train-
ing pair. Multiple regressors may also be used. Then, our
algorithm simply selects the one closest to the test.

4. Analysis of the algorithm using simulations
4.1. Data synthesis

In order to verify the properties of our algorithm, we
perform synthetic experiments where the true distortion pa-
rameters are known. We simulated distortions on 100 ran-
domly selected images. The warps are of the form given by
Eqn. 5, where 𝐵(x) are composed of 𝑑 = 20 orthonormal
bases computed by applying PCA on randomly generated
smooth deformation fields. The standard derivations of the
1-st and 20-th principle components are 11.63 and 7.95 re-
spectively. For each of the 100 template images, we synthe-
size 𝑁 = 1000 distorted images for the training set and 10
for the test set. Alg. 1 is applied to each test image to obtain
the relative (squared) error 𝑒 = ∣∣ptrue − p̃∣∣22/∣∣ptrue∣∣22.

Fig. 4(a) shows the successful convergence of our algo-
rithm averaged over all the test images. Fig. 5 shows ex-
ample images warped with different magnitudes of distor-
tion and the computed rectified images. Particularly, notice
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Figure 4. The effects of four different factors on the performance of the algorithm in terms of relative squared error. (a) Average convergence
behavior computed over all test images. (b) The higher the number of training images, the better the performance. Note our performance
is much better than nearest neighbor given the same number of samples. (c) Estimation is more accurate if the training samples are more
concentrated near the origin (template). (d) Performance drops when the test image is significantly more distorted than all the training
images (The black dotted line shows the average magnitude of distortions ∣∣ptr∣∣ in the training images). (e) Using 𝐾NN-nearest neighbor
with weighted voting lessens the training samples further.

Distorted/Rectified, |p| = 30 Distorted/Rectified, |p| = 50

Figure 5. Sample images distorted to various degrees and the re-
covered rectified images.

 Template            Distorted         Iteration 1(NN)      Iteration 2  

Iteration 3           Iteration 4          Convergence     Linear Method

Figure 6. Successful convergence of our algorithm for affine trans-
formed image, given there are at least one training sample reach-
ing that area. In contrast, linear methods (like Lucas-Kanade) get
stuck in local minima even by using a coarse-to-fine strategy.

the significant improvement in the most distorted example.
Fig. 6 illustrates an image distorted by a 60 degree rota-
tion. Even if a coarse-to-fine strategy is used, linear meth-
ods like Lucas-Kanade can get stuck in a local minimum
due to the seemingly large displacement in the rotation an-
gle. However, our algorithm converges successfully to the
correct parameters in just 3 to 4 iterations.

4.2. Behavior of the algorithm

Factors that affect the algorithm. There are four ma-
jor factors that affect the performance of the algorithm, in-
cluding the number 𝑁 of training samples used, the num-
ber 𝐾NN of nearest neighbors for kernel regression, the
shape of the distribution of training images, and the mag-
nitude of distortion ∣∣ptrue∣∣ of the test images. We gener-
ate the training samples using a sphere-symmetric distri-
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Figure 7. (a) The empirical distribution of relative prediction error
𝛾𝑘 on test images in different iterations of the algorithm. 99.2% of
the 𝛾𝑘 is small than 1, justifying 𝛾 < 1 in Theorem 3.1; others are
due to insufficient samples. (b) The U-turn behavior in large dis-
tortion (∣∣ptrue∣∣ = 50), when the resampling artifacts are severe.

bution 𝑔(𝐷−1p), where 𝐷 is a diagonal matrix of stan-
dard deviations in each dimension and 𝑔(p) ∝ 𝑔(∣∣p∣∣) =
Uniform(0, 1)𝛿 where 𝛿 is a constant related to the concen-
tration of samples around the origin. For 𝛿 = 1 we get a
uniform distribution, for 𝛿 > 1 we get a distribution peaked
around the origin.

We set the default values of the four factors to be 𝑁 =
1000, 𝐾NN = 10, 𝛿 = 2 and ∣∣ptrue∣∣ = 30. Fig. 4(b)-(e)
shows performance variations when perturbing one factor
and keeping the rest constant. Fig. 4(b) shows better per-
formance is obtained with more training images. Although
nearest neighbor behaves similarly, its performance is much
poorer for the same number of samples. Fig. 4(c) shows that
a high accuracy is obtained if training samples are concen-
trated around the origin given the test image is within their
range, as supported by the theoretical analysis. Conversely,
the performance drops if a test image is far away from the
training set (Fig. 4(d)). Finally, Fig. 4(e) shows that the
parameter prediction using multiple neighbors reduces the
samples required even further.

Verifying 𝛾 < 1 in Theorem 3.1. Fig. 7(a) shows how
the distribution of relative prediction errors 𝛾𝑘 ≡ ∣∣p𝑘

true −
p̃𝑘
tr∣∣/∣∣p𝑘

true∣∣ on the test images changes over iterations. For
99.2% of the simulated distortions, the number of samples
(1000) we used are sufficient and 𝛾𝑘 < 1, indicating the al-
gorithm’s convergence. For the remaining 0.8%, the simu-
lated distortions were too large and without sufficient train-
ing samples, hence 𝛾𝑘 ≥ 1 . The distributions of 𝛾𝑘 show



Distorted images    Feature Matching  B-spline registration  Water Tracking      Our approach           Template 

Figure 8. Rectification of water distortion on text images of different font sizes. Our approach outperforms HOG feature matching, b-
spline nonrigid registration [20] and yields slightly better results with water tracking [23]. However, water tracking relies on the entire
video frames, while ours only needs two images.

that the rate of convergence slows with increasing iterations.
Performance under severe image resampling arti-

facts. Recall that resampling artifacts are not considered in
our theoretical analysis. For large distortions where resam-
pling artifacts can be overwhelming, our algorithm may not
have the desired behavior. Interestingly, even for many such
cases, the observed difference between the rectified image
and the template has the same shape as the actual distance
between the true parameters and the estimated parameters
(see Fig. 7(b)). Hence, we conjecture that the solution that
produces minimum error among many iterations will be a
reasonable one.

5. Real Experiments

We validate our algorithm on real videos, including wa-
ter distortion induced by the surface refraction and defor-
mations induced by cloth movement. We use 𝑁 = 10000
samples, 𝛿 = 2 and 𝐾NN = 10 in all the cases. We synthet-
ically generate the training samples from the template using
the distortion model in Eqn. 5 where warping bases 𝐵(x)
are chosen for particular scenes. All the test images (except
for texts) are captured with a color video camera and the
algorithm is run on gray-scale image patches. Please go to
our website for datasets, codes and video results.

Water Distortion. We use the image taken under flat
water surface as the template. We use the water bases (57×
40) in [23] with 𝑑 = 20 and apply Alg. 1 to their videos
(200 × 300) containing distorted text of various font sizes.
We also acquired additional distorted videos (360× 240) of
underwater scene textures with a setup similar to [23].

We compared our algorithm to three other representative
techniques: free form non-rigid image registration using b-
splines [20], our previous work of water tracking [23] and a
baseline approach where we compute and match HOG fea-

Figure 11. Reconstructed water surface by spatially integrating the
water distortion (best viewed in color).

tures and interpolate the sparse correspondence to create a
dense deformation field. Fig. 8 shows the rectified images
for a scene with text, and Fig. 9 shows the results for a scene
with colored textures. Since only sparse correspondences
between two images are used, feature tracking gives an in-
accurate interpolated deformation field and fails to align de-
tails well. Non-rigid B-spline image registration works bet-
ter but fails on some parts due to local minima. Water track-
ing uses a video (61 frames) to produce results better than
feature matching and B-spline registration. In contrast, our
method yields the best rectification results given only the
template and one distorted image at a time.

Cloth Deformation. We use a dataset acquired by man-
ually perturbing silk cloth. Since cloth deformation be-
haves more globally than water distortion, we use the fol-
lowing two-stage approach. First we downsample the orig-
inal video (720 × 480) by a factor of 2 and apply local
200 × 200 affine bases and estimate the 6 parameters us-
ing our method. Secondly, we apply local random bases
(100× 100) with 40 dimensions to the resulting undistorted
video sequence, and obtain the final distortion estimation
by distortion composition. Fig. 13 shows three accurately
tracked frames using estimated distortion.

6. Limitations and Future work

Alg. 1 works if Eqn. 6 holds universally within the
sphere ∣∣p∣∣ ≤ 𝑟0. In the case of large distortions (𝑟0 large),
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Figure 9. Rectification of water distortion on 2 different colored texture images. Our method yields the best rectification. Note the even
rows show the details of the rectified images. (best viewed in color).

Figure 10. Tracking a video after undistortion. Although the underlying fish images are non-rigidly distorted, our method can still track it
without drifting, using only grayscale images (We show color images for better illustration). See our website for the complete video.

the two positive constants (𝐿1 and 𝐿2) take on their extreme
values (0 and +∞) and an infinite number of samples are
required. Eqn. 4 can also fail due to resampling artifacts in
large distortions, as shown in Fig. 12. Although our analysis
ignores occlusions, we believe it will be possible to handle
small occlusions using a more robust image distance met-
ric (e.g., L1-norm), but harder cases will require an explicit
model of occlusions.

Although the accuracy of 1/𝜖 is decoupled from the di-
mension 𝑑 of the parameter space, in Eqn. 10 there is still
a constant term that exponentially varies with 𝑑. To fur-
ther reduce the required number of samples, a local dis-
tortion model may be used as in the case of our real ex-
periments. However, better results can be obtained if we
consider the correlations of distortions among nearby im-
age regions. Better performance can also be obtained by us-
ing more distinctive features instead of raw image pixels for
the Nearest-Neighbor search. In many scenarios, the bases
𝐵(x) can be learned instead of the analytical ones used. Fi-
nally, as a general framework, our method can potentially

Distorted image           Template              B-spline Reg.           Our method

Figure 12. Typical failure case due to severe resampling artifacts.
Note all the methods fail in this case.

be used to avoid local minima in optimization tasks.
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Appendix
Proof of Theorem 3.1 We set p̂𝑘 ≡ 𝑀(𝐼𝑘), where p̂0 ≡
𝑀(𝐼0) is what we want to know. The estimation residual is
p𝑘 ≡ p̂0 − p̃𝑘−1

tr , and particularly p0 = p̂0.
We prove by induction that the norm of the residue



Figure 13. Tracking results of cloth deformation. Top-left is the
template with manually-labeled shapes. The rest are the tracking
results. See our website for the complete videos.

∣∣p𝑘∣∣ ≤ 𝑟𝑘 ≡ 𝛾𝑘𝑟0 for any 𝑘. In the base case we have
∣∣p0∣∣ = ∣∣p̂0∣∣ ≤ 𝑟0 by the condition of Theorem 3.1. As-
sume those conditions hold for 𝑘, in the following we prove
they also hold for 𝑘 + 1. By Eqn. 7, in the forward case we
have for 𝐼𝑘 = 𝐺B(𝐼

0, p̃𝑘−1
tr ) (backward is similar):

∣∣𝑀(𝐼𝑘)− (p̂0 − p̃𝑘−1
tr )∣∣ = ∣∣p̂𝑘 − p𝑘∣∣ ≤ 𝛼∣∣p𝑘∣∣ ≤ 𝛼𝑟𝑘

(11)
where p̂𝑘 ≡ 𝑀(𝐼𝑘). Moreover, from Eqn. 11 we have

∣∣p̂𝑘∣∣ ≤ (1 + 𝛼)∣∣p𝑘∣∣ ≤ (1 + 𝛼)𝑟𝑘 (12)

Then using Eqn. 8 and Eqn. 12, we can find 𝐼𝑘tr so that

∣∣𝐼𝑘tr − 𝐼𝑘∣∣ ≤ 𝛽(1 + 𝛼)𝑟𝑘
𝐿2

(13)

By Eqn. 6, we have

∣∣𝑀(𝐼𝑘tr)−𝑀(𝐼𝑘)∣∣ = ∣∣p𝑘
tr − p̂𝑘∣∣ ≤ 𝛽(1 + 𝛼)𝑟𝑘 (14)

Combine Eqn. 11 and Eqn. 14, we have

∣∣p𝑘 − p𝑘
tr∣∣ ≤ ∣∣p𝑘

tr − p̂𝑘∣∣+ ∣∣p̂𝑘 − p𝑘∣∣ (15)
≤ [𝛼+ 𝛽(1 + 𝛼)]𝑟𝑘 = 𝑟𝑘+1 (16)

Since p𝑘+1 = p𝑘 − p𝑘
tr, we have ∣∣p𝑘+1∣∣ ≤ 𝑟𝑘+1.
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