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Abstract

Most 3D sensors used in robot perception, such as LiDARs, passively scan the entire environ-
ment while being decoupled from the perception system that processes the sensor data. In
contrast, active perception is an alternative paradigm for robotics where a controllable sensor
adaptively focuses its sensing capacity only on the most useful regions of the environment.
Programmable light curtains are a recently-invented, resource-efficient, active sensor that
measure the depth of any user-specified surface (“curtain”) at a significantly higher resolution
than LiDAR. The main research challenge is to design perception algorithms that decide where
to place the light curtain at each timestep, tightly coupling sensing and control in a closed
loop.
This thesis lays the algorithmic foundations for active robot perception using programmable
light curtains. We investigate the use of light curtains for various perception tasks such
as 3D object detection, depth estimation, obstacle detection and avoidance, and velocity
estimation. First, we incorporate the velocity and acceleration constraints of the light curtain
into a constraint graph; this allows us to compute feasible light curtains which optimize any
task-specific objective. Then, we develop a suite of algorithms using a variety of tools such as
Bayesian inference, deep learning, information gain and dynamic programming to intelligently
place light curtains in the scene.
Finally, we combine multiple intelligent placement strategies in an online learning framework.
First, we are able to explicitly estimate velocities and positions of scene points using a Bayes
filtering technique based on particle filters and occupancy grids. Then, we propose a novel
self-supervised reward function that evaluates the accuracy of current velocity estimates using
future light curtain placements. This insight enables an online multi-armed bandit framework to
intelligently switch between multiple placement policies in real time, outperforming individual
policies. These algorithms pave the way for controllable light curtains to accurately, efficiently
and purposefully perceive complex and dynamic environments.
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(3) ACT: planning and decision making to decide where to place the next light
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4.1 (a) Light curtain constraint graph. Black dots are nodes and blue arrows are the
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4.2 Extended constraint graph: light curtain constraint graph with our proposed
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misalignment error in the leftmost detection. . . . . . . . . . . . . . . . . . . 27

5.2 Our method for detecting objects using light curtains. An inexpensive single-beam
lidar input is used by a 3D detection network to obtain rough initial estimates of
object locations. The uncertainty of the detector is used to optimally place a light
curtain that covers the most uncertain regions. The points detected by the light
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5.5 Failure cases: The predominant failure mode is that the single beam LiDAR detects
a false positive which is not removed by light curtains because the detector is
overly confident in its prediction (so the estimated uncertainty is low). Middle:
Falsely detecting a tree to be a car. Right: After three light curtains, the detection
persists because light curtains do not get placed on this false positive. . . . . . 35
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6.1 (a) We show how errors in Monocular Depth Estimation are corrected when
used in tandem with an Adaptive Sensor such as a Triangulating Light Curtain
(Yellow Points and Red lines are Ground Truth). (b) We predict a per-pixel
Depth Probability Volume from Monocular RGB and we observe large per-pixel
uncertainties (σ = 3m) as seen in the Bird’s Eye View / Top-Down Uncertainty
Field slice. (c) We actively drive the Light Curtain sensor’s Laser to exploit and
sense multiple regions along a curve that maximize information gained. (d) We
feed these measurements back recursively to get a refined depth estimate, along
with a reduction in uncertainty (σ = 1m). . . . . . . . . . . . . . . . . . . . 41

6.2 Left: Our adaptive sensor of choice, the Triangulation Light Curtain (LC)
[BWW+19], consists of a laser line, Galvomirror and NIR camera. Middle:
The light curtain senses a ruled 3D surface extruding from a given top-down 2D
curve we call a curtain. Surfaces within the thickness of the curtain, result in
higher intensity in the NIR image. Right: A planar curtain swept across various
depths. As the curtain plane approaches the true surface, the measured intensity
increases, due to the sensing location and curtain thickness. Above that we show
our real-world sensor setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Our state space consists of a Depth Probability Volume (DPV) (left) storing
per-pixel uncertainty distributions. It can be collapsed to a Bird’s Eye Uncertainty
Field (UF) (right) by averaging those rays in each row (blue pixels) of the DPV
that correspond to a slice on the road parallel to the ground plane (right) (cyan
pixels). Red pixels on UF represent the low resolution LiDAR ground truth. . . 44

6.4 Given an Uncertainty Field (UF), our planner solves for an optimal galvomirror
trajectory subject to it’s constraints (eg. θ̊max). We show a 3D ruled surface /
curtain placed on the highest probability region of UF. . . . . . . . . . . . . . 45

6.5 Sampling the world at the highest probability region is not enough. To converge
to the true depth, we show policies that place additional curtains given UF. Let’s
look at a ray (in yellow) from the UF to see how each policy works. Left: π0
given a unimodal gaussian with small σ. Middle: π0 given a multimodal gaussian
with larger σ. Right: π1 given a multimodal gaussian with larger σ. Observe that
π1 results in curtains being placed on the second mode. . . . . . . . . . . . . 45

6.6 We sweep a planar light curtain across a scene at 0.1m intervals, and observe that
the changes in intensity over various pixels follow an exponential falloff model.
Blue / Orange: Car door has a higher response than the tire. Green: Object
further away has a lower response with a larger sigma due to curtain thickness.
Red: Retroreflective objects cause the signal to saturate. . . . . . . . . . . . 46
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6.7 Visualization of the recursive Bayesian update method to refine depth probabilities
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curves denote the expected intensity (Y-axis) as a function of ground truth depth
(X-axis); this is the sensor model given in Eqn. 6.6. After an intensity is observed
by the light curtain, we can update the probability distribution of what the ground
truth depth might be using our sensor model and the Bayes’ rule. The updated
probability is shown by the blue curves, computed using the Bayesian update
of Eqn. 6.7 (here, the prior distribution Pprev is assumed to be uniform, and
dck

u,v = 10m). Left: Low i return leads to an inverted Gaussian distribution at the
light curtain’s placement location, with other regions getting a uniform probability.
Middle: Medium i means that the curtain isn’t placed exactly on the object and
the true depth could be on either side of the light curtain. Right: High i leads to
an increased belief that the true depth is at 10m. . . . . . . . . . . . . . . . . 47

6.8 We demonstrate corroboration between simulated and real light curtain device by
sweeping several planes across this scene. Colored point cloud is the estimated
depth, and lidar ground truth in yellow. Left: LC simulated from the lidar depth.
Right: Using the real device. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.9 Curtain placement as a function of the Uncertainty Field (UF) converges within a
lower number of iterations as opposed to a uniform planar sweep which took 25
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6.10 Looking at the top-down Uncertainty Field (UF), we see per pixel distributions
in Cyan and the GT in Red. We start with a gaussian prior with a large σ, take
measurements and apply the bayesian update, trying both policies π0 and π1. Note
how measurements taken close to the true surface split into a bimodal distribution
(Yellow Box) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.11 Our Light Curtain (LC) Fusion Network can take in RGB images from a single
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the next timestep to get much more refined DPV estimate. . . . . . . . . . . 49

6.12 In KITTI + Simulated Light Curtain, we note improved depthmaps when Monocular
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bounded in the yellow box. Our network is also capable of ingesting Stereo inputs,
and also solving the task of Lidar Upsampling . . . . . . . . . . . . . . . . . 50

6.13 In real world Experiments, we are able to see the monocular scale ambiguity in
domain specific scenarios (driving scenario with a van 8m away) get corrected by
the Light Curtain, and we are able to see correction in an arbitrary scene (dumpster
15m away) provided to the system as well . . . . . . . . . . . . . . . . . . . 51

6.14 We show the internal state of the bayesian update at Iteration 0 and Iteration
5. Starting with a prior DPV from Monocular Depth estimation, we show the
convergence of the sensor’s laser and curtain profile on an object 10m away . . 51

6.15 Monocular RGB alone suffers from scale ambiguity but does give an inital uncertain
depth estimate on a car 15m away. Iterating on Light Curtain measurements from
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6.16 Top: Adaptive depth sensing with the Light Curtain: Starting from a Prior
distribution from a Monocular Depth Network as opposed to a gaussian with a
large σ leads to faster convergence towards the true depth. Bottom: Monocular
(Left) and Stereo (Right) Depth Estimation show improvements when we enabled
feedback of the sensed Light Curtain DPV at epoch 16 when training on KITTI
dataset with light curtain simulator. . . . . . . . . . . . . . . . . . . . . . . . 52

7.1 Comparison of our dynamic programming approach with a Monte Carlo sampling
based approach to estimate the probability of a random curtain detecting an object
of size 2m× 2m. The x-axis shows the runtime of the methods (in seconds), and
the y-axis shows estimated detection probability. Our method (in red) is both
exact and fast; it quickly produces a single and precise point estimate. Monte
Carlo sampling (in blue) samples a large number of random curtain and returns the
average number of curtains that intersect the object. The estimate is stochastic
and the 95%-confidence intervals are shown in blue. While the Monte Carlo
estimate eventually converges to the true probability, it is inherently noisy and
orders of magnitude slower than our method. . . . . . . . . . . . . . . . . . . 57

7.2 (a) The probability of random curtains detecting objects of various areas. For
an object of a fixed area, we average the probability across various orientations
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envelope). Since our method learns to forecast the safety envelope, it estimates
the envelope more accurately and produces higher light curtain intensity. Right
column (top-down view): the black surfaces are the estimated safety envelopes,
and red points show a LiDAR point cloud (only used to aid visualization). Our
forecasting method’s estimate of the safety envelope hugs the pedestrians more
tightly and looks smoother. The hand-crafted baseline works by continuously
moving the curtain back and forth, creating a jagged profile and preventing it from
enveloping objects tightly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xiv
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CHAPTER 1
Introduction

3D sensors, such as LiDAR, have become ubiquitous for perception in autonomous systems
operating in the real world, such as self-driving vehicles and field robots. Combined with
recent advances in deep-learning based visual recognition systems, they have lead to significant
breakthroughs in perception for navigation and autonomous driving, enabling the recent surge
of commercial interest in self-driving technology.
However, most 3D sensors in use today perform passive perception, meaning that they contin-
uously sense the entire environment while being completely decoupled from the recognition
system that will eventually process the sensor data. In such a case, sensing the entire scene can
be potentially inefficient. For example, consider an object detector running on a self-driving
car that is trying to recognize objects in its environment. Suppose that it is confident that
a tree-like structure on the side of the street is not a vehicle, but it is unsure whether an
object turning around the curb is a vehicle or a pedestrian. In such a scenario, it might be
beneficial if the 3D sensor focuses on collecting more data from the latter object, rather than
distributing its sensing capacity uniformly throughout the scene.
Given a LiDAR sensor, the locations of obstacles can be computed from the captured point
cloud; however, LiDARs are typically expensive, low-resolution and slow. Cameras are cheaper
and high-resolution and 2D depth maps of the environment can be predicted from the images.
However, depth estimation from camera images is prone to errors. They cannot guarantee
safety due to issues like oversaturation, feature correspondence errors and scale ambiguity.
An alternative approach is to use active perception [Baj88, BAT18], where only the important
and required parts of the scene are accurately sensed. In this work, we propose using a
sensor that can perform active perception, i.e. a sensor that can be purposefully controlled
to sense specific regions in the environment in an intelligent manner. Programmable light
curtains [WBW+18, BWWN19] were recently proposed as controllable, light-weight, and
resource efficient sensors that measure the presence of objects intersecting any vertical 2D
ruled surface (or a ‘curtain‘) whose shape can be specified by the user (see Fig. 3.1). There
are three main advantages of using programmable light curtains over LiDARs. First, they can
Visit the CMU light curtains landing page for webpages on various components of this the-
sis: https://www.cs.cmu.edu/~ILIM/light_curtains. We have also released open source
code repositories related to various components of this thesis at the following Github organization:
https://github.com/CMU-Light-Curtains.
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1. Introduction

be cheaply constructed, since light curtains use ordinary CMOS sensors (a current lab-built
prototype costs $1000, and the price is expected to go down significantly in production). In
contrast, a 128-beam Velodyne LiDAR that is commonly used in 3D self-driving datasets like
KITTI [GLSU13] costs upwards of $100,000. Second, light curtains generate data with much
higher resolution in regions where they actively focus [BWWN19] while LiDARs sense the
entire environment and have low spatial and angular resolution. Finally, light curtains are
significantly faster than LiDARs. They can operate at 60 Hz whereas LiDARs typically operate
between 5-20 Hz.
Because they use an ordinary rolling shutter camera, light curtains combine the best of both
worlds of passive cameras (high spatial-temporal resolution and lower cost) and LiDARs
(accurate detection along the 2D curtain and robustness to scattered media like smoke/fog).
One weakness of light curtains is that they are able to sense only a subset of the environment
– a vertical ruled surface (see Fig. 5.1(c,d), Fig 3.1). In contrast, a LiDAR senses the entire
scene. To mitigate this weakness, we can take advantage of the fact that the light curtain
is a controllable sensor – we can choose where to place the light curtains. Thus, we must
intelligently place light curtains in the appropriate locations, so that they sense the most
important parts of the scene.

Figure 1.1: Active perception pipeline and methods proposed in this thesis. In this
thesis, we develop active perception systems that have three components. (1) SENSE: sensing
using light curtains in isolation or in conjuction with additional sensors such as LiDARs or
RGB camera. (2) THINK: involves inferring and predicting the state of the world from sensor
observations. We propose deep learning methods as well as probabilistic Bayesian methods for
inference. Finally, (3) ACT: planning and decision making to decide where to place the next
light curtain. We place light curtains either at the regions of highest uncertainty to maximize
information gain, place curtains to verify our predicted object locations, or combine multiple
different placement strategies in intelligent ways. We also dynamic programming to ensure
that the computed curtains satisfy physical constraints of the device. The three processes are
inter-dependent and inter-connected in a closed loop.

In this thesis, we develop the algorithmic foundations of active perception systems using pro-
grammable light curtains. The perception systems we develop all have three main components
as shown in Fig. 1.1. The three components are highly inter-dependent and inter-connected in
a closed loop:

1. SENSE: Sensing using light curtains. Light curtains can be used alone, or in conjuction
with other conventional sensors such as LiDARs or cameras.

2



2. THINK: This involves inferring and predicting the state of the world from sensor
observations. We propose both deep learning based methods as well as probabilistic
Bayesian inference methods for prediction and state estimation.

3. ACT: This involves planning and decision making to decide where to place the next
light curtain, based on the inference/predictions from the THINK component. We place
light curtains either at the regions of highest uncertainty to maximize information gain,
to verify predicted object locations by placing them at those locations, or intelligently
combining multiple curtain placement stratgies. We also develop dynamic programming
based planning methods to ensure that computed curtains are feasible and satisfy the
velocity and acceleration constraints of the light curtain device. The computed curtains
are sent to the SENSE component for imaging.

Figure 1.2: Columns: the four active perception tasks investigated in this thesis. Rows: the
methods we propose for each of the SENSE, THINK and ACT components of the active
perception pipline in order to solve each task. This thesis explores a diverse set of tasks and a
diverse set of approaches for sensing, inference and decision-making using programmable light
curtains.

We apply the above methods to various active perception tasks, as outlined in Fig. 1.2:

• Active object detection [Chapter 5]: We propose using light curtain measurements
in conjuction with a single-beam LiDAR (a sparse but accurate sensor) to detect 3D
bounding boxes around objects in a scene. We train a deep-learning based 3D object
detector to detect objects of the required semantic classes and output bounding boxes.
We place curtains at the locations of highest detector uncertainty to maximize information
gain and sense more 3D points. This incrementally and consistently improves detection
performance.
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1. Introduction

• Active depth estimation [Chapter 6]: We perform depth estimation of a scene by
combining measurements from a light curtain and a monocular RGB camera (a dense but
inaccurate sensor) using a Bayesian inference framework. A monocular depth estimator is
used to input an RGB image and output a depth distribution. We treat this distribution
as a prior and combine it with likelihoods from light curtain measurements to refine the
monocular depth estimates.

• Active safety envelopes [Chapter 7]: A “safety envelope” is a hypothetical surface
that separates a robot from all obstacles in its environment while being as close to the
object surfaces as possible. The task is to estimate the safety envelope of the scene
at each timetep. We train a deep neural network to predict the location of the safety
envelope in the next timestep from previous light curtain measurements alone. Then,
we place “verification” curtains at the predicted object locations to sense visible surfaces
and estimate and track the safety envelope across time.

• Active velocity estimation [Chapter 8]: We develop a method to explicitly predict
the velocity of each point in the scene using light curtains. We use a probabilistic Bayes
filtering approach using dynamic occupancy grids that combine conventional occupancy
grids with particle filters. After estimating the velocity and occupancy of each location
in the scene, we combine the information-gain based and verification-based placement
strategies. We use a multi-armed bandit framework to intelligently switch between
multiple strategies. This is enabled by a novel self-supervised reward function computed
at test time using light curtain placements alone, improving the accuracy of velocity
and occupancy estimation.

Constraint graph and dynamic programming [Chapter 4]: We develop a method to
incorporate the velocity and acceleration constraints of the light curtain device into a “constraint
graph”. Then we develop a planning algorithm using dynamic programming that efficiently
computes the feasible curtain that maximizes any task-specific objective while satisfying light
curtian constraints. Furthermore, we show how “random curtains” can be sampled from
the constraint graph to discover obstacles with very high probability. We develop another
dynamic programming based algorithm that analytically computes the probability of random
curtains discovering obstacles, providing theoretical safety guarantees for obstacle detection and
avoidance. The constraint graph and dynamic programming are used by all active perception
tasks based on light curtains (included in the ACT component).
Structured vs unstructured environments: The focus of this thesis is on developing
active perception methods for unstructured environements. An example of an unstructured
environment is a robot navigating an indoor building with an unknown floor plan. The building
may be crowded with human obstacles who walk in arbitrary and haphazard trajectories.
The techniques and algorithms we develop do not assume any prior knowledge about the
environment – the types of objects that may be present, the layout of the environment or
patterns of object motion. However, in highly structured settings like urban driving, it may
be beneficial to exploit the structure present in the environment. For example, light curtains
may be placed along lane markings to detect collisions from vehicles in adjacent lanes, or on
crosswalks to detect pedestrians. We do not focus on structured environments for two reasons.
First, structure is very environment-specific and may vary considerably between environements.
For example, the structure in urban driving is very different from fulfillment robots operating
in a warehouse. Second, most real environments are never perfectly structured. A self-driving
vehicle could encounter unexpected events, such as pedestrians running onto the street or
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vehicles breaking traffic laws. In order for robots to navigate safely, they must be prepared
for structure to break down anytime. Therefore, the techniques developed in this thesis are
applicable, and essential, for active light curtain perception in both structured and unstructured
environments.
Websites and code release: We have created websites and released code for various
components of this thesis. All websites can be found on the CMU light curtains landing page.
All codebases are hosted on a Github organization.

• CMU light curtains landing page: [Landing webpage1]

• Github organization for code: [Github organization2]

The Github organization and landing page contain material related to each of the following
components:

• Object detection [Website3] [Code4]: Active object detection using light curtains.

• Depth estimation [Website5] [Code6]: Active depth estimation using light curtains.

• Safety envelopes [Website7] [Code8]: Active obstacle detection and avoidance using
light curtains.

• Contraint graph [Code9]: Library containing the implementation of optimization using
the light curtain constraint graph.

• Light Curtain Simulator [Code10]: Code for simulating programmable light curtains.

1https://www.cs.cmu.edu/~ILIM/light_curtains
2https://github.com/CMU-Light-Curtains
3https://siddancha.github.io/projects/active-perception-light-curtains/
4https://github.com/CMU-Light-Curtains/ObjectDetection
5https://soulslicer.github.io/rgb-lc-fusion/
6https://github.com/CMU-Light-Curtains/DepthEstimation
7https://siddancha.github.io/projects/active-safety-envelopes-with-guarantees/
8https://github.com/CMU-Light-Curtains/SafetyEnvelopes
9https://github.com/CMU-Light-Curtains/ConstraintGraph

10https://github.com/CMU-Light-Curtains/Simulator
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CHAPTER 2
Related Work

2.1 Active perception
Active Perception encompasses a variety of problems and techniques that involve actively
controlling the sensor for improved perception [Baj88, BAT18, Wil94]. Examples include
actively modifying camera parameters [Baj88], moving a camera to look around occluding
objects [CAF18], and obtaining the next-best-view [Con85]. Prior works have used active
perception for static scenes [MHG+14, BMK14] via a series of controllable partial glimpses.
Our paper differs from past work because we use a controllable depth sensor (light curtains)
and combine it with deep learning uncertainty estimates in a novel active perception algorithm.

2.2 Programmable light curtains
Programmable light curtains were introduced in prior work [WBW+18, BWW+19] as an
adaptive depth sensor. Prior work has also explored the use of light curtains. Ancha
et. al. [ARH+20] introduced the light curtain constraint graph to compute feasible light
curtains. Bartels et. al. [BWW+19] were the first to empirically use random curtains
to quickly discover objects in a scene. However, there are several key differences from
our work. First, we solve a very different problem: while Ancha et. al. [ARH+20] use
light curtains to perform active bounding-box object detection in static scenes, whereas we
track the safety envelope of scenes with dynamic objects. Although we build upon their
constraint graph framework, we make several significant and novel contributions. Our main
contribution is the safety analysis of random light curtains, which uses dynamic programming
(DP) to produce theoretical guarantees on the probability of discovering objects. Providing
theoretical guarantees is essential to guarantee safety, and is typically a hard task for perception
systems. These works [ARH+20, BWW+19] do not provide any such guarantees. Additionally,
we extend its constraint graph (that previously encoded only velocity constraints) to also
incorporate acceleration constraints. Finally, we combine the discovery of safety envelopes
using random curtains, with an ML approach that efficiently forecasts and tracks the envelope;
this combination is novel, and we show that our method outperforms other approaches on this
task.
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2. Related Work

2.3 Object detection from point clouds

There have been many recent advances in deep learning for 3D object detection. Approaches
include representing LiDAR data as range images in LaserNet[MLK+19], using raw point
clouds [SWL19], and using point clouds in the bird’s eye view such as AVOD [KML+18],
HDNet [YLU18] and Complex-YOLO [SMAG18]. Most state-of-the-art approaches use vox-
elized point clouds, such as VoxelNet [ZT18], PointPillars [LVC+19], SECOND [YML18],
and CBGS [ZJZ+19]. These methods process an input point cloud by dividing the space
into 3D regions (voxels or pillars) and extracting features from each of region using a Point-
Net [QSMG17] based architecture. Then, the volumetric feature map is converted to 2D
features via convolutions, followed by a detection head that produces bounding boxes. We
demonstrate that we can use such detectors, along with our novel light curtain placement
algorithm, to process data from a single beam LiDAR combined with light curtains.

2.4 Next-best view planning

Next-best view (NBV) planning refers to a broad set of problems in which the objective is
to select the next best sensing action in order to solve a specific task. Typical problems
include object instance classification [WSK+15, DKMK16, DB02, SRR03] and 3D reconstruc-
tion [ISDS16, KRBS15, VGSMCLD14, DC17, HH12]. Many works on next-best view formulate
the objective as maximizing information gain (also known as mutual information) [WSK+15,
DB02, ISDS16, KRBS15, VGSMCLD14, DC17], using models such as probabilistic occupancy
grids for beliefs over states [WSK+15, ISDS16, KRBS15, VGSMCLD14, DC17]. Our method
is similar in spirit to next-best view. One could consider each light curtain placement as
obtaining a new view of the environment; we try to find the next best light curtain that
aids object detection. In Sec. 5.2.3 and Appendix 5.4, we derive an information-gain based
objective to find the next best light curtain placement.

2.5 Depth estimation from RGB images

Depth from monocular and multi-Camera RGB has been extensively studied. We focus on
a class of probabilistic depth estimation approaches that have reformulated the problem as
a prediction of per-pixel depth distribution [LGK+19] [YHR19] [CC18] [YLL+18] [ICG+18]
[XSC19]. Some of this work has passively exploited and refined [LGK+19] [XSC19] the
uncertainty in the depth values via moving cameras and multi-view camera constraints, but
have not used the capabilities of adaptive densors available.

There is a large body of prior work on depth estimation across multiple frames [LGK+19,
ZSL+19, CKBP18, ZGW+18, MSK, WPF19, PVGDVG20]. Liu et. al. [LGK+19] aggregate
per-frame depth estimates across frames using Bayesian filtering. Matthies et. al. [MSK]
use a similar Bayesian approach, but their method is only applied to controlled scenes and
restricted camera motion. Other works [ZSL+19, CKBP18, WPF19, PVGDVG20] use RNNs
for predicting depth maps at each frame. All of aforementioned works try to predict the full
2D depth map of the environment from monocular images.
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2.6 Depth from 3D sensors
Fixed-scan 3D sensors use a fixed scan light source / receiver to perceive depth. Long
range outdoor depth from these such as commercially available time-of-flight (TOF) cameras
or LiDARs provide dense metric depth with confidence values with wide usage in research
[GLSU13, CBL+20, CLS+19]. However, beside low resolution, these sensors can be prohibitively
expensive.
Adaptive sensors use a dynamically controllable light source / receiver instead. These have been
making headway in long-range outdoor applications. Adaptive sensing via focal length/baseline
variation through the use of servos and motors [MCCY18, GFMP08, NMH+05, SST18],
directionally controlled time-of-flight ranging using a MEMS mirror / laser [TWXS18, TJFK20,
YKI+18], gated depth imaging [WGRD20, GJAB+19, GS15] and sampling specific depth
profiles using programmable light curtains [BWW+19, WBW+18, ARH+20] are just some
examples. However, these methods do not seem to exploit or fuse data from RGB modalities
yet. Various work by Bergman, Nishimura et. al. [BLW20, NLMW20] and Pittaluga et.
al. [PTF+20] present sensors and algorithms for adaptive sensing via 2D angular sampling,
providing precise depth at limited number of pixels. However, our light curtain approach
performs depth sampling via adaptive depth gating, giving useful information at every pixel
at a higher resolution. Nishimura’s sensor uses a SPAD where light is spread out over the
entire field of view, limiting its range and operation outdoors in ambient light. Light curtains
however, maximize the light energy on the region of interest via triangulation.

2.7 Safe navigation
Many approaches for safety guaranteed navigation use 3D sensors like LiDARs [RVBR18,
RWR14, SAMR18] and/or cameras [RR17, BBB+19]. The sensor data is converted to
occupancy grids/maps [RVBR18, RWR14, BBB+19]; safety and collision avoidance guarantees
are provided for planning under these representations. Other works use machine learning
models to recognize unsafe, out-of-distribution inputs [RR17] or learning to predict collision
probabilites [RVBR18, RWR14]. Our work of estimating the safety envelope using a light
curtain is orthogonal to these works and can leverage those methods for path planning and
obstacle avoidance.
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CHAPTER 3
Background on Light Curtains

Programmable light curtains [WBW+18, BWWN19] are a sensor for adaptive depth sensing.
“Light curtains” can be thought of as virtual surfaces placed in the environment. They can
detect points on objects that intersect this surface. The working principle is illustrated in
Fig. 3.1(a, b).

(a) Working principle (b) Optical schematic (top view)

Figure 3.1: Illustration of programmable light curtains adapted from [BWWN19, WBW+18].
(a) An illumination plane (from the projector) and an imaging plane (of the camera) intersect
to produce a light curtain. (b) A controllable galvanometer mirror rotates synchronously with
a rolling shutter camera and images the points of intersection, Xt (called control points).

3.1 Coordinate system
Before explaining how the curtain is created, we briefly describe our coordinate system and
the basics of a rolling shutter camera. Throughout the paper, we will use the standard camera
coordinate system centered at the sensor. We assume that the z axis corresponds to depth
from the sensor pointing forward, and that the y vector points vertically downwards. Hence
the xz-plane is parallel to the ground and corresponds to a top-down view, also referred to as
the bird’s eye view.
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3.2 Rolling shutter camera
A rolling shutter camera contains pixels arranged in T number of vertical columns. Each
pixel column corresponds to a vertical imaging plane. Readings from only those visible 3D
points that lie on the imaging plane get recorded onto its pixel column. We will denote the
xz-projection of the imaging plane corresponding to the t-th pixel column by ray Rt, shown
in the top-down view in Fig. 3.1(b). We will refer to these as “camera rays”. The camera
has a rolling shutter that successively activates each pixel column and its imaging plane one
at a time from left to right. The time interval between the activation of two adjacent pixel
columns is determined by the pixel clock.

3.3 Working principle of light curtains
The latest version of light curtains [BWWN19] works by rapidly rotating a light sheet laser
using a galvo-mirror in synchrony with the motion of a vertically aligned camera’s rolling
shutter. A laser beam is collimated and shaped into a line sheet using appropriate lenses and
is reflected at a desired angle using a controllable galvanometer mirror (see Fig. 3.1(b)). The
illumination plane created by the laser intersects the active imaging plane of the camera in a
vertical line along the curtain profile (Fig. 3.1(a)). Object points intersecting the vertical line of
the ruled surface are imaged brightly in the corresponding camera column. The xz-projection
(or “top-down” projection) of this vertical line intersecting the t-th imaging plane lies on Rt,
and we call this the t-th “control point", denoted by Xt (Fig. 3.1(b)).

Light curtains have thickness: Although the illustrations in Fig. 3.1 (a, b) suggest that a
light curtain is a 2D surface, in practice it is a 3D planar slab with a thickness. This is due
to two reasons. First, the camera’s pixels are not points but have a finite area. Therefore,
the imaging plane is a pyramid originating from the camera’s aperture. Second, the laser line
sheet is not perfectly collimated; the laser beam diverges as it travels. This results in the
illumination plane also being pyramidal. The intersection of the two pyramidal volumes results
in a finite 3D volume; a visible object surface that lies anywhere in the intersection volume
is imaged by the active camera column. Therefore, light curtains need not coincide exactly
with the location of the visible object surface; the latter can be imaged if it is within the the
curtain’s thickness.

3.4 Light curtain input
The shape of a light curtain is uniquely defined by where it intersects each camera ray in
the xz-plane, i.e. the control points {X1, . . . , XT}. These will act as inputs to the light
curtain device. In order to produce the light curtain defined by {Xt}T

t=1, the galvanometer is
programmed to compute and rotate at, for each camera ray Rt, the reflection angle θt(Xt)
of the laser beam such that the laser sheet intersects Rt at Xt. By selecting a control
point on each camera ray, the light curtain device can be made to image any vertical ruled
surface [BWWN19, WBW+18].

3.5 Light curtain output
The light curtain outputs an intensity value for each camera pixel.
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• We can convert the light curtain image to a point cloud of all 3D visible points in the
scene that intersect the light curtain surface. The density of light curtain points on the
surface is usually much higher than LiDAR points. Chapter 5 uses this form of output.

• Alternatively, since a light curtain profile is specified by a control point Xt for every
camera ray Rt in the top-down view, we compute the maximum pixel intensity value
It of the t-th pixel column and treat this as the output of the light curtain for the
corresponding ray Rt. Chapter 7 uses this form of output.

3.6 Light curtain constraints
The set of realizable curtains depend on the physical constraints imposed by the real device. The
rotating galvo-mirror can operate at a maximum angular velocity ωmax and a maximum angular
acceleration αmax. Let Xt−1, Xt, Xt+1 be the control points imaged by the light curtain on
three consecutive camera rays. These induce laser angles θ(Xt−1), θ(Xt), θ(Xt+1) respectively.
Let ∆t be the time difference between when any two consecutive camera pixel columns are
actived. Let Ωt = (θ(Xt)− θ(Xt−1))/∆t be the angular velocity of the galvo-mirror at Rt.
Its angular acceleration at Rt is (Ωt+1 −Ωt)/∆t = (θ(Xt+1) + θ(Xt−1)− 2 · θ(Xt))/(∆t)2.
Then, the light curtain velocity and acceleration constraints, in terms of the control points Xt,
are:

|θ(Xt)− θ(Xt−1)| ≤ ωmax ·∆t 2 ≤ t ≤ T (3.1)
|θ(Xt+1) + θ(Xt−1)− 2θ(Xt)| ≤ αmax · (∆t)2 2 ≤ t < T (3.2)
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CHAPTER 4
Constraint Graph: Feasible Curtains,

Optimization & Probabilistic Analysis

4.1 Light curtain constraint graph

(a) (b)

Figure 4.1: (a) Light curtain constraint graph. Black dots are nodes and blue arrows are the
edges of the graph. The optimized light curtain profile is depicted as red arrows. (b) Example
uncertainty map from the detector and optimized light curtain profile in red. Black is lowest
uncertainty and white is highest uncertainty. The optimized light curtain covers the most
uncertain regions.

We encode the light curtain constraints described in Section 3.6 into a graph, as illustrated
in Figure 4.1. Each black ray corresponds to a camera ray. Each black dot on the ray is a
vertex in the constraint graph. It represents a candidate control point and can be associated
with any score that one may wish to optimize. Exactly one control point must be chosen per
We have open-sourced our planning and optimization library implementing the light curtain constraint graph
at this repository: https://github.com/CMU-Light-Curtains/ConstraintGraph.
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4. Constraint Graph: Feasible Curtains, Optimization & Probabilistic Analysis

camera ray. The optimization objective could be to choose points in such a way that they
maximize the total sum of scores. An edge between two control points indicates that the light
curtain is able to transition from one control point Xt to the next, Xt+1 without violating the
maximum velocity light curtain constraints. Thus, the maximum velocity constraint (Eqn. 6.5)
can be specified by restricting the set of edges (depicted using blue arrows). We note that the
graph only needs to be constructed once and can be done offline.

4.2 Optimal light curtain placement
In this section, we will describe an exact optimization algorithm to maximize the objective
function J(X1, . . . , XT ) = ∑T

t=1 H(Xt).

4.2.1 Constrained optimization
The control points {Xt}T

t=1, where each Xt lies on the the camera ray Rt, must be chosen
to satisfy the physical constraints of the light curtain device: |θ(Xt+1) − θ(Xt)| ≤ ∆θmax
(see Sec. ??: light curtain constraints). Hence, this is a constrained optimization problem.
We discretize the problem by considering a dense set of N discrete, equally spaced points
Dt = {X(n)

t }N
n=1 on each ray Rt. We will assume that Xt ∈ Dt for all 1 ≤ t ≤ T henceforth

unless stated otherwise. We use N = 80 in all our experiments which we found to be
sufficiently large. Overall, the optimization problem can be formulated as:

arg max
{Xt}T

t=1

T∑
t=1

H(Xt) (4.1)

where Xt ∈ Dt ∀1 ≤ t ≤ T (4.2)
subject to |θ(Xt+1)− θ(Xt)| ≤ ∆θmax, ∀1 ≤ t < T (4.3)

4.2.2 Dynamic programming for constrained optimization
The number of possible light curtain placements, |D1 × · · · × DT | = NT , is exponentially
large, which prevents us from searching for the optimal solution by brute force. However, we
observe that the problem can be decomposed into simpler subproblems. In particular, let us
define J∗

t (Xt) as the optimal sum of uncertainties of the tail subproblem starting from Xt i.e.

J∗
t (Xt) = max

Xt+1,...,XT

H(Xt) +
T∑

k=t+1
H(Xk); (4.4)

subject to |θ(Xk+1)− θ(Xk)| ≤ ∆θmax, ∀ t ≤ k < T (4.5)

If we were able to compute J∗
t (Xt), then this would help in solving a more complex subproblem

using recursion: we observe that J∗
t (Xt) has the property of optimal substructure, i.e. the

optimal solution of J∗
t−1(Xt−1) can be computed from the optimal solution of J∗

t (Xt) via

J∗
t−1(Xt−1) = H(Xt−1)+ max

Xt∈Dt

J∗
t (Xt)

subject to |θ(Xt)− θ(Xt−1)| ≤ ∆θmax
(4.6)

Because of this optimal substructure property, we can solve for J∗
t−1(Xt−1) via dynamic

programming. We also note that the solution to maxX1 J∗
1 (X1) is the solution to our original

constrained optimization problem (Eqn. 1-3).
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We thus perform the dynamic programming optimization as follows: the recursion from Eqn. 4.6
can be implemented by first performing a backwards pass, starting from T and computing
J∗

t (Xt) for each Xt. Computing each J∗
t (Xt) takes only O(Bavg) time where Bavg is the

average degree of a vertex (number of edges starting from a vertex) in the constraint graph,
since we iterate once over all edges of Xt in Eqn. 4.6. Then, we do a forward pass, starting
with arg maxX1∈D1 J∗

1 (X1) and for a given X∗
t−1, choosing X∗

t according to Eqn. 4.6. Since
there are N vertices per ray and T rays in the graph, the overall algorithm takes O(NTBavg)
time; this is a significant reduction from the O(NT ) brute-force solution.

4.2.3 Hierarchical optimization objective for smoothness
If two light curtain placements produce the same sum of uncertainties, which one should we
prefer? We propose a hierarchical optimization objective that prefers smoother light curtains.
We show that this also has the optimal substructure property and can be optimized in a very
similar manner.
Section 4.2 described an efficient algorithm for optimally placing light curtains to maxi-
mize coverage of high uncertainy regions. However, if two valid light curtain placements
{X′

t}T
t=1, {X′′

t }T
t=1 have equal sum of uncertainties, which one should we prefer? Distinct light

curtain placements can have equal sums of uncertainties due to regions where the detector
uncertainty is uniform. In such cases, we can choose to prefer curtains that are smooth, i.e.
the laser angle has to change the least on average. We define a hierarchical objective function
that ranks two placements as follows:

JH({X′
t}T

t=1) ≥ JH({X′′
t }T

t=1) iff



J({X′
t}T

t=1) > J({X′′
t }T

t=1)
or

J({X′
t}T

t=1) = J({X′′
t }T

t=1)
and∑T −1

t=1 |θ(X′
t+1)− θ(X′

t)|2

≤ ∑T −1
t=1 |θ(X′′

t+1)− θ(X′′
t )|2

This hierarchical objective prefers light curtains that cover a higher sum of uncertainties. But
if two curtains have the same sum, this objective prefers the one with a lower sum of squared
laser angle deviations. We note that this hierarchical objective JH(X1, . . . , XT ) also satisfies
optimal substructure. In fact, it obeys the same recursive optimality equation as Equation 4.6.
Hence, it can be accommodated by our approach with minimal modification to our algorithm.
Additionally, it can be executed with no additional overhead in O(NTBavg) time, and leads to
smoother light curtains.

4.3 Extended constraint graph
The light curtain constraint graph, as described in Section 4.1 computes feasible light curtains
that only satisfy the velocity constraints of the light curtain. Let us denoted this by G. G
has two components: a set of nodes Nt associated with each camera ray and edges between
nodes Nt and Nt+1 on consecutive camera rays. Nodes are designed to store information that
fully captures the state of the galvo-mirror when imaging the ray Rt. An edge exists from Nt

to Nt+1 iff the galvo-mirror is able to transition from the state defined by Nt to the state
defined by Nt+1 without violating any of velocity constraints (Eqn. (3.1)).
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Figure 4.2: Extended constraint graph: light curtain constraint graph with our proposed
extension. Black dots are control points that can be imaged, and blue ovals are extended
nodes that contain two control points. Any path in this graph (shown in green) is a valid light
curtain that satisfies velocity and acceleration constraints.

In Section 4.1, we defined the state to be Nt = Xt (i.e. contain only one control point). But
this representation does not ensure that acceleration constraints of Eqn. 3.2, that depend on
three consecutive control points, are satisfied. This can produce light curtain profiles which
require the galvo-mirror to change its angular velocity more abruptly than its physical torque
limits can allow, resulting in hardware errors. Thus, we extend the definition of a node Nt at
t to store control points on the current ray and the previous ray, as Nt = (Xt−1, Xt) (see
Fig. 4.2 (c)). Intuitively, N contains information about the angular position and velocity
of the galvo-mirror. This allows us to incorporate acceleration constraints by creating an
edge between nodes (Xt−1, Xt) and (Xt, Xt+1), iff Xt−1, Xt, Xt+1 satisfy the velocity and
acceleration constraints defined in Equations (3.1, 3.2). Thus, any path in the extended
graph G represents a feasible light curtain that satisfies both constraints. The acceleration
constraints also serve to limit the increase in the number of nodes with feasible edges, keeping
the graph size manageable.

4.4 Random curtains & theoretical guarantees
In this section, we show how a “random curtain“’, i.e. a feasible curtain that is placed at
random locations in the scene, can be sampled from the extended constraint graph G. We also
show how to analytically compute the probability of a random curtain detecting an obstacle,
which helps to probabilistically guarantee obstacle detection of our overall method.

4.4.1 Sampling random curtains from the constraint graph
First, we need to define a probability distribution over the set of valid curtains in order
to sample from it. We do so by defining, for each node Nt = (Xt−1, Xt), a transition
probability distribution P (Xt+1 | Xt−1, Xt). This denotes the probability of transitioning
from imaging the control points Xt−1, Xt on the previous and current camera rays to the
control point Xt+1 on the next ray. We constrain P (Xt+1 | Xt−1, Xt) to equal 0 if there
is no edge from node (Xt−1, Xt) to node (Xt, Xt+1); an edge will exist iff the transition
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Xt−1 → Xt → Xt+1 satisfies the light curtain constraints. Thus, P (Xt+1 | Xt−1, Xt) defines
a probability distribution over the neighbors of Nt in the constraint graph.

The transition probability distribution enables an algorithm to sequentially generate a random
curtain. We begin by sampling the control points N2 = (X1, X2) according to an initial
probability distribution P (N2). At the t-th iteration, we sample Xt+1 according to the
transition probability distribution Xt+1 ∼ P (Xt+1 | Xt−1, Xt) and add Xt+1 to the current
set of sampled control points. After (T − 1) iterations, this process generates a full random
curtain. Pseudo-code for this process is found in Algorithm 1 in Appendix 4.4.3. Our
random curtain sampling process provides the flexibility to design any initial and transition
probability distribution. See Appendix 4.4.3 for a discussion on various choices of the transition
probability distribution, where we also provide a theoretical and empirical justification to use
one distribution in particular.

4.4.2 Theoretical guarantees for random curtains
In this section, we first describe a procedure to detect objects in a scene using the output of a
random light curtain placement. Then, we develop a method that runs dynamic programming
on G to analytically compute a random curtain’s probability of detecting a specific object.
This provides probabilistic safety guarantees on how well a random curtain can discover the
safety envelope of an object.

Detection using light curtains: Consider an object in the scene whose visible surface
intersects each camera ray at the positions O1:T . This representation captures the position,
shape and size of the object from the top-down view. Let {Xt}T

t=1 be the set of control points
for a light curtain placed in the scene. The light curtain will produce an intensity It(Xt, Ot) at
each control point Xt that is sampled by the light curtain device. Note that It is a function of
the position of the object as well as the position of the light curtain; the intensity increases as
the distance between Xt and Ot reduces and is the highest when Xt and Ot coincide. We say
that an object has been detected at control point Xt if the intensity It is above a threshold τ ;
the intensity threshold is used to account for noise in the image. We define a binary detection
variable to indicate whether a detection of an object occurred at position Ot at control point
Xt as dt(Xt, Ot) = [It(Xt, Ot) > τ ], where [·] is the indicator function. We declare that
an object has been detected by a light curtain if it is detected on any of its control points.
Formally, we define a binary detection variable to indicate whether a detection of object O1:T
occurred at any of its control point X1:T as d(X1:T , O1:T ) = ∨T

t=1 dt(Xt, Ot), (where ∨ is
‘logical or’ operator). Our objective is then to compute the detection probability, denoted as
P (d(X1:T , O1:T )), which is the probability that a curtain sampled from G (using the sampling
procedure described in Sec. 4.4.1) will detect the object O1:T ; below we will use the simpler
notation P (d) to denote the detection probability.

Theoretical guarantees using dynamic programming: The simplest method to compute
the detection probability for a given object is to sample a large number of random curtains
and output the average number of curtains that detect the object. However, a large number
of samples would be needed to provide accurate estimates of the detection probability; further,
this procedure is stochastic and the probability estimate will only be approximate. Instead, we
propose utilizing the known structure of the constraint graph and the transition probabilities;
we will apply dynamic programming to compute the detection probability both efficiently and
analytically.
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Our analytic method for computing the detection probability proceeds as follows: we first
compute the value of the detection event dt(Xt, Ot) at every possible control point Xt that is
part of a node in the constraint graph G i.e. we compute whether or not a curtain placed at
Xt is able to detect the object. Given the positions O1:T of an object, as well as the physical
properties of the light curtain device (intrinsics of the camera and the power, thickness and
divergence of the laser beam), we use a light curtain simulator to compute It(Xt, Ot) using
standard raytracing and rendering, for any arbitrary control point Xt.
To compute the detection probability P (d), we first define the notion of a “sub-curtain,"
which is a subset of the control points Xt:T which start at ray Rt and ends on ray RT . We
can decompose the overall problem of computing P (d) into simpler sub-problems by defining
the sub-curtain detection probability Pdet(Xt−1, Xt). This is the probability that any random
sub-curtain starting at (Xt−1, Xt) and ending on the last camera ray RT detects the object O
at some point between rays Rt and RT . Using this definition, we can write the sub-curtain
detection probability as Pdet(Xt−1, Xt) = P (∨T

t′=t dt′(Xt′ , Ot′) | Xt−1, Xt).
Note that the overall curtain detection probability can be written in terms of the sub-curtain
detection probabilities of the second ray (the first set of nodes in the graph) as

P (d) =
∑

X1,X2

Pdet(X1, X2) P (X1, X2). (4.7)

This is the sum of the detection probabilities of a random curtain starting from the initial
nodes Pdet(X1, X2), weighted by the probability of the nodes being sampled from the initial
distribution P (X1, X2). Conveniently, the sub-curtain detection probabilities satisfy a simple
recursive equation:

Pdet(Xt−1, Xt) =


1 if dt(Xt, Ot) = 1

∑
Xt+1

Pdet(Xt, Xt+1) P (Xt+1 | Xt−1, Xt) otherwise
(4.8)

Intuitively, if the control point Xt is able to detect the object, then the sub-curtain detection
probability is 1 regardless of how the sub-curtain is placed on the later rays. If not, then the
detection probability should be equal to the sum of the sub-curtain detection probabilities of
the nodes the curtain transitions to, weighted by the transition probabilities.
This recursive relationship can be exploited by successively computing the sub-curtain detection
probabilities from the last ray to the first. The sub-curtain detection probabilities on the last ray
will simply be either 1 or 0, based on whether the object is detected there or not. After having
computed sub-curtain detection probabilities for all rays between t + 1 and T , the probabilities
for nodes at ray t can be computed using the above recursive formula (Eqn. 4.8). Finally,
after obtaining the probabilities for nodes on the second ray, the overall curtain detection
probability can be computed as described using Eqn. 4.7. Pseudocode for this method can be
found in Algorithm 2 in Appendix 4.4.4. A discussion on the computational complexity of the
extended constraint graph G (which contains more nodes and edges than G) can be found in
Appendix 4.5.
We have created a web-based demo (available on the project website) that computes the
probability of a random curtain detecting an object with a user-specified shape in the top-down
view. It also performs analysis of the detection probability as a function of the number of light
curtains placed. In Section 7.3.1, we use this method to analyze the detection probability
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of random curtains as a function of the object size and number of curtain placements. We
compare it against a sampling-based approach and show that our method gives the same
results but with an efficient analytical computation.

4.4.3 Transition distributions for sampling random curtains
We first describe, in Algorithm 35 the procedure to sample a random curtain from the
extended constraint graph G by successively generating it using a transition probability
function P (Xt+1 | Xt−1, Xt). The only constraint on P (Xt+1 | Xt−1, Xt) is that it must
equal to 0 if Xt−1, Xt, Xt+1 do not satisfy both the velocity and acceleration constraints of
Equations (3.1, 3.2).

Algorithm 4.1: Sampling a random curtain from G
/* Inputs */

1 G ← extended constraint graph
2 P (Xt+1 | Xt−1, Xt)← transition prob. distribution
3 P ((X1, X2))← initial probability distribution
4

/* Progressively generate curtain */
5 Curtain ← {}
6

/* Initialization */
7 Sample (X1, X2) ∼ P ((X1, X2))
8 Curtain ← {X1, X2}
9

/* Iteration */
10 for t = 2 to T − 1 do
11 Xt+1 ∼ P (Xt+1 | Xt−1, Xt)
12 Curtain ← Curtain ∪ {Xt+1}
13 end
14

15 return Curtain

We initialize by sampling a location N2 = (X1, X2) according to an initial sampling distribution.
At the (t− 1)-th iteration, we will have sampled the t− 1 nodes (N2, . . . , Nt) corresponding
to the first t control points (X1, . . . , Xt) of the random curtain. At the t-th iteration, we
sample Xt+1 according to the transition probability distribution Xt+1 ∼ P (Xt+1 | Xt−1, Xt)
and add Xt+1 to the current set of control points. After all iterations are over, this algorithm
generates a complete random curtain.

The above procedure to sample random curtain provides the flexibility to design any initial and
transition probability distribution functions. Then, what are good candidate distributions? We
use random curtains to detect the presence of objects in the scene whose location is unknown.
Hence, the objective is to find the light curtian sampling distribution that maximizes the
probability of detection of an object that might be placed at any arbitrary location in a scene.
This objective will be achieved by random curtains that cover a large area. We now discuss a
few sampling methods and qualitatively evaluate them in terms of the area covered by random
curtains generated from them.
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(a) Uniform sampling of neighbors (b) Uniform linear sampling of set-
points

(c) Uniform area sampling of setpoints

Figure 4.3: Qualitative comparision of the coverage of random light curtains under different
transition probability distributions. Sampled random curtains are shown in red. (a) Uniform
neighbor sampling : for a given node, its neighbors on the next camera ray are sampled
uniformly at random. This can produce random curtains that are at a constant distance
away from the device. (b) Uniform linear setpoint sampling : for every camera ray, a setpoint
distance r ∈ [0, rmax] is sampled uniformly at random. Then the neighbor closest to the
setpoint is chosen. This has significantly higher coverage, but is biased towards sampling
locations close to the device. (c) Uniform area setpoint sampling : for every camera ray, a
setpoint distance r ∈ [0, rmax] is sampled with a probability proportional to r. This assigns a
higher probability to a larger r, and corresponds to uniform area sampling. Then the neighbor
closest to the setpoint is chosen. This method qualitatively exhibits the best coverage.

1. Uniform neighbor sampling: Perhaps the simplest transition probability distribution
P (Xt+1 | Xt−1, Xt) for a given extended node (Xt−1, Xt) is to select a neighboring control
point Xt+1 (that is connected by a valid edge originating from the node) with uniform proba-
bility. However, since the distribution does not take into account the physical locations of
the current control point, it does not explicitly try to maximize coverage. To illustrate this,
consider a random curtain that starts close to light curtain device. If it were to maximize
coverage, the galvanometer would need to rotate so that the light curtain is placed farther
from the device on subsequent camera rays. However, since its neighboring nodes are se-
lected at random, the sampled locations on the next ray are equally likely to be nearer to
the device than farther away from it. This can produce random curtains as shown in Fig. 4.3 (a).

2. Uniform linear setpoint sampling: a more principled way to sample neighbors is inspired
by rapidly-exploring random trees (RRTs), which are designed to quickly explore and cover
a given space. During tree expansion, an RRT first randomly samples a setpoint location,
and selects the vertex that is closest to that location. We adopt a similar procedure. For
any current node (Xt−1, Xt), we first sample a setpoint distance r ∈ [0, rmax] uniformly at
random on a line along the camera ray. The probability density of r is a constant and equal
to P (r) = 1/rmax. Then, we select a valid neighbor Xt+1 that is closest to this setpoint
location among all valid neighbors. Let us again consider the situation described in the previous
approach, where the current node is located close to the light curtain device. When a setpoint
is sampled uniformly along the next camera ray, there is high probability that it will correspond
to a location that is farther away from the current node. Hence, the neighboring location
Xt+1 that is chosen on the next ray will likely lie away from the device as well. A random
curtain sample generated from this distribution is shown in Fig. 4.3 (b). It tends to alternate
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between traversing near regions and far regions of the space in front of the curtain, covering a
larger area than the previous sampling approach.

3. Uniform area setpoint sampling: We use the setpoint sampling approach described
above, but revisit how the setpoint itself is sampled. Previously, the setpoint r ∈ [0, rmax]
was sampled uniformly at random on the line along the ray, with P (r) = 1/rmax. Now, we
propose an alternate sampling distribution and provide some theoretical justification. Since we
want to uniformly cover the area in front of the light curtain device, consider the following
experiment. Let us sample a point (x, y) uniformly from the area within a circle of radius
rmax (or equivalently, within any sector of that circle). Then the cumulative distribution
function of r =

√
x2 + y2 is P (r < r′) = πr′2/πr2

max (area of the smaller circle divided by
the area of entire circle), which implies that the probability density function of r is equal
to P (r) = 2r/r2

max. This suggests that we must assign a higher probability to a larger
r (proportional to r), since a larger area exists away from the center of the circle than
near the center. Hence, we sample the setpoint r from P (r) = 2r/r2

max, by first sampling
s ∼ Uniform(0, r2

max) and then setting r =
√

s. Finally, we select the valid neighbor Xt+1 on
the next ray that is closest to this setpoint. Since this method is motivated by sampling areas
rather than sampling along a line, we call this approach “area setpoint sampling”. An example
curtain sampled using this approach is visualized in Fig. 4.3 (c), which generally exhibits the
best coverage among all methods. We use this method to sample random light curtains for all
experiments in this paper.

4.4.4 Dynamic programming for computing detection probability
To compute the quantity P (d), we first decompose the overall problem into smaller subproblems
by defining the sub-curtain detection probability Pdet(Xt−1, Xt) = P (∨T

t′=t dt | Xt−1, Xt).
This is the probability that a random curtain starting on the extended node (Xt−1, Xt) and
ending on the last camera ray, detects the object O between rays Rt and RT . Note that the
overall detection probability can be written in terms of the sub-curtain detection probabilities
of the second ray as P (d) = ∑

S2 P (X1, X2) · Pdet(X1, X2). Then we iterate over camera
rays from RT to R2. The node detection probabilities on the last ray will simply be either 1 or
0, based on whether the object is detected at the node or not. After having computed node
detection probabilities for all rays between t + 1 and T , the probabilities for nodes at ray t can
be computed using a recursive formula. Finally, after obtaining the probabilities for nodes on
the initial rays, the overall detection probabilities can be computed as described previously.

4.5 Computational complexity of the extended
constraint graph

In this section, we discuss the computational complexity associated with the extended constraint
graph. Let K be the number of discretized control points per camera ray in the constraint
graph, and let T be the number of camera rays.

Constraint graph size: in the original constraint graph G of Ancha et. al. [ARH+20], since
a node Nt = Xt contains only one control point, there can be O(K) nodes per camera ray
and O(K2) edges between consecutive camera rays. This means that there are O(TK) nodes
and O(TK2) edges in the graph.
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Algorithm 4.2: Dynamic programming to compute detection probabilities G
/* Inputs */

1 G ← extended constraint graph
2 P (Xt+1 | Xt−1, Xt)← transition prob. distribution
3 P ((X1, X2))← initial probability distribution
4 {O1, . . . , OT} ← ground truth object locations
5 τ ← detection intensity threshold
6

7 St ← the set of nodes on the t-th camera ray in the constraint graph.
8

/* Detection at each location */
9 forall Xt ∈ St, 1 ≤ t ≤ T do

10 It(Xt | Ot)← intensity using rendering
11 dt(Xt | Ot)← [It(Xt | Ot) > τ ]
12 end
13

/* Initializing last ray */
14 for (XT −1, XT ) ∈ ST do
15 Pdet(XT −1, XT )← dt(XT | OT )
16 end
17

/* Dynamic programming loop */
18 for t = T − 1 to 2 do
19 for (XT −1, XT ) ∈ St do
20 if dt(Xt, Ot) = 1 then
21 Pdet(XT −1, XT )← 1
22 end
23 else
24 Pdet(XT −1, XT )← ∑

XT +1 Pdet(XT , XT +1) · P (Xt+1 | Xt−1, Xt)
25 end
26 end
27 end
28

/* Initial ray */
29 P (d)← 0
30 for (X1, X2) do
31 P (d)← P (d) + P (X1, X2)·
32 Pdet(X1, X2)
33 end
34

35 return P (d)
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However, in the extended constraint graph G, each node Nt = (Xt−1, Xt) contains a pair of
control points. Hence, there can be up to O(K2) nodes per camera ray and O(K4) edges
between consecutive camera rays! This implies that the total nodes and edges in the graph
can be up to O(TK2) and O(TK4) respectively.
Dynamic programming: dynamic programming involves visiting each node and each edge
in the graph once. Therefore, the worst-case computation time of dynamic programming
in the extended constraint graph, namely O(TK4), might seem prohibitively large at first.
However, the additional acceleration constraints in G can significantly limit the increase in
the number of nodes and edges. Additionally, we perform graph pruning as a post-processing
step, to remove all nodes in the graph that do not have any edges. Since the topology of the
constraint graph is fixed, the graph creation and pruning steps can be done offline and only
once. These optimizations enable our dynamic programming procedure to be very efficient, as
shown in Sec. 7.3.1. That being said, any slow down in dynamic programming is generally
acceptable because it is only used for offline probabilistic analysis.
Random curtain generation: random curtains are placed by our online method. Fortunately,
generating random curtains from the constraint graph is very fast. It involves a single forward
pass (random walk) through the graph, visiting exactly one node per ray. It also involves
parsing each visited node’s transition probability distribution vector, whose length is equal to
the number of edges of that node. Since both G and G can have at most K edges per node,
the runtime of generating a random curtain is O(TK) (for both G and G). In practice, a large
number of random curtains can be precomputed offline.
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CHAPTER 5
Active Object Detection

5.1 Introduction
In this work, we propose a method for 3D object detection using programmable light curtains.
The task of 3D object detection involves identify tight 3D bounding boxes around objects
belonging to pre-defined semantic classes such as cars, pedestrians etc. We propose to use a
deep neural network’s prediction uncertainty as a guide for determining how to actively sense an
environment. Our insight is that if a controllable sensor images the regions which the network
is most uncertain about, the data obtained from those regions can help resolve the network’s
uncertainty and improve recognition. Conveniently, most deep learning based recognition
systems output confidence maps, which can be used for this purpose when converted to an
appropriate notion of uncertainty.

Figure 5.1: Object detection using light curtains. (a) Scene with 4 cars; ground-truth boxes
shown in green. (b) Sparse green points are from a single-beam LiDAR; it can detect only
two cars (red boxes). Numbers above detections boxes are confidence scores. Uncertainty
map in greyscale is displayed underneath: whiter means higher uncertainty. (c) First light
curtain (blue) is placed to optimally cover the most uncertain regions. Dense points (green)
from light curtain results in detecting 2 more cars. (d) Second light curtain senses even more
points and fixes the misalignment error in the leftmost detection.
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Given neural network uncertainty estimates, we show how a light curtain can be placed to
optimally cover the regions of maximum uncertainty. First, we use an information-gain based
framework to propose placing light curtains that maximize the sum of uncertainties of the
covered region (Sec. 5.2.3, Appendix 5.4). However, the structure of the light curtain and
physical constraints of the device impose restrictions on how the light curtain can be placed.
We pre-compute our previously defined “constraint graph”, which describes all possible light
curtain placements that respect these physical constraints. Using our optimization approach
based on dynamic programming, we efficiently search over all possible feasible paths in the
constraint graph and maximize this objective (Sec. 4.2). This is a novel approach to constrained
optimization of a controllable sensor’s trajectory which takes advantage of the properties of
the problem we are trying to solve.
Our proposed active perception pipeline for 3D detection proceeds as follows. We initially
record sparse data with an inexpensive single beam LiDAR sensor that performs fixed 3D
scans. This data is input to a 3D point cloud object detector, which outputs an initial set of
detections and confidence estimates. These confidence estimates are converted into uncertainty
estimates, which are used by our dynamic programming algorithm to determine where to place
the first light curtain. The output of the light curtain readings are again input to the 3D
object detector to obtain refined detections and an updated uncertainty map. This process of
estimating detections and placing new light curtains can be repeated multiple times (Fig. 7.7).
Hence, we are able to sense the environment progressively, intelligently, and efficiently.
We evaluate our algorithm using two synthetic datasets of urban driving scenes [GWCV16,
ZBGGV+19]. Our experiments demonstrate that our algorithm leads to a monotonic improve-
ment in performance with successive light curtain placements. We compare our proposed
optimal light curtain placement strategy to multiple baseline strategies and find that they are
significantly outperformed by our method. To summarize, our contributions are the following:

• We propose a method for using a deep learning based 3D object detector’s prediction
uncertainty as a guide for active sensing (Sec. 5.2.2).

• Given a network’s uncertainty, we derive an optimization objective to decide where
to place light curtains using the principle of maximizing information gain (Sec. 5.2.3,
Appendix 5.4).

• Our novel contribution is to encode the physical constraints of the device into a graph
and use dynamic-programming based graph optimization to efficiently maximize the
objective while satisfying the physical constraints (Sec. 5.2.3, 4.2).

• We show how to train such an active detector using online light curtain data generation
(Sec. 5.2.4).

• We empirically demonstrate that our approach successively improves detection per-
formance over LiDAR and is significantly better compared to a number of baseline
approaches (Sec. 7.3).

The project webpage for this chapter can be found at:
https://siddancha.github.io/projects/active-perception-light-curtains/.
We have open sourced our code for active object detection using programmable light curtains at:
https://github.com/CMU-Light-Curtains/ObjectDetection.
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Figure 5.2: Our method for detecting objects using light curtains. An inexpensive single-beam
lidar input is used by a 3D detection network to obtain rough initial estimates of object
locations. The uncertainty of the detector is used to optimally place a light curtain that covers
the most uncertain regions. The points detected by the light curtain (shown in green in the
bottom figure) are input back into the detector so that it can update its predictions as well as
uncertainty. The new uncertainty maps can again be used to place successive light curtains in
an iterative manner, closing the loop.

5.2 Approach

5.2.1 Overview
Our aim is to use light curtains for detecting objects in a 3D scene. The overall approach
is illustrated in Fig. 7.7. We use a voxel-based point cloud detector [YML18] and train it to
use light curtain data without any architectural changes. The pipeline illustrated in Fig. 7.7
proceeds as follows.

To obtain an initial set of object detections, we use data from an inexpensive single-beam
LiDAR as input to the detector. This produces rough estimates of object locations in the scene.
Single-beam LiDAR is inexpensive because it consists of only one laser beam as opposed to
64 or 128 beams that are common in autonomous driving. The downside is that the data
from the single beam contains very few points; this results in inaccurate detections and high
uncertainty about object locations in the scene (see Fig. 5.1b).

Alongside bounding box detections, we can also extract from the detector an “uncertainty
map" (explained in Sec. 5.2.2). We then use light curtains, placed in regions guided by the
detector’s uncertainty, to collect more data and iteratively refine the object detections. In
order to get more data from the regions the detector is most uncertain about, we derive an
information-gain based objective function that sums the uncertainties along the light curtain
control points (Sec. 5.2.3 and Appendix 5.4), and we develop a constrained optimization
algorithm that places the light curtain to maximize this objective (Sec. 4.2).

Once the light curtain is placed, it returns a dense set of points where the curtain intersects
with visible objects in the scene. We maintain a unified point cloud, which we define as the
union of all points observed so far. The unified point cloud is initialized with the points from
the single-beam LiDAR. Points from the light curtain are added to the unified point cloud and
this data is input back into the detector. Note that the input representation for the detector
remains the same (point clouds), enabling the use of existing state-of-the-art point cloud
detection methods without any architectural modifications.
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As new data from the light curtains are added to the unified point cloud and input to the
detector, the detector refines its predictions and improves its accuracy. Furthermore, the
additional inputs cause the network to update its uncertainty map; the network may no longer
be uncertain about the areas that were sensed by the light curtain. Our algorithm uses the
new uncertainty map to generate a new light curtain placement. We can iteratively place
light curtains to cover the current uncertain regions and input the sensed points back into the
network, closing the loop and iteratively improving detection performance.

5.2.2 Extracting uncertainty from the detector
The standard pipeline for 3D object detection [ZT18, YML18, LVC+19] proceeds as follows.
First, the ground plane (parallel to the xz-plane) is uniformly tiled with “anchor boxes";
these are reference boxes used by a 3D detector to produce detections. They are located
on points in a uniformly discretized grid G = [xmin, xmax] × [zmin, zmax]. For example, a
[−40m, 40m]× [0m, 70.4m] grid is used for detecting cars in KITTI [GLSU13]. A 3D detector,
which is usually a binary detector, takes a point cloud as input, and produces a binary
classification score p ∈ [0, 1] and bounding box regression offsets for every anchor box. The
score p is the estimated probability that the anchor box contains an object of a specific class
(such as car/pedestrian). The detector produces a detection for that anchor box if p exceeds
a certain threshold. If so, the detector combines the fixed dimensions of the anchor box with
its predicted regression offsets to output a detection box.

We can convert the confidence score to binary entropy H(p) ∈ [0, 1] where H(p) = −p log2 p−
(1 − p) log2(1 − p). Entropy is a measure of the detector’s uncertainty about the presence
of an object at the anchor location. Since we have an uncertainty score at uniformly spaced
anchor locations parallel to the xz-plane, they form an “uncertainty map” in the top-down
view. We use this uncertainty map to place light curtains.

5.2.3 Information gain objective
Based on the uncertainty estimates given by Sec. 5.2.2, our method determines how to place
the light curtain to sense the most uncertain/ambiguous regions. It seems intuitive that sensing
the locations of highest detector uncertainty can provide the largest amount of information
from a single light curtain placement, towards improving detector accuracy. As discussed
in Sec. ??, a single light curtain placement is defined by a set of T control points {Xt}T

t=1.
The light curtain will be placed to lie vertically on top of these control points. To define an
optimization objective, we use the framework of information gain (commonly used in next-best
view methods; see Sec. 2.4) along with some simplifying assumptions (see Appendix 5.4).
We show that under these assumptions, placing a light curtain to maximize information gain
(a mathematically defined information-theoretic quantity) is equivalent to maximizing the
objective J(X1, . . . , XT ) = ∑T

t=1 H(Xt), where H(X) is the binary entropy of the detector’s
confidence at the anchor location of X. When the control point X does not exactly correspond
to an anchor location, we impute H(X) by nearest-neighbor interpolation from the uncertainty
map. Please see Appendix 5.4 for a detailed derivation.

5.2.4 Training active detector with online training data generation
We now describe our approach to train 3D point cloud detectors with data from light curtains
and single-beam lidar. At each training iteration t, we retrieve a scene St from the training
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dataset. To create the input point cloud, we choose to either use the single-beam LiDAR
data or k light curtain placements (1 ≤ k ≤ K), each of them with equal probability. For
generating the k-th light curtain data, we start with the single-beam LiDAR point cloud. Then
we successively perform a forward pass through the detector network with the current weights
to obtain an uncertainty map. We compute the optimal light curtain placement for this map,
gather points returned from placing this curtain, and finally, fuse the points back into the
input point cloud. This cycle is repeated k times to obtain the input point cloud to train on.
Generating light curtain data in such an online fashion ensures that the input distribution
doesn’t diverge from the network weights during the course of training. See Appendix 5.5 for
more algorithmic details and an ablation experiment that evaluates the importance of online
training data generation.

5.3 Experiments

Datasets: To evaluate our algorithm, we need dense ground truth depth maps to simulate
an arbitrary placement of a light curtain. However, standard autonomous driving datasets,
such as KITTI [GLSU13] and nuScenes [CBL+19], contain only sparse LiDAR data, and
hence the data is not suitable to accurately simulate a dense light curtain to evaluate our
method. To circumvent this problem, we demonstrate our method on two synthetic datasets
that provide dense ground truth depth maps, namely the Virtual KITTI [GWCV16] and
SYNTHIA [ZBGGV+19] datasets. Virtual KITTI is a photo-realistic synthetic video dataset
designed for video understanding tasks [GWCV16]. It contains 21,160 frames (10,630 unique
depth maps) generated from five different virtual worlds in urban driving settings design to
closely resemble five scenes in the KITTI dataset, under different camera poses and weather
conditions. It provides ground truth depth maps and 3D bounding boxes. We use four scenes
(ids: 0001, 0006, 0018, 0020) as our training set, and one scene (id: 0002) as our test set.

We also use the latest version of the SYNTHIA dataset [ZBGGV+19] designed for active
learning purposes. It is a large dataset containing photo-realistic scenes from urban driving
scenarios, and provides ground truth depth and 3D bounding box annotations. It contains 191
training scenes (∼96K frames) and 97 test scenes (∼45K frames).

Evaluation metrics: We evaluate using common 3D detection metrics: mean average
precision (mAP) of 3D bounding boxes (denoted as 3D mAP) and of 2D boxes in the bird’s
eye view (denoted as BEV mAP). We also evaluate using two different IoU overlap thresholds
of 0.5 and 0.7 between detection boxes and ground-truth boxes to be considered true positives.

Our experiments demonstrate the following: First, we show that our method for successive
placement of light curtains improves detection performance; particularly, there is a significant
increase between the performance of single-beam LiDAR and the performance after placing the
first light curtain. We also compare our method to multiple ablations and alternative placement
strategies that demonstrate that each component of our method is crucial to achieve good
performance. Finally, we show that our method can generalize to many more light curtain
placements at test time than the method was trained on. In the appendix, we perform further
experiments that include evaluating the generalization of our method to noise in the light
curtain data, an ablation experiment for training with online data generation (Sec. 5.2.4), and
efficiency analysis.
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5.3.1 Comparison with varying number of light curtains
We train our method using online training data generation simultaneously on data from single-
beam LiDAR and one, two, and three light curtain placements. We perform this experiment
for both the Virtual KITTI and SYNTHIA datasets. The accuracies on their tests sets are
reported in Table 5.1.

Virtual KITTI SYNTHIA
3D mAP BEV mAP 3D mAP BEV mAP

0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU
Single Beam Lidar 39.91 15.49 40.77 36.54 60.49 47.73 60.69 51.22
Single Beam Lidar
(separate model) 42.35 23.66 47.77 40.15 60.69 48.23 60.84 57.98

1 Light Curtain 58.01 35.29 58.51 47.05 68.79 55.99 68.97 59.63
2 Light Curtains 60.86 37.91 61.10 49.84 69.02 57.08 69.17 67.14
3 Light Curtains 68.52 38.47 68.82 50.53 69.16 57.30 69.25 67.25

Table 5.1: Performance of the detector trained with single-beam LiDAR and up to three light
curtains. Performance improves with more light curtain placements, with a significant jump at
the first light curtain placement.
Note that there is a significant and consistent increase in the accuracy between single-beam
LiDAR performance and the first light curtain placement (row 1 and row 3). This shows that
actively placing light curtains on the most uncertain regions can improve performance over
a single-beam LiDAR that performs fixed scans. Furthermore, placing more light curtains
consistently improves detection accuracy.
As an ablation experiment, we train a separate model only on single-beam LiDAR data (row
2), for the same number of training iterations. This is different from row 1 which was trained
with both single beam LiDAR and light curtain data but evaluated using only data for a single
beam LiDAR. Although training a model with only single-beam LiDAR data (row 2) improves
performance over row 1, it is still significantly outperformed by our method which uses data
from light curtain placements.
Noise simulations: In order to simulate noise in the real-world sensor, we perform experiments
with added noise in the light curtain input. We demonstrate that the results are comparable
to the noiseless case, indicating that our method is robust to noise and is likely to transfer
well to the real world. Please see Appendix 5.6 for more details.

5.3.2 Comparison with alternative light curtain placement strategies
In our approach, light curtains are placed by maximizing the coverage of uncertain regions
using a dynamic programming optimization. How does this compare to other strategies for
light curtain placement? We experiment with several baselines:

1. Random: we place frontoparallel light curtains at a random z-distance from the sensor,
ignoring the detector’s uncertainty map.

2. Fixed depth: we place a frontoparallel light curtain at a fixed z-distance (15m, 30m,
45m) from the sensor, ignoring the detector’s uncertainty map.

3. Greedy optimization: this baseline tries to evaluate the benefits of using a dynamic
programming optimization. Here, we use the same light curtain constraints described in
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(a) Generalization in Virtual KITTI (b) Generalization in SYNTHIA

Figure 5.3: Generalization to many more light curtains than what the detector was trained for.
We train using online data generation on single-beam lidar and only 3 light curtains. We then
test with placing 10 curtains, on (a) Virtual KITTI, and (b) SYNTHIA. Performance continues
to increase monotonically according to multiple metrics. Takeaway: one can safely place more
light curtains at test time and expect to see sustained improvement in accuracy.

Section 4.2 (Figure 4.1(a)). We greedily select the next control point based on local
uncertainty instead of optimizing for the future sum of uncertainties. Ties are broken by
(a) choosing smaller laser angle changes, and (b) randomly.

4. Frontoparallel + Uncertainty : Our optimization process finds light curtains with flexible
shapes. What if the shapes were constrained to make the optimization problem easier?
If we restrict ourselves to frontoparallel curtains, we can place them at the z-distance of
maximum uncertainty by simply summing the uncertainties for every fixed value of z.

The results on the Virtual KITTI and SYNTHIA datasets are shown in Table 5.2. Our method
significantly and consistently outperforms all baselines. This empirically demonstrates the

Virtual KITTI SYNTHIA
3D mAP BEV mAP 3D mAP BEV mAP

.5 IoU .7 IoU .5 IoU .7 IoU .5 IoU .7 IoU .5 IoU .7 IoU
Random 41.29 17.49 46.65 38.09 60.43 47.09 60.66 58.14

Fixed depth - 15m 44.99 22.20 46.07 38.05 60.74 48.16 60.89 58.48
Fixed depth - 30m 39.72 19.05 45.21 35.83 60.02 47.88 60.23 57.89
Fixed depth - 45m 39.86 20.02 40.61 36.87 60.23 48.12 60.43 57.77

Greedy Optimization
(Randomly break ties) 37.40 19.93 42.80 35.33 60.62 47.46 60.83 58.22

Greedy Optimization
(Min laser angle change) 39.20 20.19 44.80 36.94 60.61 47.05 60.76 58.07

Frontoparallel +
Uncertainty 39.41 21.25 45.10 37.80 60.36 47.20 60.52 58.00

Ours 58.01 35.29 58.51 47.05 68.79 55.99 68.97 59.63

Table 5.2: Baselines for alternate light curtain placement strategies, trained and tested on (a)
Virtual KITTI and (b) SYNTHIA datasets. Our dynamic programming optimization approach
significantly outperforms all other strategies.
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Figure 5.4: Successful cases: Other type of successful cases than Fig. 5.1. In (A), the
single-beam LiDAR incorrectly detects a bus and a piece of lawn as false positives. They get
eliminated successively after placing the first and second light curtains. In (B), the first light
curtain fixes misalignment in the bounding box predicted by the single beam LiDAR.

value of using dynamic programming for light curtain placement to improve object detection
performance.

5.3.3 Generalization to successive light curtain placements
If we train a detector using our online light curtain data generation approach for k light
curtains, can the performance generalize to more than k light curtains? Specifically, if we
continue to place light curtains beyond the number trained for, will the accuracy continue
improving? We test this hypothesis by evaluating on 10 light curtains, many more than the
model was trained for (3 light curtains). Figure 5.3 shows the performance as a function of
the number of light curtains. We find that in both Virtual KITTI and SYNTHIA, the accuracy
monotonically improves with the number of curtains.
This result implies that a priori one need not worry about how many light curtains will be
placed at test time. If we train on only 3 light curtains, we can place many more light curtains
at test time; our results indicate that the performance will keep improving.

5.3.4 Qualitative analysis
We visualized a successful case of our method in Fig. 5.1. This is an example where our method
detects false negatives missed by the single-beam LiDAR. We also show two other types of
successful cases where light curtains remove false positive detections and fix misalignment
errors in Figure 5.4. In Figure 5.5, we show the predominant failure case of our method. See
captions for more details.
The predominant failure case of our method is when the LiDAR makes a mistake, such as a
false positive in Fig. 5.5, but the light curtain fails to be placed in that region to fix the mistake.
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Figure 5.5: Failure cases: The predominant failure mode is that the single beam LiDAR detects
a false positive which is not removed by light curtains because the detector is overly confident
in its prediction (so the estimated uncertainty is low). Middle: Falsely detecting a tree to be a
car. Right: After three light curtains, the detection persists because light curtains do not get
placed on this false positive.

This happens when the detector makes a mistake but is very confident in its prediction; in such
a case, the estimated uncertainty for this prediction will be low and a light curtain may not be
placed at this location. In this particular example shown, after six light curtain placements, a
light curtain eventually gets placed at the location of the false positive and the detector fixes
its mistake. However, in other examples, a light curtain might never be placed at the location
of the incorrect detection, due to an overly confident (but incorrect) prediction.

5.4 Information gain objective
In this section, we derive the optimization objective used in Sections 5.2.3 and 4.2, from a
perspective of maximizing information gain. Information gain is a well-defined mathematical
quantity, and choosing sensing actions to maximize information gain has been used as the
basis of many works on next-best view planning (see Sec. ??).

We will first describe some notation, and make two simplifying assumptions in order to derive
our objective as an approximation of information gain.

5.4.1 Notation

• The detector predicts the probability of a detection at every anchor box location. Let
there be a total of K discrete anchor box location, which are usually organized as a
regular 2D-grid (see Sec. 5.2.2). Let Ak denote the k-th anchor box, where 1 ≤ k ≤ K.
Define A = {Ak}K

k=1 to be the vector of all anchor boxes.

• Let DAk
be a binary random variable denoting whether a detection exists at Ak. DAk

∈
{0, 1}; it is 0 if there is no detection at Ak, and 1 if there is. Define DA = {DAk

}K
k=1.

• Given a unified point cloud C, an inference algorithm (in this case, the detector) outputs
a probability distribution P (DA | C) over all possible detection states DA ∈ {0, 1}K .
Denote by P (DAk

) the marginal probability distribution of detection at Ak.

• As discussed in Sec. ??, a single light curtain placement is defined by a set of control
points L = {Xt}T

t=1. The light curtain will be placed to lie vertically on top of these
control points. The 3D points sensed by this light curtain are fused back into C, to
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5. Active Object Detection

obtain an updated unified point cloud C ′. We assume for now that the control points
Xt correspond to some anchor box locations.

5.4.2 Assumptions
We now make the following assumptions:

1. Detections probabilities across locations are independent.
That is, P (DA | C) = ∏K

k=1 P (DAk
| C). This is a reasonable assumption, since the

probability of detections at one location should be unaffected by detections in other
locations. A consequence of this assumption is that the overall entropy H(DA | C) can
be written as the sum of entropies over individual anchor locations i.e. H(DA | C) =∑K

k=1 H(DAk
| C) (since the entropy of independent random variables is the sum of

their individual entropies).

2. Light curtain sensing resolves uncertainty fully but locally.
After placing L = {Xt}T

t=1, updating the unified point cloud to C ′, re-running the
detector, and obtaining a new probability distribution of the updated detections D′

A,
the following hold.

a) The uncertainty of locations covered by the curtain reduces to zero:
P (D′

Ak
| C ′) ∈ {0, 1} for all Ak ∈ L.

b) The uncertainty of all the other locations remains unchanged:
P (D′

Ak
| C ′) = P (DAk

| C) for all Ak ̸∈ L.

Assumptions 1 and 2 imply that the entropy of the updated distribution is given by (here K is
the total number of anchor locations, and T is the number of locations that the light curtain
lies on).

H(D′
A | C ′) =

K∑
k=1

H(D′
Ak
| C ′)

=
∑

Ak∈L

H(D′
Ak
| C ′)︸ ︷︷ ︸

= 0 as P (D′
Ak

|C′)∈{0,1}

+
∑

Ak ̸∈L

H(D′
Ak
| C ′)︸ ︷︷ ︸

= H(DAk
| C)

=
∑
Ak

H(DAk
| C)−

∑
Ak∈L

H(DAk
| C)

=
K∑

k=1
H(DAk

| C)−
∑

Ak∈L

H(DAk
| C)

= H(DA | C)−
T∑

t=1
H(DXt | C)

The information gain, which is essentially a difference between the prior and updated entropies,
is

Information Gain = H(DA | C)−H(D′
A | C ′)

= H(DA | C)−
(

H(DA | C)−
T∑

t=1
H(DXt | C)

)

=
T∑

t=1
H(DXt | C)
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5.5. Training active detection with online light curtain data generation

Optimization objective: This leads us to an optimization objective where maximizing
information gain is equivalent to simply maximizing the sum of uncertainties (binary entropies)
over the control points the curtain lies on. The maximization objective then becomes:
J(X1, . . . , XT ) = ∑T

t=1 H(Xt), where H(X) is the binary entropy of the detector’s confidence
at the location of X.

5.5 Training active detection with online light curtain
data generation

In this section, we expand on the details of our method to train the detector described in
Section 5.2.4. Note that we use the same detector to process data from the single beam
LiDAR and all subsequent light curtain placements. During training, data instances need to
be sampled from the single-beam LiDAR, as well as from up to K number of light curtain
placements. We choose K = 3 in all our experiments. Crucially, since the light curtains
are placed based on the output (uncertainty maps) of the detector, the point cloud data
distribution from the k-th (1 ≤ k ≤ K) light curtain placement depends on the current
weights of the detector. As the weights of the detector get updated during each gradient
descent step, the input training data distribution from the k-th light curtain also changes. To
accomodate for non-stationary training data, we propose training with online data-generation.
This is described in Algorithm 21.

Algorithm 5.1: Training with Online Light Curtain Data Generation
1 W0 ← initial weights of the detector
2 T ← number of training iterations
3 K ← number of light curtain placements
4 Function InputPointCloud(W , S, k):
5 if k = 0 then
6 P0 ← point cloud from single-beam LiDAR in scene S
7 return P0
8 else
9 Pk−1 ← InputPointCloud(W, S, k − 1)

10 H ← uncertainty map from detector with weights W and input Pk−1
11 P ← point cloud from placing light curtain optimized for H in scene S
12 Pk ← Pk−1 ∪ P
13 return Pk

14 end
15 for t = 1 to T do
16 St ← t-th training scene
17 kt ← randomly sample from {0, 1, . . . , K}
18 Pt ← InputPointCloud(Wt−1, St, kt)
19 Wt ← gradient descent update using previous weights Wt−1 and input Pt

20 end
21 return WT

At each training iteration t, we retrieve a scene St from the training dataset. To create the
input point cloud, we choose to either use the single-beam LiDAR data or k light curtain
placements (1 ≤ k ≤ K), each of them with equal probability. For generating the k-th light
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5. Active Object Detection

curtain data, we start with the single-beam LiDAR point cloud. Then we successively perform
a forward pass through the detector network with the current weights to obtain an uncertainty
map. We compute the optimal light curtain placement for this map, gather points returned
from placing this curtain, and finally, fuse the points back into the input point cloud. This
cycle is repeated k times to obtain the input point cloud to train on. Generating light curtain
data in such an online fashion ensures that the input distribution doesn’t diverge from the
network weights during the course of training.

Ablation experiment
Here, we perform an ablation experiment on the Virtual KITTI dataset, to evaluate the
importance of training with online light curtain data generation. We first collect the entire
dataset at the beginning, using the initial weights of the network. Then, we freeze this data
and train the detector. The results are shown in Table 5.3. We see that the accuracy on light
curtain data (Table 5.3 rows 2-4) decreases substantially to less 2%, since this data distribution
diverges during training. However, the performance on single-beam LiDAR remains relatively
same, since the LiDAR data distribution doesn’t change. This demonstrates the importance
of re-generating the training data online as the weights of the detector change.

Virtual KITTI
3D mAP BEV mAP

0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU
Single Beam Lidar 37.68 18.65 38.14 30.08

1 Light Curtain 1.41 0.48 1.61 0.75
2 Light Curtains 0.73 0.38 1.22 0.58
3 Light Curtains 0.68 0.36 1.13 0.54

Table 5.3: Performance of the detector trained with single-beam LiDAR and up to three light
curtains, without online training data generation. The training dataset is collected using the
initial weights of the network and is fixed during the remainder of training. The light curtain
performance decreases substantially.

5.6 Noise simulations
In order to simulate noise in the real-world sensor, we add 10% noise to the light curtain input,
for varying number of light curtain placements, on the Virtual KITTI dataset. The results are
shown in Table 5.4. The results are comparable to without noise, indicating that our method
is robust to noise and is likely to transfer well to real-world data.

5.7 Efficiency analysis
In this section, we report the time taken by our method, for varying number of light curtain
placements, and for different light curtain placement algorithms, in Table 5.5. The time
(in seconds) includes the time taken for all preceding steps. For example, the time for 2
light curtain placements includes the time required for generating the single-beam LiDAR
data, computing the optimal first and second light curtain placements, and all intermediate
forwarded passes through the detection network while generating uncertainty maps. The time
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Virtual KITTI
Without noise With noise

3D mAP BEV mAP 3D mAP BEV mAP
0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU

Single Beam Lidar 39.91 15.49 40.77 36.54 39.03 17.13 39.93 30.26
1 Light Curtain 58.01 35.29 58.51 47.05 57.04 25.99 57.65 45.31
2 Light Curtains 60.86 37.91 61.10 49.84 59.43 30.91 59.89 46.11
3 Light Curtains 68.52 38.47 68.82 50.53 60.02 31.09 66.78 46.39

Table 5.4: Performance of detectors trained with single-beam LiDAR and up to three light
curtains, with 10% additional noise in the light curtain input. Performance is not significantly
lower than without noise.

Single-beam
LiDAR

One
light curtain

Two
light curtain

Three
light curtain

Random 0.096 ± 0.001 0.763 ± 0.008 1.441 ± 0.014 2.133 ± 0.014
Fixed depth - 15m 0.090 ± 0.002 0.765 ± 0.008 1.412 ± 0.012 2.028 ± 0.018
Fixed depth - 30m 0.095 ± 0.002 0.789 ± 0.005 1.474 ± 0.008 2.180 ± 0.013
Fixed depth - 45m 0.094 ± 0.001 0.778 ± 0.003 1.475 ± 0.013 2.174 ± 0.012

Greedy Optimization
(Randomly break ties) 0.092 ± 0.000 0.825 ± 0.014 1.547 ± 0.023 2.250 ± 0.030

Greedy Optimization
(Min laser angle change) 0.086 ± 0.001 0.824 ± 0.010 1.543 ± 0.020 2.242 ± 0.028

Frontoparallel +
Uncertainty 0.091 ± 0.001 0.441 ± 0.003 0.807 ± 0.006 1.165 ± 0.008

Dynamic Programming 0.097 ± 0.008 0.944 ± 0.010 1.767 ± 0.015 2.600 ± 0.020

Table 5.5: Time efficiency (in seconds) for varying number of light curtains and different light
curtain placement algorithms. Time is averaged over 100 independent trials over different
scenes, and we report the 95% confidence intervals.

is averaged over 100 independent trials over different scenes, and we report the 95% confidence
intervals.
Note that as we place more light curtains, more time is consumed for the network’s forward
pass and in calculating where to place the light curtain. This presents a speed-accuracy
tradeoff; more light curtains will improve detection accuracy at the expense of taking more
time. On the other hand, our method can run faster using fewer light curtains but with a
decreased accuracy. This tradeoff is visualized in Figure 5.6.

5.8 Conclusions
In this work, we develop a method to use light curtains, an actively controllable resource-
efficient sensor, for object recognition in static scenes. We propose to use a 3D object
detector’s prediction uncertainty as a guide for deciding where to sense. By encoding the
constraints of the light curtain into a graph, we show how to optimally and feasibly place a
light curtain that maximizes the coverage of uncertain regions. We are able to train an active
detector that interacts with light curtains to iteratively and efficiently sense parts of scene in
an uncertainty-guided manner, successively improving detection accuracy. We hope this work
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5. Active Object Detection

Figure 5.6: Speed-accuracy tradeoff using light curtains optimized by dynamic programming,
on the Virtual KITTI dataset. More light curtains correpsond to increased accuracy but
reduced speed.

pushes towards replacing expensive multi-beam LiDAR systems with inexpensive controllable
sensors, enabled by designing perception algorithms for autonomous driving that integrate
sensing and recognition.
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CHAPTER 6
Active Depth Estimation

6.1 Introduction
Spinning fixed scan LiDARs have been the de-facto sensor of choice in safety critical systems
such as autonomous driving, due to their reliability in depth estimation. However, their
reduced spatial-resolution, slow speed and their prohibitive cost has made en-masse adoption
in personal vehicles hard. To counter these issues, depth estimation from RGB cameras has
been heavily researched. However, issues such as oversaturation, feature correspondence errors
and scale ambiguity has made relying on these sensors unsafe.
To capture the error and uncertainty in RGB-only depth estimation, previous work had
formulated that task as a probabilistic regression problem, by predicting per-pixel depth
distributions via a “Depth Probability Volume (DPV)” [LGK+19] [CC18] [YHR19]. The
DPV provides both a maximum likelihood-estimate (MLE) of the depth map, as well as the
corresponding per-pixel uncertainty measure. However, these works do not adaptively or
physically correct for this uncertainty, instead relying purely on multi-view camera constraints
for passive correction.

NIR Laser

5m

40m

5m

40m

RMSE: 
1.2m

RMSE: 
0.4m

  (a)                                       (b)                                                  (c)                                                   (d)

Figure 6.1: (a) We show how errors in Monocular Depth Estimation are corrected when used
in tandem with an Adaptive Sensor such as a Triangulating Light Curtain (Yellow Points and
Red lines are Ground Truth). (b) We predict a per-pixel Depth Probability Volume from
Monocular RGB and we observe large per-pixel uncertainties (σ = 3m) as seen in the Bird’s
Eye View / Top-Down Uncertainty Field slice. (c) We actively drive the Light Curtain sensor’s
Laser to exploit and sense multiple regions along a curve that maximize information gained.
(d) We feed these measurements back recursively to get a refined depth estimate, along with
a reduction in uncertainty (σ = 1m).
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6. Active Depth Estimation

In this chapter, we devise a framework that adaptively exploits the depth uncertainty in a
per-pixel DPV from RGB images and refines it using programmable light curtains [BWW+19,
WBW+18].

We begin by formulating an iterative Bayesian inference approach to adaptive depth sensing
using only the light curtain (LC). This is done by building and adapting the 3D DPV
representation as a collapsible 2D Uncertainty Field (UF), formulating a probabilistic depth
representation of the sensor model and building planning and sensing policies within the sensor
constraints. We then build a deep learning architecture that can generate a similar DPV from
Monocular or Stereo RGB inputs, and use that as a prior for adaptive sensing. We then fuse
the LC measurements back into our network to get a refined depth estimate (see Fig. 6.1).

We conducted experiments of adaptive depth sensing from the LC alone by starting with a
Gaussian prior, and showed convergence to true depth with enough iterations. We then trained
a network to predict depth distributions from RGB images, used that as a prior for sensing,
and fed those new LC measurements back to the network. Through extensive experiments
with a simulated LC (with KITTI dataset [GLSU13]) and sensors in the real-world, we show
significant speedup in depth convergence and increased accuracy (see Fig. 6.1). As a result,
our method has the potential of being a higher resolution, lower cost alternative to a LiDAR.

6.2 Sensor setup

Rolling Shutter 
NIR Camera

Laser with 
Galvomirror

Rolling Shutter Camera Laser with Galvomirror

z
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Figure 6.2: Left: Our adaptive sensor of choice, the Triangulation Light Curtain (LC)
[BWW+19], consists of a laser line, Galvomirror and NIR camera. Middle: The light curtain
senses a ruled 3D surface extruding from a given top-down 2D curve we call a curtain. Surfaces
within the thickness of the curtain, result in higher intensity in the NIR image. Right: A
planar curtain swept across various depths. As the curtain plane approaches the true surface,
the measured intensity increases, due to the sensing location and curtain thickness. Above
that we show our real-world sensor setup.

The Light Curtain device (Fig 6.2) consists of a rolling shutter Near-Infrared (NIR) camera
rotated 90° (that images planes in the world per pixel column), a Line Laser module and
a Galvomirror (that generates planes of light depending on the angle). The exact sensing
location is obtained by intersecting (triangulating) the imaging and laser planes. Sweeping this
laser line creates a 3D ruled surface called a curtain. We can place a curtain along any surface
by controlling the galvo and rolling shutter speed subject to it’s physical constraints, making
the sensor adaptive in nature. Note that the image and laser planes have some divergence,
The project webpage for this chapter can be found at:
https://soulslicer.github.io/rgb-lc-fusion/.
We have open sourced our code for active depth estimation using programmable light curtains at:
https://github.com/CMU-Light-Curtains/DepthEstimation.
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6.3. Depth from light curtain only

so their intersection results in a volume in space (bounded by purple points in Fig. 6.2) with
some thickness, where any objects that intersect it result in higher intensities in the NIR image.
This means that as the sensing location approaches the true surface, pixel intensities on NIR
image increases.
Real-world experiments are conducted using our array of sensors consisting of an RGB Stereo
Camera Pair, the Light Curtain device, and a 128-beam Lidar for accuracy validation and RGB
depth estimation network training. Simulated experiments are also conducted with KITTI
dataset [GLU12], through a Light Curtain Simulator that uses the ground truth depth map
along with the ability to vary NIR instrinsics, laser extrinsincs, Galvomirror speed and laser
divergence/thickness and angle.

6.3 Depth from light curtain only
Before considering RGB + Light Curtain fusion (sec. 6.5), we begin by focusing on the
problem of adaptively discovering the depth of a scene using only the light curtain.

6.3.1 Representation

We wish to estimate the depth map D = {du,v} of the scene, which specifies the depth value
du,v for every camera pixel (u, v) at spatial resolution [H,W]. Since there is inherent uncertainty
in the depth value at every pixel, we represent a probability distribution over depths for every
pixel. Let us define du,v to be a random variable for depth predictions at the pixel (u, v). We
quantize depth values into a set D = {d0, . . . , dN−1} of N discrete, uniformly spaced depth
values lying in (dmin, dmax). All the predictions du,v ∈ D belong to this set. The output of our
depth estimation method for each pixel is a probability distribution P (du,v), modeled as a
categorical distribution over D. In this work, we use N = 64, resulting in a Depth Probability
Volume (DPV) tensor of size [64, W, H]:

D = {d0, . . . , dN−1}; dq = dmin + (dmax − dmin) · q (6.1)
N−1∑
q=0

P (du,v = dq) = 1 (q is the quantization index) (6.2)

Depth estimate = E[du,v] =
N−1∑
q=0

P (du,v = dq) · dq (6.3)

This DPV can be initialized using another sensor such as an RGB camera, or can be initialized
with a Uniform or Gaussian distribution with a large σ for each pixel.
While an ideal sensor could choose to plan a path to sample the full 3D volume, our light
curtain device only has control over a top-down 2D profile. Hence, we compress our DPV into
a top-down an “Uncertainty Field" (UF) [YHR19], by averaging the probabilities of the DPV
across a subset of each column (Fig. 6.3). This subset considers those pixels (u, v) whose
corresponding 3D heights h(u, v) are between (hmin, hmax). The UF is defined for the camera
column u and quantized depth location q as:

UF (u, q) = 1
|V(u)|

∑
v∈V(u)

P (du,v = dq)

where V(u) = {v | hmin ≤ h(u, v) ≤ hmax} (6.4)
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We denote the categorical distribution of the uncertainty field on the u-th camera ray as:
UF (u) = Categorical(dq ∈ D | P (dq) = UF (u, q)).

6.3.2 Light Curtain Optimization
We can use the extracted Uncertainty Field (UF) to compute the best light curtain to place.
We use the constraint graph framework introduced in Section 4.1. A single light curtain
placement is defined by a set of control points {q(u)}W

u=1, where u indexes columns of the
camera image of width W , and 0 ≤ q(u) ≤ N − 1. This denotes that the curtain intersects
the camera rays of the u-th column at the discretized depth dq(u) ∈ D. We wish to maximize
the objective J({q(u)}W

u=1) = ∑W
u=1 UF (u, q(u)). Let Xu be the 2D point in the top-down

view that corresponds to the depth q(u) on camera rays of column u. The control points
{q(u)}W

u=1 must be chosen to satisfy the physical constraints of the light curtain device (see
equations 3.1, 3.2).

arg max
{q(u)}W

u=1

W∑
u=1

UF (u, q(u))

such that |θ(Xu)− θ(Xu−1)| ≤ ωmax ∆t, ∀2 ≤ u ≤ W

|θ(Xu+1) + θ(Xu−1)− 2θ(Xu)| ≤ αmax (∆t)2, ∀2 ≤ u < W (6.5)

We use the dyanmic programming approach outlined in Section 4.2 to compute the curtain
that maximizes the objective while satisfying the constraints.

6.3.3 Curtain Placement
The uncertainty field UF contains the current uncertainty about pixel-wise object depths du,v

in the scene. Let us denote by π(dck | UF ) the placement policy of the k-th light curtain,
where dck = {dck

u,v | ∀u, v}. Our goal is to sample light curtain placements dck ∼ π(dck | UF )
from this policy, and obtain intensities iu,v for every pixel.

To do this, we propose two policies: π0 and π1. In Fig. 6.4, we have placed a single curtain
along the highest probability region per column of rays, but our goal is to maximize the
information gained. For this, we generate corresponding entropy fields H(u, q)i to be input to
the planner computed from UF (u, q). We use two approaches to generate H(u, q): π0 finds

c
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z

Figure 6.3: Our state space consists of a Depth Probability Volume (DPV) (left) storing
per-pixel uncertainty distributions. It can be collapsed to a Bird’s Eye Uncertainty Field (UF)
(right) by averaging those rays in each row (blue pixels) of the DPV that correspond to a slice
on the road parallel to the ground plane (right) (cyan pixels). Red pixels on UF represent the
low resolution LiDAR ground truth.
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Figure 6.4: Given an Uncertainty Field (UF), our planner solves for an optimal galvomirror
trajectory subject to it’s constraints (eg. θ̊max). We show a 3D ruled surface / curtain placed
on the highest probability region of UF.
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Figure 6.5: Sampling the world at the highest probability region is not enough. To converge
to the true depth, we show policies that place additional curtains given UF. Let’s look at a ray
(in yellow) from the UF to see how each policy works. Left: π0 given a unimodal gaussian
with small σ. Middle: π0 given a multimodal gaussian with larger σ. Right: π1 given a
multimodal gaussian with larger σ. Observe that π1 results in curtains being placed on the
second mode.

the mean in each ray’s distribution UF (u) and selects a σπ0 that determines the neighbouring
span selected. π1 samples a point on the ray given UF (u).

As seen in Fig. 6.5, strategy π0 is able to generate fields that adaptively place additional
curtains around a consistent span around the mean with some σπ0 , but is unable to do so in
cases of multimodal distributions. π1 on the other hand is able to place a curtain around the
second modality, albeit with a lower probability. We will show the effects of both strategies in
our experiments.

6.3.4 Observation Model

A curtain placement corresponds to specifying the depth for each camera ray indexed by u
from the top-down view. After placing the light curtain, intensities iu,v are imaged by the
light curtain’s camera at every pixel (u, v). The measured intensity at each pixel is a function
of the curtain placement depth dc

u,v on that camera ray, the unknown ground truth depth
du,v of that pixel, the thickness of the light curtain σ(u, v, dc

u,v) for a particular pixel and
curtain placement, and the maximum intensity possible if a curtain is placed perfectly on the
surface pu,v (varies from 0 to 1). From real world data Fig. 6.6, we find the intensity decays
exponentially as the distance between the curtain placement dc

u.v and ground truth depth du,v

increases, with the scaling factor pu,v parameterizing the surface properties. We also simulate
sensor noise as a Gaussian distribution with standard deviation σnse. The overall sensor model
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Figure 6.6: We sweep a planar light curtain across a scene at 0.1m intervals, and observe
that the changes in intensity over various pixels follow an exponential falloff model. Blue
/ Orange: Car door has a higher response than the tire. Green: Object further away has
a lower response with a larger sigma due to curtain thickness. Red: Retroreflective objects
cause the signal to saturate.

P (iu,v | du,v, dc
u,v) can be described as:

P (iu,v | du,v, dc
u,v) ≡

N
(

iu,v | exp
(
−

 dc
u,v − du,v

σ(u, v, dc
u,v)

2)
.pu,v, σ2

nse

)
(6.6)

Note that when dc
u,v = du,v and pu,v = 1, the mean intensity is 1 (the value), and it reduces

exponentially as the light curtain is placed farther from the true surface. pu,v can be extracted
from the ambient NIR image.

6.3.5 Recursive Bayesian Update
How do we incorporate the newly acquired information about the scene from the light curtain
to update our current beliefs of object depths? Since we have a probabilistic sensor model, we
use the Bayes’ rule to infer the posterior distribution of the ground truth depths given the
observations. Let Pprev(u, v, q) denote the probability of the depth at pixel (u, v) being equal
to dq before sensing, and Pnext(u, v, q) the updated probability after sensing. Then by Bayes’
rule:

Pnext(u, v, q)
= P (du,v = dq | iu,v, dck

u,v)

=
P (du,v = dq) · P (iu,v | du,v = dq, dck

u,v)
P (iu,v | dck

u,v)

=
P (du,v = dq) · P (iu,v | du,v = dq, dck

u,v)∑N−1
q′=0 P (du,v = dq′) · P (iu,v | du,v = dq′ , dck

u,v)

=
Pprev(u, v, q) · P (iu,v | du,v = dq, dck

u,v)∑N−1
q′=0 Pprev(u, v, q′) · P (iu,v | du,v = dq′ , dck

u,v)
(6.7)

Note that P (iu,v | du,v = dq, dck
u,v) is the sensor model whose form is given in Equation 6.6.

If we place K light curtains at a given time-step, we can incorporate the information received
from all of them into our Bayesian update simultaneously. Since the sensor noise is independent
of curtain placement, the likelihoods of the observed intensities can be multiplied across the
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Noise sigma 0.16 ResetFigure 6.7: Visualization of the recursive Bayesian update method to refine depth probabilities

after observing light curtain intensities. The curtain is placed at 10m. The red curves denote
the expected intensity (Y-axis) as a function of ground truth depth (X-axis); this is the sensor
model given in Eqn. 6.6. After an intensity is observed by the light curtain, we can update
the probability distribution of what the ground truth depth might be using our sensor model
and the Bayes’ rule. The updated probability is shown by the blue curves, computed using
the Bayesian update of Eqn. 6.7 (here, the prior distribution Pprev is assumed to be uniform,
and dck

u,v = 10m). Left: Low i return leads to an inverted Gaussian distribution at the
light curtain’s placement location, with other regions getting a uniform probability. Middle:
Medium i means that the curtain isn’t placed exactly on the object and the true depth could
be on either side of the light curtain. Right: High i leads to an increased belief that the true
depth is at 10m.

curtains. Hence, the overall update becomes:
Pnext(u, v, q)

=
Pprev(u, v, q) ·∏K

k=1 P (iu,v | du,v = dq, dck
u,v)∑N−1

q′=0 Pprev(u, v, q′) ·∏K
k=1 P (iu,v | du,v = dq′ , dck

u,v)

The behavior of this model as the placement depth dc
u,v, curtain thickness σ(u, v, dc

u,v) and
intensity i change is seen in Fig. 6.7. We observe that low intensities lead to an inverting
gaussian like weight updates, with a low weight at the light curtain’s placement location
while other regions get uniform weights. This indicates that the method is certain that an
object doesn’t exist at the light curtain’s location, but is uniformly uncertain about the other
un-measured regions. A medium intensity leads due a bimodal gaussian, indicating that the
curtain may not be placed exactly on the surface and could be on either side of the curtain.
Finally, as the intensity rises, so does weight assigned to the light curtain’s placement location.

6.4 Experiments with light curtain only
We first demonstrate depth estimation using just the Light Curtain as described in Sec. 6.3. In
this initial baseline, we track the Uncertainty Field (UF) depth error by computing the RMSE

error metric
√

[
i= 1]n∑ (E(UF (u,q))−dgt(u)i)2

n
against ground truth. We evaluate our method

against several outdoor scenarios consisting of vehicles in a scene.
Planar Sweep Curtain Placement: We are able to simulate the light curtain response using
depth from LiDAR. A simple fixed policy not adapted to the UF helps validate our sensor
model and provides corroboration between the simulated and real light curtains. We perform
a uniform sweep across the scene above (at 0.25 to 1.0m intervals) (Fig. 6.8), incorporating
intensity measurements at each pixel for each curtain using our process described earlier. Our
simulated device is able to reasonably match the real device, and we also show how sweeping
more curtains increases accuracy at the cost of increased runtime (Table. 6.1).
Policy based Curtain Placement: Sweeping a planar LC can be time consuming ( 25
iterations), so we want our curtains to be a function of our UF. We evaluated two different
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6. Active Depth Estimation

Figure 6.8: We demonstrate corroboration between simulated and real light curtain device by
sweeping several planes across this scene. Colored point cloud is the estimated depth, and
lidar ground truth in yellow. Left: LC simulated from the lidar depth. Right: Using the real
device.

Policy 50LC @ 0.25m 25LC @ 0.5m 50LC @ 0.25m 25LC @ 0.5m 12LC @ 1.0m
RMS/m 1.156 1.374 1.284 1.574 1.927
Runtime /s - - 2 1 0.5

Table 6.1: Policy depicts different numbers of light curtains (LC) placed at regular intervals.
The first two columns are simulations and the rest are real experiments. Sampling the scene
by placing more curtains results in better depth accuracy (lower RMS) at the cost of higher
runtime.
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Figure 6.9: Curtain placement as a function of the Uncertainty Field (UF) converges within a
lower number of iterations as opposed to a uniform planar sweep which took 25 iterations

scenarios (c1, c2) for each placement policy (π0, π1), and we observed that planning and
placing curtains as a function of UF results in much faster convergence (Fig. 6.9).

6.5 Depth from light curtain + RGB fusion
While starting from a uniform or Gaussian prior with a large uncertainty is a valid option, it is
slow to converge. Furthermore, a light curtain’s only means of depth estimation is extracted
primarily along the ruled placement of the curtain, at least based on our above placement
policies. We would ideally like to use information from a Monocular RGB camera or Stereo
Pair to initialize our prior, with a similar DPV representation. For this, a Deep Learning based
architecture is ideal, and we also reason that such an architecture could potentially learn to
fuse/incorporate information from both modalities better.

6.5.1 Structure of Network
The first step is to build a network (Fig. 6.11) that can generate DPV’s from RGB images. We
extend the Neural-RGBD [LGK+19] architecture to incorporate light curtain measurements.
Anywhere from 1 to N images, usually two (I0, I1), are fed into shared encoders, and the
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6.5. Depth from light curtain + RGB fusion

Figure 6.10: Looking at the top-down Uncertainty Field (UF), we see per pixel distributions in
Cyan and the GT in Red. We start with a gaussian prior with a large σ, take measurements
and apply the bayesian update, trying both policies π0 and π1. Note how measurements taken
close to the true surface split into a bimodal distribution (Yellow Box)
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Figure 6.11: Our Light Curtain (LC) Fusion Network can take in RGB images from a single
monocular image, multiple temporally consistent monocular images, or a stereo camera pair to
generate a Depth Probability Volume (DPV) prior. We then recursively drive our Triangulation
Light Curtain’s laser line to plan and place curtains on regions that are uncertain and refine
them. This is then fed back on the next timestep to get much more refined DPV estimate.

features are then warped into different fronto-parallel planes of the reference image I0 using
pre-computed camera extrinsics RI1

Io
, tI1

Io
. Further convolutions are run to generate a low

resolution DPV dpvl0
t [H/4, W/4] where the log softmax operator is applied and regressed on.

The transformation between the cameras acts as a constraint, forcing the feature maps to
respect depth to channel correspondence. The add operator into a common feature map is
similar to adding probabilities in log-space.

dpvl0
t is then fed into the DPV Fusion Network (a set of 3D Convolutions) that incorporate

a downsampled version of dpvL
t−1 along with the the light curtain DPV that we had applied

recursive Bayesian updates on dpvlc
t−1, and a residual is computed and added back to dpvl0

t to
generate dpvl1

t to be regressed upon similarly. With a 30% probability, we train without dpvlc
t−1

feedback by inputting a uniform distribution. Finally, dpvl1
t is then passed into a decoder with

skip connections to generate a high resolution DPV dpvL
t . This is then used to plan and place

light curtains, from which we generate a new dpvlc
t to be fed into the next stage.

6.5.2 Loss Functions
Soft Cross Entropy Loss: We build upon the ideas in [YHR19] and use a soft cross entropy
loss function, with the ground truth LiDAR depthmap becoming a Gaussian DPV with σgt

instead of a one hot vector. This way, when estimating E (dpvgt) we get the exact depth
value instead of an approximations limited by the depth quantization D. We also make the
quantization slightly non-linear to have more steps between objects that are closer to the
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6. Active Depth Estimation

Figure 6.12: In KITTI + Simulated Light Curtain, we note improved depthmaps when
Monocular inputs are fused with Light Curtain inputs. Note the improvements in regions
bounded in the yellow box. Our network is also capable of ingesting Stereo inputs, and also
solving the task of Lidar Upsampling

camera:

lsce =
−

∑
i

∑
d

(
dpv{l0,l1,L} ∗ log

(
dpvgt

))
n

(6.8)

D = {d0, . . . , dN−1}; dq = dmin + (dmax − dmin) · qpow (6.9)

L/R Consistency Loss: We train on both the Left and Right Images of the stereo pair
whose Projection matrices Pl, Pr are known [GAB17]. We enforce predicted Depth and RGB
consistency by warping the Left Depthmap into the Right Camera and vice-versa, and minimize
the following metric:

Dl = E
(
dpvL

l

)
Dr = E

(
dpvL

r

)
(6.10)

ldcl = 1
n

∑
i


∣∣∣D{l,r} − w

(
D{r,l}, P{l,r}

)∣∣∣
D{l,r} + w

(
D{r,l}, P{l,r}

)
 (6.11)

lrcl = 1
n

∑
i

(
||I{l,r} − w

(
I{r,l}, D{l,r}, P{l,r}

)
||1

)
(6.12)

Edge aware Smoothness Loss: We ensure that neighbouring pixels have consistent surface
normals, except on the edges/boundaries of objects with the Sobel operator Sx, Sy via the
term:

ls = 1
n

∑
i

(∣∣∣∣ ∂I

∂x

∣∣∣∣ e−|SxI| +
∣∣∣∣∂I

∂y

∣∣∣∣ e−|SyI|
)

(6.13)

6.6 Experiments with light curtain + RGB fusion
We train and validate our algorithms on the KITTI dataset. We then trained the same network
by initializing on those weights, but using our custom dataset to evaluate our algorithms with
the real sensors on the Jeep.

For evaluation, we consider the RMSE metric against the entire depthmap as opposed to just

the Uncertainty Field (UF) as
√

[
i= 1]n∑ (E(du,v)−dgt(u,v)i)2

n
against our ground truth.

DPV Prior from RGB: Our first goal is to ensure that our network is capable of generating
a reasonable DPV with monocular RGB input, given the above loss functions. We do some
simple experiments that explore these effects.
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6.6. Experiments with light curtain + RGB fusion

Figure 6.13: In real world Experiments, we are able to see the monocular scale ambiguity in
domain specific scenarios (driving scenario with a van 8m away) get corrected by the Light
Curtain, and we are able to see correction in an arbitrary scene (dumpster 15m away) provided
to the system as well

Figure 6.14: We show the internal state of the bayesian update at Iteration 0 and Iteration 5.
Starting with a prior DPV from Monocular Depth estimation, we show the convergence of the
sensor’s laser and curtain profile on an object 10m away

Figure 6.15: Monocular RGB alone suffers from scale ambiguity but does give an inital
uncertain depth estimate on a car 15m away. Iterating on Light Curtain measurements from a
mean-centered gaussian prior alone gives a more accurate depth but with a noisy profile, but
starting with the RGB DPV results in a more accurate and smoother profile.

Table 6.2 shows successively improving performance as we increase σgt, with poorer performance
when the depth is effectively encoded as a one-hot vector (eg. σgt = 0.05), since the depth
was more likely to be forced into one of the categories in D. Adding in ldcl, lrcl and ls improved
performance further.

Stereo Inputs: Since our method can generalize to any N camera setup, we compare and
contrasted monocular pair inputs at times t, t − 1, against a stereo pair at time t as input
(extrinsics known in both cases). As expected, we note significantly better performance with
stereo input (Table 6.3).

Effect of a Stronger Prior: Previously, we had run our adaptive sensing algorithm from a
gaussian prior with a large σ (Fig. 6.10). In various outdoor experiments, we show that a prior
DPV from our network instead, yields higher accuracy and faster convergence towards the
true depth (Fig. 6.15, Fig. 6.16)(a, b).

DPV Fusion Network: With this corrected DPV, we want to explore how to effectively
handle erroneous measurements (due to low light curtain returns etc.), or fuse it other DPVs
(from previous frame or from another sensor). With this in mind, we consider the sub task of
LiDAR Upsampling. The Velodyne LiDAR in the KITTI dataset, can be converted into a low
resolution depthmap, and consequently a low-res DPV we call dpvgt

t . We could then fuse both
dpvl0

t and dpvgt
t to generate dpvl1

t using Bayesian inference. Alternatively, we could feed both
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6. Active Depth Estimation

Parameters σgt = 0.05 σgt = 0.2 σgt = 0.3 σgt = 0.3
with ldcl, lrcl

σgt = 0.3
with ldcl, lrcl, ls

RMSE/m 3.24 3.16 3.06 2.93 2.90

Table 6.2: Effects of Soft Cross Entropy (σgt), Left/Right Consistency (ldcl, lrcl), Smoothness
losses (ls) on Monocular Depth Estimation.

Mono vs Stereo Lidar Upsample with DPV Fusion Network
Mono 2.904
Stereo 1.737

Without DPV Fusion Network 1.118
With DPV Fusion Network 0.702

Table 6.3: Left: Stereo pair at t instead of Monocular pair at t, t− 1 input to the network.
Right: Fusing the GT LiDAR data with dpvl0

t to generate dpvl1
t and dpvL

t with Bayesian
inference vs DPV Fusion Network.
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Figure 6.16: Top: Adaptive depth sensing with the Light Curtain: Starting from a Prior
distribution from a Monocular Depth Network as opposed to a gaussian with a large σ leads
to faster convergence towards the true depth. Bottom: Monocular (Left) and Stereo (Right)
Depth Estimation show improvements when we enabled feedback of the sensed Light Curtain
DPV at epoch 16 when training on KITTI dataset with light curtain simulator.

of those inputs into our DPV Fusion Network, which relies on a series of 3D Convolutions. We
note improved performance in this upsampling task using this approach as seen in Table 6.3.

Light Curtain Fusion Network: Finally, we combine all of these concepts into one. Here, we
train our monocular and stereo depth estimation without light curtain feedback, and one where
we enable dpvlc

t to be planned and fed-back on the next stage via our DPV Fusion Network,
as described in (Fig. 6.11). Training is done on the KITTI dataset with our light curtain
simulator, with a maximum of 5 update iterations for performance and memory reasons. We
observed qualitative (Fig. 6.13) and quantitative (Fig. 6.16(c, d)) performance improvement
of depth with Monocular input, and marginal but visible improvement with Stereo. This is
due to the wide baseline of 0.7m in the stereo pair, so we could see that smaller baseline pairs
would benefit more with our light curtain measurements.
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6.6. Experiments with light curtain + RGB fusion

Performance: Our un-optimized implementation of each planning and curtain placement
step takes 40ms. Depth convergence occurs in 5 iterations (5 fps) when starting from
a monocular RGB prior and 10 iterations (2.5 fps) with a Gaussian prior. In temporally
continuous operations, the prior from t − 1 reduces convergence to 2 iterations (12.5 fps)
depending on the camera motion. A well-engineered implementation could achieve 20-40 fps
but much faster motion would require explicitly encoding 3D optical flow.
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CHAPTER 7
Active Safety Envelopes

7.1 Introduction

Consider a robot navigating in an unknown environment. The environment may contain
objects that are arbitrarily distributed, whose motion is haphazard, and that may enter and
leave the environment in an undetermined manner. This situation is commonly encountered in
a variety of robotics tasks such as autonomous driving, indoor and outdoor robot navigation,
mobile robotics, and robot delivery. How do we ensure that the robot moves safely in this
environment and avoids collision with obstacles whose locations are unknown a priori? What
guarantees can we provide about its perception system being able to discover these obstacles?
In this work, we propose to use light curtains to estimate the “safety envelope" of a scene.
We define the safety envelope as an imaginary, vertically ruled surface that separates the robot
from all obstacles in the scene. The region between the envelope and the robot is free space
and is safe for the robot to occupy without colliding with any objects. Furthermore, the safety
envelope “hugs" the closest object surfaces to maximize the amount of free space between the
robot and the envelope. More formally, we define a safety envelope as a 1D depth map that is
computed from a full 2D depth map by selecting the closest depth value along each column of
the 2D depth map (ignoring points on the ground or above a maximal height). As long as the
robot never intersects the safety envelope, it is guaranteed to not collide with any obstacle.
Realizing this concept requires addressing two novel and challenging questions: First, where
do we place the curtains without a priori knowledge of objects in the scene? The light curtain
will only sense the parts of the scene where the curtain is placed. Second, how do we evolve
these curtains over time to capture dynamic objects? One approach is to place light curtains
at random locations in the unknown scene. Previous work [BWW+19] has empirically shown
that random light curtains can quickly discover unknown objects. In this work, we develop a
systematic framework to generate random curtains that respect the physical constraints of the
light curtain device. Importantly, we develop a method that produces theoretical guarantees
on the probability of random curtains (from a given distribution) to detect unknown objects in
The project webpage for this chapter can be found at:
https://siddancha.github.io/projects/active-safety-envelopes-with-guarantees.
We have open sourced our code for active safety envelopes using programmable light curtains at:
https://github.com/CMU-Light-Curtains/SafetyEnvelopes.
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7. Active Safety Envelopes

the environment and discover the safety envelope. Such safety guarantees could be used to
certify the efficacy of a robot perception system to detect and avoid obstacles.
Once a part of the safety envelope (such as an object’s surface) is discovered, it may be
inefficient to keep exploring the scene randomly. Instead, a better strategy is to forecast how
the identified safety envelope will move in the next timestep and track it by sensing at the
predicted location. We achieve this by training a neural network to forecast the position of
the envelope in the next timestep using previous light curtain measurements. However, it
is difficult to provide theoretical guarantees for such learning-based systems. We overcome
this challenge by combining the deep neural network with random light curtain placements.
Using this combination, we are able to estimate the safety envelope efficiently, while furnishing
probabilistic guarantees for discovering unknown obstacles. Our contributions are:

1. We develop a dynamic-programming based approach to produce theoretical safety
guarantees on the probability of random curtains discovering unknown objects in the
environment (Sec. 4.4.2, 7.3.1).

2. We combine random light curtains with a machine learning based forecasting model,
trained using imitation learning, to efficiently estimate safety envelopes (Sec. 7.2).

3. We evaluate our approach on (1) a simulated autonomous driving environment, and
(2) a real-world environment with moving pedestrians. We empirically demonstrate
that our approach consistently outperforms multiple baselines and ablation conditions
(Sec. 7.3.2).

7.2 Learning to forecast safety envelopes
Random curtains can help discover the safety envelope of unknown objects in a scene. However,
once a part of the envelope is discovered, an efficient way to estimate the safety envelope in
future timesteps is to forecast how the envelope will move with time and track the envelope
by placing a new light curtain at the forecasted locations. In this section, we describe how
to train a deep neural network to forecast safety envelopes and combine them with random
curtains.
Problem setup: We call any algorithm that attempts to forecast the safety envelope as a
“forecasting policy”. We assume that a forecasting policy is provided with the ground truth
safety envelope of the scene in the first timestep. In the real world, this can be done by running
one of the less efficient baseline methods once when the light curtain is first started, until
the light curtain is initialized. After the initialization, the learning-based method is used for
more efficient light curtain tracking. The policy always has access to all previous light curtain
measurements. At every timestep, the policy is required to forecast the location of the safety
envelope for the next timestep. Then, the next light curtain will be placed at the forecasted
location. To leverage the benefits of random curtains that can discover unknown objects, we
place random light curtains while the forecasting method predicts the safety envelope of the
next timestep. We allow random curtains to override the forecasted curtain: if the random
curtain obtains an intensity It on camera ray Rt that is above a threshold τ , the control point
of the forecasted curtain for ray Rt is immediately updated to that of the random curtain, i.e.
the random curtain overrides the forecasted curtain if the random curtain detects an object.
See Appendix 7.5 for details of our efficient, parallelized implementation of random curtain
placement and forecasting, as well as an analysis of the pipeline’s runtime.
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Figure 7.1: Comparison of our dynamic programming approach with a Monte Carlo sampling
based approach to estimate the probability of a random curtain detecting an object of size
2m× 2m. The x-axis shows the runtime of the methods (in seconds), and the y-axis shows
estimated detection probability. Our method (in red) is both exact and fast; it quickly produces
a single and precise point estimate. Monte Carlo sampling (in blue) samples a large number
of random curtain and returns the average number of curtains that intersect the object. The
estimate is stochastic and the 95%-confidence intervals are shown in blue. While the Monte
Carlo estimate eventually converges to the true probability, it is inherently noisy and orders of
magnitude slower than our method.

Handcrafted policy: First, we define a simple, hand-specified light curtain placement policy;
this policy will serve both as a baseline and as an input to our neural network, described below.
The policy conservatively forecasts a fixed decrease in the depth of the safety envelope for ray
Rt if the ray’s intensity It is above a threshold (indicative of the presence of an object), and
forecasts a fixed increase in depth otherwise. By alternating between increasing and decreasing
the depth of the forecasted curtain, this policy can roughly track the safety envelope. However,
since the forecasted changes in depth are hand-defined, it is not designed to handle large
object motions, nor will it accurately converge to the correct depth for stationary objects.

Neural network forecasting policy: We use a 2D convolutional neural network to forecast
safety envelopes in the next timestep. It takes as input (1) the intensities It returned by
previous k light curtain placements, (2) the positions of the previous k light curtain placements,
and (3) the outputs of the handcrafted policy described above (this helps avoid local minima
during training and provides useful information to the network). For more details about the
architecture of our network, please see Appendix 7.4.

We assume access to ground truth safety envelopes at training time. This can be directly
obtained in simulated environments or from auxiliary sensors such as LiDAR in the real world.
Because a light curtain is an active sensor, the data that it collects depends on the forecasting
policy. Thus to train our network, we use DAgger [RGB11], a widely-used imitation learning
algorithm to train a policy with expert or ground-truth supervision across multiple timesteps.
We use the Huber loss [Hub92] between the predicted and ground truth safety envelopes as
our training loss. The Huber loss is designed to produce stable gradients while being robust to
outliers.
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(a) (b)
Figure 7.2: (a) The probability of random curtains detecting objects of various areas. For an
object of a fixed area, we average the probability across various orientations of the object.
Larger objects are detected with higher probability. (b) We show the detection probability
of canonical objects from classes in the KITTI [GLU12] dataset. For each object class, we
construct a “canonical object" by averaging the dimensions of all labeled instances of that
class in the KITTI dataset. Larger object classes are detected with a higher probability, as
expected. We also show the detection probability as a function of the number of light curtains
placed. The detection probability increases exponentially with the number of light curtain
placements.

Figure 7.3: Qualitative results in a real-world environment with two walking pedestrians,
comparing a hand-crafted baseline policy (top-row) with our method (bottom-row). Left
column: contains RGB scene images. Middle column: contains the light curtain images, where
higher intensity means a closer intersection between the light curtain and the object surfaces
(i.e. a better estimation of the safety envelope). Since our method learns to forecast the safety
envelope, it estimates the envelope more accurately and produces higher light curtain intensity.
Right column (top-down view): the black surfaces are the estimated safety envelopes, and red
points show a LiDAR point cloud (only used to aid visualization). Our forecasting method’s
estimate of the safety envelope hugs the pedestrians more tightly and looks smoother. The
hand-crafted baseline works by continuously moving the curtain back and forth, creating a
jagged profile and preventing it from enveloping objects tightly.
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Huber loss RMSE
Linear

RMSE
Log

RMSE
Log

Scale-Inv.

Absolute
Relative

Diff.

Squared
Relative

Diff.

Thresh
(1.25)

Thresh
(1.252)

Thresh
(1.253)

↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑
Handcrafted

baseline 0.1145 1.9279 0.1522 0.0721 0.1345 1.0731 0.6847 0.7765 0.8022

Random
curtain only 0.1484 2.2708 0.1953 0.0852 0.1698 1.2280 0.6066 0.7392 0.7860

1D-CNN
(w/ Forecasting +
Random curtains +

Baseline input)

0.0896 1.7124 0.1372 0.0731 0.1101 0.7076 0.7159 0.7900 0.8138

1D-GNN
(w/ Forecasting +
Random curtains +

Baseline input)

0.1074 1.6763 0.1377 0.0669 0.1256 0.8916 0.7081 0.7827 0.8037

Ours w/o
random curtains 0.1220 2.0332 0.1724 0.0888 0.1411 0.9070 0.6752 0.7450 0.7852

Ours w/o
Forecasting 0.0960 1.7495 0.1428 0.0741 0.1163 0.6815 0.7010 0.7742 0.8024

Ours w/o
Baseline input 0.0949 1.8569 0.1600 0.0910 0.1148 0.7315 0.7082 0.7740 0.7967

Ours 0.0567 1.4574 0.1146 0.0655 0.0760 0.3662 0.7419 0.8035 0.8211

Table 7.1: Performance of safety envelope estimation on the SYNTHIA [ZBGGV+19] urban
driving dataset under various metrics.

Huber
loss

RMSE
Linear

RMSE
Log

RMSE
Log

Scale-Inv.

Absolute
Relative

Diff.

Squared
Relative

Diff.

Thresh
(1.25)

Thresh
(1.252)

Thresh
(1.253)

↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑

Slow
Walking

Handcrafted
baseline 0.0997 0.9908 0.1881 0.1015 0.1371 0.2267 0.8336 0.9369 0.9760

Ours 0.0630 0.9115 0.1751 0.1083 0.0909 0.1658 0.8660 0.9228 0.9694

Fast
Walking

Handcrafted
baseline 0.1473 1.2425 0.2475 0.1508 0.1824 0.3229 0.6839 0.8774 0.9702

Ours 0.0832 0.9185 0.1870 0.1201 0.1132 0.2093 0.8575 0.9165 0.9610

Table 7.2: Performance of safety envelope estimation in a real-world dataset with moving
pedestrians. The environment consisted of two people walking in both back-and-forth and
sideways motions.
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Figure 7.4: We illustrate the benefits of placing random curtains (that come with proba-
bilistic guarantees of obstacle detection) while estimating safety envelopes, shown in SYN-
THIA [ZBGGV+19], a simulated urban driving environment. The blue surfaces are the
estimated safety envelopes, and the green points show regions of high light curtain intensity
(higher intensity corresponds to better estimation). There are three pedestrians in the scene.
(a) Our forecasting model fails to locate two pedestrians (red circles). (b) The first random
curtain leads to the discovery of one pedestrian (yellow). (c) The second random curtain helps
discover the other pedestrian (second yellow circle). The safety envelope of all pedestrians has
now been detected.

Figure 7.5: Comparison of the safety envelope estimation between a hand-crafted baseline
policy (top row) and a trained neural network (bottom row), in three simulated urban driving
scenes from the SYNTHIA [ZBGGV+19] dataset. For each scene and method, the left column
shows the intensity image of the light curtain; higher intensities correspond to closer intersection
of the light curtain and object surfaces, implying better estimation of the safety envelope. The
right column shows the light curtain profile in the scene. The trained network estimates the
safety envelopes more accurately than the handcrafted baseline policy.

7.3 Experiments

7.3.1 Random curtain analysis
In this section, we use the dynamic programming approach introduced in Section 4.4.2
to analyze the detection probability of random curtains. First, we compare our dynamic
programming method to an alternate approach to compute detection probabilities: Monte
Carlo sampling. This method involves sampling a large number of random curtains and
returning the average number of curtains that were able to detect the object. This produces
an unbiased estimate of the single-curtain detection probability, with a variance based on the
number of samples. However, our dynamic programming approach has multiple advantages
over such a sampling-based approach:

1. Dynamic programming produces an analytic estimate of the detection probability, whereas
sampling produces a stochastic, noisy estimate of the probability. Analytic estimates are
useful for reliably evaluating the safety and robustness of perception systems.
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2. Dynamic programming is significantly more efficient than sampling based approaches.
The former only involves one pass through the constraint graph. In contrast, a large
number of samples may be required to provide a reasonable estimate of the detection
probability.

The two methods are compared in Figure 7.1, which shows the estimated single-curtain
detection probabilities of both methods as a function of the runtime of each method (the
runtimes include pre-processing steps such as raycasting, and hence are directly comparable
between the two methods). Dynamic programming (shown in red) produces an analytic
estimate very efficiently (around 0.8 seconds). For Monte Carlo sampling, we show the
probability estimate for a varying number of Monte Carlo samples. Each run shows the mean
estimate of the detection probability (blue dots), as well as its corresponding 95%-confidence
intervals (blue bars). Using more samples produces more accurate estimates with smaller
confidence intervals, at the cost of increased runtime. The sampling approach will eventually
converge to the point estimate output by dynamic programming in the limit of an infinite
number of samples. This experiment shows that dynamic programming produces precise
estimates (i.e. there is zero uncertainty in its estimate) while being orders of magnitude faster
than Monte Carlo sampling.
Next, we investigate how the size of an object affects the detection probability. We generate
objects of varying sizes and run our dynamic programming algorithm to compute their detection
probabilities. Figure 7.2 (a) shows a plot of the detection probability of a single curtain as a
function of the area of the object (averaged over multiple object orientations). As one would
expect, the figure shows that larger objects are detected with higher probability.
Last, we analyze the detection probability as a function of the number of light curtains placed.
The motivation for using multiple curtains to detect objects is the following. A single curtain
might have a low detection probability p, especially for a small object. However, we could
place multiple (say n) light curtains and report a successful detection if at least one of the
n curtains detects the object. Then, the probability of detection increases exponentially by
1− (1− p)n. We call this the “multi-curtain" detection probability. Figure 7.2 (b) shows the
multi-curtain detection probabilities for objects from the KITTI [GLU12] dataset, as a function
of the time taken to place those curtains (at 60 Hz). For each object class, we construct a
“canonical object" by averaging the dimensions of all labeled instances of that class in the
KITTI dataset. We can see that larger object classes are detected with a higher probability,
as expected. The figure also shows that the probability increases rapidly with the number
of random curtains for all object classes. Four random curtains (which take about 67ms to
image) are sufficient to detect objects from all classes with at least 90% probability. Note that
there is a tradeoff between detection probability and runtime of multiple curtains; guaranteeing
a high probability requires more time for curtains to be placed.

7.3.2 Estimating safety envelopes
Environments: In this section, we evaluate our approach to estimate safety envelopes using
light curtains, in two environments. First, we use SYNTHIA [ZBGGV+19], a large, simulated
dataset containing photorealistic scenes of urban driving scenarios. It consists of 191 training
scenes (∼ 96K frames) and 97 test scenes (∼ 45K) frames and provides ground truth depth
maps. Second, we perform safety envelope estimation in a real-world environment with moving
pedestrians. These scenes consist of two people walking in front of the device in complicated,
overlapping trajectories. We perform evaluations in two settings: a “Slow Walking" setting,
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and a harder “Fast Walking" setting where forecasting the motion of the safety envelope is
naturally more challenging. We use an Ouster OS2 128-beam LiDAR (and ground-truth depth
maps for the SYNTHIA dataset) to compute ground truth safety envelopes for training and
evaluation. We evaluate policies over a horizon of 50 timesteps in both environments.

Evaluation metrics: Safety envelopes can be thought of as 1D depth maps computed
from a full 2D depth map, since the safety envelope is constrained to be a vertically ruled
surface that always “hugs” the closest obstacle. Thus, the safety curtain can be computed
by selecting the closest depth value along each column of a 2D depth map (ignoring points
on the ground or above a maximal height). Because of the relationship between the safety
envelope and the depth map, we evaluate our method using a variety of standard metrics from
the single-frame depth estimation literature [ZSZ+20, EPF14]. The metrics are averaged over
multiple timesteps to evaluate the policy’s performance across time.

Baselines: In Table 7.1, we compare our method to the hand-crafted policy described in
Sec. 7.2. A ‘random curtain only’ baseline tests the performance of random curtains for safety
envelope estimation in the absence of any forecasting policy. We also compare our method
against two other neural network architectures that forecast safety envelopes: a CNN that
performs 1D convolutions, and a graph neural network with nodes corresponding to camera
rays. Both baselines differ from our method in network architecture only; they also perform
forecasting, place random curtains and use the handcrafted baseline’s predictions as input.
Please see Appendix 7.4 for more details about their network architectures. See Table 7.1 for a
comparison of our method with the baselines in the SYNTHIA environment, and Table 7.2 for
the real-world environment. The arrows below each metric in the second row denote whether
a higher value (↑) or lower value (↓) is better. In both environments (simulated and real), our
method outperforms the baselines on most metrics, often by a significant margin.

Ablations: We also perform multiple ablation experiments. First, we train and evaluate our
without using random curtains (Tab. 7.1, “Ours w/o Random Curtains"). This reduces the
performance by a significant margins, suggesting that it is crucial to combine forecasting with
random curtains for increased robustness. See Appendix ?? for more experiments performed
without using random curtains for all the other baselines and ablation conditions. Second, we
perform an ablation in which we train our model without forecasting to the next timestep i.e.
the network is only trained to predict the safety envelope of the current timestep (Tab. 7.1,
“Ours w/o Forecasting"). This leads to a drop in performance, suggesting that it is important
to place light curtains at the locations where the safety envelope is expected to move to, not
where it currently is. Finally, we modify our method to not take the output of the hand-crafted
policy as input (Tab. 7.1, “Ours w/o Baseline input"). The drop in performance shows that
providing the neural network access to another policy that performs reasonably well helps with
training and improves performance.

Qualitative anaysis: We perform qualitative analysis of our method in the real-world
environment with moving pedestrians in Fig. 7.3, and in the SYNTHIA [ZBGGV+19] simulated
environment in Figs. 7.4, 7.5. We compare our method against the hand-crafted baseline, as
well as show how placing random curtains can discover objects and improve the estimation
of safety envelopes. Please see captions for more details. Our project website contains
videos demonstrating the qualitative performance of our method in the real-world pedestrian
environment. They show that our method can generalize to multiple obstacles (as many as
five pedestrians) and extremely fast and spontaneous motion, even though such examples were
not part of the training set.
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7.4 Network architectures and training details
In this section, we describe in detail the network architectures used by our main method, as
well as various baseline models.

2D-CNN

The 2D-CNN architecture we use to forecast safety envelopes is shown in Fig. 7.6. It takes
as input the previous k light curtain outputs. These consists of the intensities of the light
curtain per camera ray I1:T , as well as the control points of the curtain that was placed i.e.
X1:T . Each light curtain output (X1:T , I1:T ) is converted into a polar occupancy map. A
polar occupancy map is a T × L image, where the t-th column of the image corresponds to
the camera ray Rt. Each ray is binned into L uniformly spaced locations; although L could
be set to the number of control points per camera ray in the light curtain constraint graph,
it is not required. Each column of the occupancy map has at-most one non-zero cell value.
Given Xt, It, the cell on the t-th column that lies closest to Xt is assigned the value It. We
generate k such top-down polar occupancy maps encoding intensities. We generate k more
such polar occupancy maps, but just assigning binary values to encode the control points of
the light curtain. Finally, another polar occupancy map is generated using the forecast of
the safety envelope from the handcrafted baseline policy. The 2k + 1 maps are fed as input
to the 2D-CNN. We use k = 5 in all our experiments. The input is transformed through a
sequence of 2D convolutions; the convolutional layers are arranged in a manner similar to
the the U-Net [RFB15] architecture. This involves skip connections between downsampled
and upsampled layers with the same spatial size. The output of the U-Net is a 2D image.
The U-Net is a fully convolutional architecture, and the spatial size of the output is equal to
the spatial size of the input. Column-wise soft-max is then applied to transform the output
into T categorical probability distributions, one per column. We sample a cell from the t-th
distribution, and the location of that cell in the top-down view is interpreted as the t-th control
point. This produces a forecasted safety envelope.

1D-CNN

We use a 1D-CNN as a baseline network architecture. The 1D-CNN takes as input the previous
k light curtain placements X1:T , and treats it as a 3-channel 1-D image (the three channels
being the x-coordinate, the z-coordinate, and the range

√
x2 + z2). It also takes the previous

k intensity outputs I1:T , and treats them as 1-dimensional vectors. It also takes as input the
forecasted safety envelope from the hand-crafted baseline. The overall input to the 1D-CNN is
a 4k + 1 channel 1D-image. It applies a series of 1D fully-convolutional operations, with ReLU
activations. The output is a 1-D vector of length T . These are treated as ranges on each
light curtain camera ray, and are converted to the control points X1:T of the forecasted safety
envelope. Random curtains are placed alongside this method when the forecasted envelope is
being computed.

1D-GNN

We use a graph neural network as a baseline to perform safety envelope forecasting. The GNN
takes as input the output of the previous two light curtain placements. The GNN contains 2T
nodes, T nodes corresponding to each curtain. The graph contains two types of edges: vertical
edges between corresponding nodes of the two curtains (T in number), and horizontal edges
between nodes corresponding to adjacent rays of the same curtain (2T − 1 in number). Each
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Figure 7.6: The network architecture of the 2D CNN model used for safety envelope forecasting.
It takes as input the previous k light curtain outputs, and converts them into top-down polar
occupancy maps. Each column of the image is assigned to a camera ray, and each row is
treated as a binned location. It also takes the prediction of the hand-crafted baseline as
additional input. The input is transformed through a series of 2D convolution layers, arranged
in a manner similar to the U-Net [RFB15] architecture. This involves skip connections between
downsampled and upsampled layers with the same spatial size. The output of the U-Net is a
2D image. This is a fully-convolutional architecture, and the spatial dimensions of the input
and output are equal. Column-wise soft-max is then applied to the output to transform it to a
probability distribution per column. A value Xt is sampled per column to produce the profile
of the forecasted safety envelope.

node takes as input the intensity value of its corresponding curtain and camera ray, as well as
the location of the forecasted safety envelope from the hand-crafted baseline. Each horizontal
and vertical edge gets 3 input features: the differences in the x, z,

√
x2 + z2 coordinates of

the control points of the rays corresponding to the nodes the edge is connected to. Then, a
series of graph convolutions are applied. The features after the final graph convolution, on the
nodes corresponding to the most recent light curtain placement are treated as range values
on each camera ray Rt. The t-th range value is converted to a control point Xt for camera
ray Rt, and the GNN generates a forecast X1:T of the safety envelope. Random curtains are
placed alongside this method when the forecasted envelope is being computed.

We find that providing the output of the hand-crafted baseline policy as input to the neural
networks improves performance (compare the last two rows of Table 7.1). We attribute this
improvement to two reasons:

1. It helps avoid local minima during training : when training the neural networks without
the handcrafted input, we observe that the networks quickly settle into local minima
where the loss is unable to decrease significantly. This suggests that the input helps
with training.

2. It provides useful information to the network: To determine if it is also useful after
training is complete, we replace the handcrafted input with a constant value and find that
this significantly deteriorates performances. This indicates that the 2D CNN continues
to rely on the handcrafted inputs at test time.
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7.5 Parallelized pipelining and runtime analysis
In this section, we describe the runtime of our approach. Our overall pipeline has three
components: (1) forecasting the safety envelope, (2) imaging the forecasted and random
light curtains, and (3) processing the light curtain images. Since these processes can be run
independently, we implement them as parallel threads that run simultaneously. This is shown
in Figure 7.7.

The imaging and processing threads run continuously at all times. If a forecasted curtain is
available to be imaged, it is given priority and is scheduled for the next round of imaging.
But if there are no forecasted curtain waiting to be imaged, random curtains are placed
and processed. This scheduling leads to an overall latency of 75ms (13.33 Hz). Due to the
parallelized implementation, we are able to place two random curtains during each cycle of
our pipeline.

Figure 7.7 (right) shows a breakdown of the timing of the forecasting method method. It
consists of the feed-forward pass of the 2D CNN, as well as other high-level processing tasks.

Figure 7.7: Pipeline showing the runtime of the efficient, parallelized implementation of our
method. The pipeline contains three processes running in parallel: (1) the method that
forecasts the safety envelope, (2) imaging of the light curtains performed by the physical light
curtain device, and (3) low-level processing of images. Here, “R" or “RC" stands for “random
curtain" and “F" or “FC" stands for “forecasting curtain". Bottom right: the forecasting
method further consists of running the feed-forward pass of the 2D CNN and high-level
processing of the random and forecasting curtains. The overall latency of our pipeline is 75ms
(13.33 Hz). We are able to place two light curtains in each cycle of the pipeline.

7.6 Conclusion
In this work, we develop a method to estimate the safety envelope of a scene, which is a
hypothetical vertical surface that separates a robot from all obstacles in the environment.
We use light curtains, an actively controllable, resource-efficient sensor to directly estimate
the safety envelope. We describe a method to generate random curtains that respect the
physical constraints of the device, in order to quickly discover the safety envelope of an
unknown object. Importantly, we develop a dynamic-programming based approach to produce
theoretical safety guarantees on the probability of random curtains detecting objects in the
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scene. We combine this method with a machine-learning based model that forecasts the
motion of already-discovered safety envelopes to efficiently track them. This enables our robot
perception system to accurately estimate safety envelopes, while our probabilistic guarantees
help certify its accuracy and safety towards obstacle detection and avoidance.

66



CHAPTER 8
Active Velocity Estimation

8.1 Introduction
The previous chapters have focused on estimating “where objects are” i.e. estimating the
locations of objects using light curtains. In this chapter, we investigate estimating “how
objects move”. That is, our task is to estimate the velocity of each point in the scene. Velocity
estimation is useful for the following reasons:

1. Deciding where to place light curtains: One of the primary reasons to perform
velocity estimation is to decide where to place the light curtain in the next timestep.
Velocity estimates can tell us where objects and points are expected to be in the future.
Then, light curtains can be placed to sense the anticipated locations.
In Chapter 7 Section 7.2, we learned to forecast how safety envelopes move in the
next timestep. This can be thought of as implicit velocity estimation, where the neural
network directly predicts where to place the curtain in the next timestep. However,
explicitly estimating the velocities of objects and points allows them to be used for other
tasks in robot perception and navigation, which we describe next.

2. Trajectory forecasting: Velocity estimates are a good starting point to forecast the
full trajectories of objects and points into the future. The simplest forecasting method
could be to output a linear motion trajectory with an assumption of constant velocity;
this can be set to the predicted instantaneous velocity. More general trajectories can be
predicted using a learning-based approach with the instantanous velocities as input.

3. Obstacle avoidance and motion planning: The instantaneous velocity (or trajectory)
estimates of obstacles can be input to a motion planner [CLH+05, ZCX+21, CZCZ21].
The planner can then compute feasible robot paths that avoids obstacles. Accurate
estimates of velocity would be crucial for obstacle avoidance and safety in navigation.

4. Mapping/SLAM with dynamic objects: In the most standard formulation of robot
mapping and SLAM [Thr02, CLH+05], the objective is to compute a map of only
the static objects in the scene. Applications include mapping buildings, factories and
warehouses, streets and urban environments etc. This problem especially hard in the
presence of dynamic objects, such as humans and vehicles moving in the scene, while
the robot is mapping static objects. Heuristic methods to “subtract” dynamic objects
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often fail in many situations. However, a more reliable method could be to explicitly
estimate the velocity of objects, and classify them as static or dynamic. Points that are
classified as dynamic can then be subtracted. A simple criterion could be to classify
points as dyanmic if the magnitude of their velocity is above a certain threshold.

In this chapter, we first revisit the “dynamic occupancy grid” [DON11] approach for explicitly
estimating the occupancies and velocities of locations in the scene. We provide a principled
mathematical formulation to ground this approach in the well-studied framework of Bayes
filtering and recursive Bayesian estimation [Thr02].
Armed with this inference method, we investigate strategies to intelligently place light curtains
and improve velocity estimates. We revisit ideas from previous works [ARH+20, APNH21]
in the context of dynamic occupancy grids. Furthermore, we propose a novel method to
intelligently place curtains by combining the existing strategies. We develop a multi-armed
bandits method to intelligently switch between multiple light curtain placement methods.
Importantly, this is enabled by a novel self-supervised reward function that evaluates the
current estimates of occupancy and velocity using future light curtain placements, without
requiring ground truth or additional sensors. By reusing intermediate quantitites computed
during recursive Bayes estimation of dynamic occupancy grids, we show that our self-supervised
reward can be computed “for free” without requiring any extra light curtain placements or
extra forecasting operations. Our multi-armed bandits method is able to outperform each of
its constituent strategies when used in isolation. The algorithms developed in this chapter
pave the way for controllable light curtains to accurately, efficiently, explicitly and purposefully
perceive complex and dynamic environments.

8.2 Bayes filtering using dynamic occupancy grids
8.2.1 Bayes filtering

Figure 8.1: A Dynamic Bayes network [Thr02] for controllable sensing. At timestep t, xt

corresponds to the state of the world, ut corresponds to the action i.e. the location of light
curtain placement, and zt correpsonds to light curtain measurements. bel(xt) and bel(xt)
and are the inferred distributions over states before and after incorporating measurements zt,
respectively. This is a slightly modified graphical model for controllable sensing where actions
ut dont’t affect state xt but only (and directly) affect observations zt.

In this section, we provide a brief background on Bayes filtering. A Dynamic Bayes filter [Thr02],
also known as a hidden Markov model or a state space Model can be represented by a
probabilistic graphical model, as shown in Fig. 8.1. The state of the world at timestep t is
denoted by xt. For our problem, xt is the occupancy and velocity of each cell in a grid. The

68



8.2. Bayes filtering using dynamic occupancy grids

control actions are denoted by ut; in this work, actions are the locations where a light curtains
is decided to be placed. Observations obtained from the sensor are denoted by zt. For us,
they are light curtain measurements which partially observe the occupancy of a subset of cells
in the grid (more details on light curtain measurements are provided in Sec. 8.2.4).
The goal of a Bayes filter is to infer at each timestep t a distribution over the current state
xt from the sequence of sensor observations z1:t (i.e. z1, . . . , zt) and the known sequence
of actions u1:t (i.e. u1, . . . , ut). More formally, the goal is to compute at each timestep
bel(xt) = P (xt | u1:t, z1:t). The dynamic occupancy grid, like conventional occupancy
grids [Elf89, Thr02], are an instance of Bayes filters. The Bayes filter systematically incorporates
sensor measurements to estimate the state of the environment while also accounting for the
dynamics of the world. bel(xt) is computed recursively using a process known as recursive
Bayesian estimation. The definition of bel(xt) and the Markov property of the dyanmic Bayes
network leads us to the following recursive relationship [Thr02]:

bel(xt) = P (xt | u1:t, z1:t)
∝ P (xt, zt | u1:t, z1:t−1)
= P (zt | xt, u1:t, z1:t−1) P (xt | u1:t, z1:t−1)
= P (zt | xt, ut) P (xt | u1:t−1, z1:t−1)

= P (zt | xt, ut)
∫

xt−1
P (xt−1, xt | u1:t−1, z1:t−1) dxt−1

= P (zt | xt, ut)
∫

xt−1
P (xt−1 | u1:t−1, z1:t−1) P (xt | xt−1, u1:t−1, z1:t−1) dxt−1

= P (zt | xt, ut)
∫

xt−1
P (xt−1 | u1:t−1, z1:t−1)︸ ︷︷ ︸

bel(xt−1)

P (xt | xt−1) dxt−1

= P (zt | xt, ut)
∫

xt−1
bel(xt−1) P (xt | xt−1) dxt−1

= P (zt | xt, ut) bel(xt), (Measurement update step), where

bel(xt) =
∫

xt−1
bel(xt−1) P (xt | xt−1) dxt−1 (Motion update step)

Based on the above recursive equations, recursive Bayesian estimation alternates between the
following two steps:

1. Prediction step (or motion update): This step accounts for the dynamics of the
environment. It first computes an intermediate quantity defined above:
bel(xt) =

∫
xt−1

bel(xt−1) P (xt | xt−1) dxt−1. This is the result of “applying” a known
or assumed motion model P (xt | xt−1) to the previous belief bel(xt−1). In dynamic
occupancy gridss, this step accounts for the motion of scene points based on their
current 2D velocities. The occupancies and velocities of the next timestep are computed
based on the occupancies and velocities in the previous timestep. We use a constant
velocity motion model with Gaussian noise in both velocity and position. When the
motion model is applied to Fig. 8.2 (a), it is updated to Fig. 8.2 (b) (illustration only).
This correction step normally increases the uncertainty in occupancies and velocities.

2. Correction step (or measurement update): This step incorporates measurements
from a sensor. It updates the prior belief bel(xt) to bel(xt) ∝ P (zt | xt, ut) bel(xt) by
weighting bel(xt) by the likelihood of the observed measurements P (zt | xt, ut). This
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step often reduces uncertainty in the state. In dynamic occupancy grids, occupancies
are updated using the measurements from the light curtain. Since light curtains (or any
depth sensor) only measure the location of objects, this step does not update velocities.
The velocity estimates are automatically refined in subsequent motion update steps.
The measurement update reduced the probability of one of the positions of an object in
Fig. 8.2 (b) to Fig. 8.2 (c) (illustration only).

8.2.2 Particle-based dynamic occupancy grids

(a) Dynamic occupancy grid before the prediction (motion update) step.

(b) After prediction (motion update) step. (c) After correction (measurement update) step.

Figure 8.2: Dyanmic occupancy grid. Grid structure: The 2D grid represents the top-down
view and is made up of cells. Like conventional static occupancy grids [Elf89, Thr02], each
cell contains an occupancy probability p ∈ [0, 1]. Dark indicates low occupancy probability
and bright indicates high occupancy probability. In addition, each cell also contains a set
of weighted particles where each particles stores a single 2D velocity. The set of particles
together represents a probability distribution of that cell’s velocity. Grid updates: The grid
is a Bayes filter [Thr02] that consists of two steps: the prediction (motion update) step and
the correction (measurement update) step. (a) The grid before performing any update. (b)
Prediction (motion update) step: the occupancies and velocities of the next timestep are
computed based on the grid in the previous timestep, increasing uncertainty. (c) Correction
(measurement update) step: the occupancies are updated using the measurements from the
light curtain, decreasing uncertainty. This will refine the velocity estimates.
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Occupancy grids [Elf89, Thr02] are a standard tool in robotics for mapping the location of
static objects in the environment. 2D occupancy grids that map objects from the top-down
view are popular for mapping and SLAM in robot navigation. Each cell in the grid contains
an occupancy probability p ∈ [0, 1], denoting the probability of the cell being occupied by an
object. Dynamic occupancy grids [DON11] are an extension of classical occupancy grids (see
Figure 8.2(a)). Each cell in the grid contains both (1) the occupany probability p ∈ [0, 1], as
well as (2) a probability distribution over 2D velocities. The velocity distribution is represented
by a set of weighted particles, where each particles stores a single 2D velocity. The set of
weighted particles approximates the true velocity distribution.

Mathematical framework

Our method is built upon dyanmic occupancy grids introduced by Danescu. et. al. [DON11].
The authors describe particles as both representing a velocity distribution (i.e. weighted velocity
hypotheses), as well as being “physical building blocks of the world". The former interpretation
suggests that particles together represent the probability distribution of the velocity of a single
physical scene point, whereas the latter suggests that each particle corresponds to its own
scene point. Furthermore, the particles not only represent velocities, but their count represents
the probability of occupancy. While the method is shown to be very promising, the precise
role of particles and what they represent remains unclear. In this work, we provide a rigorous
mathematical formulation of dynamic occupancy grids. We explicity state the assumptions
made and provide a precise interpretation of particles. Our framework can be derived from
three assumptions:

Assumption 1: There are no collisions

Each cell can be occupied by at most one physical scene point with a single velocity.
Cells are sufficiently small that multiple objects with different velocities cannot exist
(“collide”) within a cell.

This assumption is required for a single velocity of a cell to be well-defined. Assumption 1
paves the way for a straightforward interpretation particles: all particles belonging to a cell
represent a probability distribution over the single velocity of that cell. Assumption 1 allows
us to define the state space of occupancies and velocities.
Representing the state space: Each cell is indexed by i ∈ I from an index set I of all cell
in the grid. At timestep t, the state of the i-th cell is denoted by xi

t = (oi
t, vi

t). It contains
two variables. The first is a binary occupancy variable oi

t ∈ {0, 1} which denotes whether
the cell is occupied or not. The second is a 2D velocity variable vi

t ∈ R2 representing the
continuous velocity of the cell (if it is occupied) from the top-down view. The overall state of
the dynamic occupancy grid xt is a concantenation of the states of all cells in the grid, i.e.
xt = {xi

t = (oi
t, vi

t) | i ∈ I}. Note that the variable vi
t is “conditional”: it is only defined when

the cell is occpied i.e. oi
t = 1.

Assumption 2: Constant velocity motion model

Each scene point moves with a constant velocity, with added Gaussian noise.

Any motion can be approximated by a constant velocity motion model as long as the time
inteval is sufficiently small. Therefore, this assumption is reasonable in our case since light
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curtains operate at very high speeds (∼60 Hz). Note that although we use the constant
velocity motion model in this work following [DON11], the dynamic occupancy grid framework
can still be used by swapping it with any other motion model.
Let ϵi

t ∼ N (0, Rϵ) and δi
t ∼ N (0, Rδ) be the Gaussian noise in velocity and position respectively

for the i-th cell in the grid at time t. And let posi denote the 2D location of the center of the
i-th cell. The constant velocity motion model can be expressed mathematically as

oj
t+1, vj

t+1 =

1, vi
t + ϵi

t if ∃i ∈ I such that oi
t = 1 and posj ≈ posi + vi

t ∆t + δi
t

0 otherwise
(8.1)

In other words, a cell j will be occupied in the next timestep if and only if there exists another
cell i in the previous timestep which moves to j under the constant velocity motion model. In
that case, the velocity of cell j will be equal to that of cell i modulo the Gaussian noise. The
equality is approximate taking into account the finite size of the cell.
Representing the belief distribution: Dynamic occupancy grids represent the current belief
over velocities and occupancies of the environment. It is a probability distribution over states
xt described above. The state space is extremely large. Dynamic occupancy grids represent
the belief compactly by making the following assumption:

Assumption 3: Cells are independently distributed

The probability distributions of all cells are independent of each other. This is a standard
assumption made in occuapancy grids literature for computational tractability.

Each cell contains two distributions:

• Occupancy distribution (ωi
t): oi

t is a Bernoulli random variable over {0, 1} with probability
ωi

t ∈ [0, 1].

• Velocity distribution (V i
t ): vi

t is a random varaible over R2. It is represented by a set
of M weighted particles V i

t = {(vi,m
t , pi,m

t ) | 1 ≤ m ≤ M}. The m-th particle has
a velocity vi,m

t and weight pi,m
t that add up to 1 i.e. ∑M

m=1 pi,m
t = 1. The larger the

number of particles used, the better is the particle approximation to the true continous
velocity distribution.

The velocity distribution acts like a “conditional” distribution. The probability that cell i is
occupied with velocity vi,m

t is the product ωi
t pi,m

t of the probability of being occupied (ωi
t)

and the probability of having the velocity vi,m
t given that it is occupied (pi,m

t ). The probability
of being unoccupied is simply 1− ωi

t. Since cells are assumed to be independently distributed,
the probability of the entire grid is the product of probabilities of individual cells in the grid.

8.2.3 Motion update step
We will now derive the motion update equations of the dynamic probability grid. These
equations govern how particles will move across the grid and be reweighted. Consider a
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8.2. Bayes filtering using dynamic occupancy grids

simplified grid shown in Fig. 8.3 (a). Assume that there are only three cells in the grid,
and only cells 1 and 2 are occupied at time t. The occupancy and velocity distributions are
illustrated in the figure, and particles (v1,m1

t , p1,m1
t ) from cell 1 and (v2,m2

t , p2,m2
t ) from cells 2

move to cell 3 in the next timestemp t + 1 (assuming that noise has been incorporated in
v1,m1

t , v2,m2
t ). What should be the occupancy and velocity distribution of cell 3?

Let E1 be the event that the particle from cell 1 enters cell 3. Similarly, let E2 be the event that
the particle from cell 2 enters cell 3. We have that P (E1) = ω1

t p1,m1
t and P (E2) = ω2

t p2,m2
t .

Cell 3 will be occupied when either E1 or E2 happens (from Eqn. 8.1). Its occupancy probability
after the motion update is ω3

t+1 = P (E1 ∪ E2). Now, from assumption 1 (the no collision
assumption), objects of different velocities cannot occupy the same cell. Therefore events
E1 and E2 must be disjoint. From the law of total probability of disjoint events, we have
that P (E1 ∪ E2) = P (E1) + P (E2). Therefore, the occupancy probability of cell 3 after the
motion update ω3

t+1 = ω1
t p1,m1

t + ω2
t p2,m2

t . The conditional velocity distribution of cell 3
will comprise of v1,m1

t and v2,m2
t , with weights proportional to P (E1) and P (E2) respectively.

This leads us to the general motion update of dynamic occupancy grids:

ωj
t+1 =

∑
i∈I

ωi
t

Mi∑
m=1

pi,m
t I

[
posj ≈ posi + vi,m

t ∆t + δi,m
t

]

V
i

t+1 =
{(

vi,m
t + ϵi,m

t ,
ωi

t pi,m
t

ωj
t+1

) ∣∣∣∣ i, m : I
[
posj ≈ posi + vi,m

t ∆t + δi,m
t

]}

Note that the above derivation does not require assumption 3; the law of total probability
applies even when the distributions of incoming cells are not independent! Therefore, the
motion update is exact even if we treat ωi

t and V i
t as marginal distributions of potentially

correlated cells. Assumption 3 is however required for the measurement update step (see
Sec. 8.2.4).

(a) (b)

Figure 8.3: (a) Applying the motion model to update occupancies and velocities of cells in the
motion update step. ω’s are occupancy probabilities of cells, v’s and p’s are velocities and
weights of individual particles respectively. (b) Ray-marching procedure to compute the depth
probabilities of cells along a camera ray.The depth probability of the red cell is the product of
the probabilities that the red cell is occupied and that the blue cells are unoccupied.
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When adding the ωi
t pi,m

t terms from incoming particles to compute ωj
t+1, the sum should not

exceed 1 under the no collision assumption (assumption 1). However, in practice, this may
be violated. In such cases, we truncate the occupancy probability to 1 following [DON11].
However, this happens rarely; we needed to perform truncation only 0.35% times on average.

8.2.4 Measurement update step
Sensors such as light curtains and LiDARs provide depth information, from which the current
occupancy of cells can be inferred. We use a post-processing algorithm described in [HZHR20]
to process sensor data and output a detection variable zi

t ∈ {OCCUPIED,FREE,UNKNOWN}
for each cell i in the grid. zi

t indicates the presence, absence or lack of knowledge about
objects inside cell i.

For LiDAR scans, [HZHR20] marks each cell that contains LiDAR points as OCCUPIED. Then,
it uses the fact that if a 3D point was detected, light must have traveled between the sensor
and the detected point in a straight line without obstruction. Therefore, rays are cast starting
from the sensor to the OCCUPIED cells using an efficient voxel traversal algorithm [AW+87].
Cells lying along these rays are marked FREE. Any cells that remain unclassified are marked
as UNKNOWN. This method exploits visiblity constraints of light to extract the maximum
possible information from a 3D scan. We use the same processing method customized for light
curtains. When a light curtain is placed on a set of cells in the grid, the cells are classified
as OCCUPIED or FREE based on whether points were detected inside the cell. Raycasting
to occupied cells is also performed to discover additional FREE cells. Figure 8.4 visualizes
an example of visibility classification. Cells detected as OCCUPIED are shown in red. Cells
shown in blue are inferred as FREE because they either lie undetected on the curtain or lie on
rays cast to red cells. UNKNOWN cells are shown in gray.

The measurement update step takes the visibility classification as input. Our observation
model treats this classification as a noisy observation of true occupancy. We do not update
the occupancy of UNKNOWN cells. For known cells, we assume a false positive rate αfp ∈ [0, 1]
and a false negative rate αfn ∈ [0, 1]. The observation model is:

Figure 8.4: Visibility classification from light curtain returns used in the measurement update.
Red cells contain detected points and are marked as occupied. Blue cells are freespace; they
either lie undetected on the light curtain or on rays cast from the sensor to the red cells.
Raycasting exploits visibility constraints to extract the maximum amount of information from
a light curtain. The occupancy of gray cells is unknown. Purple cells are outside the light
curtain’s field of view.
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P (zi
t = OCCUPIED | oi

t = 1) = 1− αfn, P (zi
t = FREE | oi

t = 1) = αfn

P (zi
t = OCCUPIED | oi

t = 0) = αfp, P (zi
t = FREE | oi

t = 0) = 1− αfn

We first use the assumption that all cells are independently distributed (assumption 3) to
write the belief of the overall grid bel(xt) = ∏

i∈I bel(xi
t) as a product of belief distributions

across all cells in the grid. Since the likelihood function P (zt | xt) = ∏
i∈I P (zi

t | oi
t) is also

independent for each cell, the updated posterior belief bel(xt | zt) ∝ bel(xt) P (zt | xt) can
be computed independently for each cell. Given the prior occupancy distribution ωi

t and an
observation zi

t for cell i, its occupancy distribution after the measurement update can be
computed using the Bayes rule:

ωi
t = ωi

t P (zi
t | oi

t = 1)
ωi

t P (zi
t | oi

t = 1) + (1− ωi
t) P (zi

t | oi
t = 0)

Depth sensors only provide information about the occupancy of cells; they do not directly
measure object velocities. Velocities are inferred indirectly by a combination of measurement-
and motion- update steps. The measurement update incorporates information about occupancy
and the motion update infers velocities that are consistent with occupancy across timesteps
in a principled probabilistic manner. Therefore, our method estimates velocities from depth
measurements without requiring explicit data association across frames!

8.3 Parallelized pipeline for velocity estimation
How do we make our perception system efficient? Our pipeline has three major components:
(1) light curtain sensing, (2) Bayes filtering using dynamic occupancy grids, and (3) computing
intelligent curtain from the latest grid. Our insight is that the three components need not
run sequentially; they can be parallelized (see Fig. 8.5) We run the three processes in parallel
threads with shared memory, at their own independent speeds.
SENSE thread: imaging light curtains. The light curtain sensing thread continously places
light curtains. It places “intelligent” curtains computed by our placement algorithms. However,
when waiting for the next intelligent curtain placement command, instead of sitting idle, it
places random curtains (that are generated offline using the constraint graph). This ensures
that the light curtain device is continuously placing light curtains and is always kept busy.
This allows it to place curtains at its maximum capacity of approximately 45 Hz.
THINK thread: Bayes filtering. This thread performs inference using Bayes filtering with
our dynamic occupancy grid. It performs two steps in a loop: (1) the motion update, and
(2) the measurement update. It inputs light curtains imaged by the SENSE thread in the
measurement update. The two steps update the dynamic occupancy grid. This thread runs at
approximately 35 Hz.
ACT thread: computing intelligent curtains. This thread computes the next intelligent
curtain to place using the current dynamic occupancy grid. It first uses the dynamic occupancy
grid and forecasts it to to a future time when the next intelligent curtain is expected to be
imaged. Then, we apply any one of the strategies outlined in Sec. 8.4 on the forecasted grid
to compute the intelligent curtain. This intelligent curtain is sent as a command to the light
curtain device to be imaged.
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8. Active Velocity Estimation

Figure 8.5: Implementation of our method as a parallelized pipeline. Our methods contains
three components: (1) light curtain sensing, (2) inference using Bayesian filtering and (3)
computing intelligent curtains. Each process can be run parallelly in a separate thread at its
own independent speed. The three processes are tightly coupled in a closed loop with shared
memory. Our implementation ensures that information flows between the threads safely and
continuously.

Using an extra grid for thread-safety and efficiency How many grids are needed to
implement parallelization, especially across the Bayes filtering and planning threads?

• The motion update step moves particles across the grid according to the motion model.
The particles cannot be moved in place inside the same grid since it may cause particles
to be erroneously moved more than once. Therefore, the motion update step requires
two grids: a “source/current” grid and a “destination/next” grid. Particles from the
current grid are copied, moved and placed in the next grid. After the motion update is
complete, the roles of the current and next grids are swapped. The next grid is now
assigned to be the new “current” grid since it is now the most up-to-date, incorporating
the latest measurements. In the next motion update step, particles move from this grid
to the older current grid (now taking the role of the “next” grid).

• The intelligent curtain thread also performs a motion update when it needs to forecast
the current grid to a future timestep (when the next intelligent curtain is expected to
be imaged). It uses the current grid of the Bayes filtering thread as the source, but
requires a third, "forecasting" grid as a destination grid.

• Although three grids are sufficient to implement parallelization, the pipeline can be
made more efficient. Specifically, consider the situation where two motion updates take
place simultaneously from "current" to "next" grids in the Bayes filtering thread and
"current" to "forecasting" grid in the intelligent curtain thread. Once the motion update
in the Bayes filtering thread is complete, it cannot immediately perform the next motion
update step. It must wait for the intelligent curtain thread to finish forecasting using the
“current” grid before the next motion update dirties it. If we use an additional "extra"
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grid (see Fig. 8.5), the Bayes filtering thread can use this as the destination grid for its
next motion update step without needing to wait on the intelligent curtain thread to
finish the latter’s forecasting step.

In summary, our parallelized pipeline tightly integrates the three inter-dependent processes
in a closed loop. We use a total of four grids to simultaneously guarantee the following two
properties: (1) grids in use are never mistakenly overwritten, and (2) no thread ever needs to
wait on another to finish processing.

8.4 Intelligent curtain placement strategies
Now that we have a dynamic occupancy grid method that can infer occupancies and velocities
explicitly from light curtain measurements, the main challenge is to compute the best curtain
placement from the current grid i.e. the current estimates of occupancy and velocity. The
measurements from the placed curtain will be fed back to upgrade the grid, closing the loop.
We adapt light curtain placement strategies based on previous work [ARH+20, APNH21]
to dynamic occupancy grids, as well as propose a novel method that combines the various
strategies to outperform each individual strategy. We first forecast the current occupancy
to the future timestep when the next light curtain is expected to be imaged. The following
strategies compute an intelligent curtain using the forecasted occupancy.

8.4.1 Maximizing depth probability
In [APNH21], the authors predict the “safety envelope” of the scene and place a light curtain
at the predicted location. The safety envelope is an imaginary surfaces that “hugs” or “sticks”
to objects as tightly as possible. They can be thought of as verification curtains – they are
placed to verify whether the object locations predicted by the inference model (i.e. the THINK
framework) is accurate. This strategy is motivated by the fact that light curtains only detects
object surfaces when it intersects them.

Note that dyanamic occupancy grids are probabilistic models. Safety envelopes or verification
curtains in a dynamic occupancy grid correpsond to locations of the highest “depth probability”.
The depth probability of a cell in the grid is the probability that the depth of the scene along
the cell’s direction is the cell’s location. In other words, it is the probability that a visible
surface exists in the cell i.e. the cell is occupied and all other occluding cells are empty. Once
we compute the depth probability of each cell in the grid, we can place a curtain that lies on
the cells with the highest depth probability.

How do we compute the depth probability in a probabilistic occupancy grid? We borrow
the idea of “ray marching” from the literature on volumetric rendering [TZEM17, MST+20].
In order to reconstruct the implicit depth surface from a probabilistic volume, ray marching
travels along a ray originating from the sensor and computes the probability of visibility and
occlusion at each point. [TZEM17] performs this for discretized 3D grids (similar to our case)
whereas NeRFs [MST+20] perform this in a continuous space using neural radiance fields.
Consider an example of raymarching in Fig. 8.3 (b). Let the sequence of cells on a ray be
indexed as 1, 2, . . . , n, . . . N . Recall from Sec. 8.2.2 that ωi

t is the occupancy probability of
the i-th cell at timestep t. The depth probability of the n-th cell P D

t (n) = ωn
t

∏n−1
i=1 (1− ωi

t)
is product of the probabilities that the n-th cell is occupied (ωn

t ) and the probabilities that
each i-th cell on the ray before the n-th cell is unoccupied (1− ωi

t) so that light can reach
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the n-th cell unoccluded. Let us define the “visibility” probability P V
t (n) = ∏n

i=1(1− ωi
t) that

all cells are visible upto the n-th cell. Then, we have the following recursive equations:

P V
t (i) = P V

t (i− 1) (1− ωi
t)

P D
t (i) = P V

t (i− 1) ωi
t

These recursive equations can be used to compute the depth probability of each cell along a
ray efficiently in time O(N) linear in the number of cells on that ray. In this strategy, we first
compute the depth probability of all cells in the grid, and place a curtain at the location of
the maximum depth probability along each ray.

8.4.2 Maximizing information gain
Another strategy that was found useful for 3D object detection using light curtains in [ARH+20]
was to place curtains at the regions of “highest uncertainty”. This is based on the principle of
maximizing mutual information for active sensing.

Consider the dynamic Bayes network shown in Fig. 8.1. Given a forecasted prior belief bel(xt),
the information gain framework prescribes that the action ut should be taken that maximizes
the information gain IG(xt, zt | ut) between the state xt and the observations zt when taking
an action ut. Information gain is a well-studied quantity in information theory and is usually
defined as:

IG(xt, zt | ut) = H(P (xt))︸ ︷︷ ︸
entropy of xt

− Ezt|ut

[
H(P (xt | zt, ut))

]
︸ ︷︷ ︸

conditional entropy of xt | zt under ut

(8.2)

The information gain is the expected reduction in entropy (i.e. uncertainty) in xt before and
after taking the action ut. [ARH+20] showed that under certain assumptions, the information
gain of conventional occupancy grids on placing light curtains is equal to the sum of binary
entropies of the occupancy probabilities of the cells that the curtain lies on.

While computing information gain for conventional occupancy grids is straightforward to
compute, it is not so for the case of dynamic occupancy grids. This is because the underlying
state space of dynamic occupancy grids is a ‘mixture’ of discrete and continuous spaces.
Consider the state xi

t of the i-th cell in the grid. The space of the state xi
t is:

xi
t ∈ {unoccupied}︸ ︷︷ ︸

discrete space

∪ {occupied with vi
t | vi

t ∈ R2}︸ ︷︷ ︸
continuous space

The cell can either be unoccupied, or be occupied with a continuous velocity. Unfortunately,
the entropy of such mixed discrete-continous spaces is not well-defined [GKOV17]. Therefore
the “2H-estimator” in Eqn. 8.2 cannot be used to compute information gain since the individual
terms on the right hand side are not well-defined.

Fortunately, information gain is well-defined for most distributions, including discrete-continuous
mixtures [GKOV17]. This is possible by using a more general definition of information gain
given by the “Radon–Nikodym” derivative [GKOV17]:
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IG(xt, zt | ut) =
∫

xt,zt

log dPx,z

dPxPz︸ ︷︷ ︸
Radon–Nikodym derivative

dPx,z (8.3)

The Radon–Nikodym is well-defined for discrete-continuous mixtures [GKOV17]. When the
individual entropy terms of Eqn. 8.2 are well-defined, the more general definition of Eqn. 8.3
reduces to Eqn. 8.2. The two definitions are consistent.

We will now derive the information gain of dynamic occupancy grids using the more general
Radon–Nikodym definition. Here, we derive the information gain of a single i-th cell. Let
ω be the occupancy probability of the cell. Let the continuous velocity distribution of the
cell be denoted by P (v). Assume that we place a curtain on this cell, and we obtain an
observation zi

t ∈ {0, 1} to be a noisy measurement of the cell’s occupancy. This is assuming
that we are using a depth sensor that can only partially observe occupancy but cannot directly
observe velocities. Let αfp and αfn be the false-positive and false-negative rates of the sensor
respectively. Then,

IG(xi
t | zi

t) =
∫

x,z
dPx,z log dPx,z

dPxPz

(Radon-Nikodym formulation)

= (1− ω)(1− αfp) log (1− ω)(1− αfp)
(1− ω)P (zi

t = 0)︸ ︷︷ ︸
unoccupied and undetected

+ (1− ω) αfp log (1− ω) αfp

(1− ω)P (zi
t = 1)︸ ︷︷ ︸

unoccupied and detected

+
∫

v
ω P (v)dv (1− αfn) log ω P (v)dv (1− αfn)

ω P (v)dv P (zi
t = 1)︸ ︷︷ ︸

velocity v and detected

+
∫

v
o P (v)dv αfn log ω P (v)dv αfn

ω P (v)dv P (zi
t = 0)︸ ︷︷ ︸

velocity v and undetected

= (1− ω)(1− αfp) log (1− αfp)
P (zi

t = 0) + (1− ω) αfp log αfp

P (zi
t = 1)

+ ω (1− αfn) log (1− αfn)
P (zi

t = 1) + ω αfn log αfn

P (zi
t = 0)

= −
[
(1− ω)(1− αfp) + ω αfn

]
log P (zi

t = 0)−
[
(1− ω) αfp + ω(1− αfn)

]
log P (zi

t = 1)
− ω H(αfn)− (1− ω) H(αfp)

= −P (zi
t = 0) log P (zi

t = 0)− P (zi
t = 1) log P (zi

t = 1)− ω H(αfn)− (1− ω) H(αfp)
= H(z)− ω H(αfn)− (1− ω) H(αfp)
= H(ω) (assuming that αfp = αfn = 0)

In the limiting case that the sensor is accurate (i.e. the false positive rate αfp and the false
negative rate αfn are both close to zero), the information gain of a single cell due to placing a
light curtain on that cell is equal to its binary entropy H(ω) = −ω log2 ω−(1−ω) log2(1−ω).
Therefore, the total information gain is the sum of binary cross entropies of the cells that
the curtain lies on. This is similar to the information gain in [ARH+20]. However, we have
been able to show this mathematically in the more complex case of mixed discrete-continuous
distributions.
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This theoretical intuitively makes sense. Since the depth sensor measurements only provide
information about occupancy and not velocity, it is not surprising that the information gain is
equal to the total occupancy uncertainty.

Occupancy uncertainty/entropy: The previous section (Sec. 8.4.2) provides an intelligent
curtain placement strategy: place the curtain that maximizes the sum of binary cross entropies
Hocc(ωi

t) = −ωi
t log2 ωi

t − (1− ωi
t) log2(1− ωi

t). We also propose two more strategies below.

Velocity uncertainty/entropy: Each cell, apart from an occupancy probability, also contains
a velocity distribution P (V i

t ) ∼ {(vi,m
t , pi,m

t ) | 1 ≤ m ≤ M} represented by a set of M
weighted particles with velocities vi,m

t and weights pi,m
t that sum to one. Another strategy

could be to place curtains that maximize the sum of velocity entropies.

We use a discrete set of particles to represent the velocity distribution. However, the velocity
sample space and the underlying true velocity distribution is continuous. Therefore, before
computing the differential entropy of the continuous velocity distribution, we must first
estimate its continuous probability density. This can be achieved by fitting a family of continous
distributions to the set of weighted particles, and computing the differential entropy of the fitted
distribution. We choose the simplest of such families: the parametric family of multivariate
Gaussians. However, one could pick more complex families, such as non-parametric kernel
density estimators (KDE). We fit a multivariate Gaussian to the particles to obtain the mean
µ = ∑M

m=1 pi,m
t vi,m

t and the covariance matrix Σ = ∑M
m=1 pi,m

t (vi,m
t −µ) (vi,m

t −µ)T . Then, we
compute the differential entropy of the fitted Gaussian distribution Hvel(V i

t ) = 1
2 log det(2πeΣ).

Finally, we place a curtain that maximizes the sum of velocity entropies, as computed above,
of the cells the curtain lies on.

Combined occupancy and velocity uncertainty/entropy: We also consider maximizing a
weighted combination of occupancy and velocity entropies:
Hcmb(ωi

t, V i
t ) = Hocc(ωi

t)+ωi
t Hvel(V i

t ). The velocity uncertainty is weighted by the occupancy
probability. This captures the notion that if the occupancy probability is very low, then the
overall uncertainty should also be low even if the uncertainty in velocity is high. This can be
thought of as a heuristic placement policy; in practice, this policy performs very well.

8.5 Self-supervised multi-armed bandits

8.5.1 Multi-armed bandit framework
Multi-armed bandits [SB18] are an online learning framework. A multi-armed bandit consists
of a set of actions or “arms”, where each action is associated with an unknown reward
function. The set of actions is denoted by A. The agent only observe samples from the reward
distribution when it takes that action. The goal is to maximize the cumulative reward over
time. It mantains a running average of the rewards for each action, called Q-values.

We use ϵ-greedy multi-armed bandits, that trades-off exploration with exploitation. With with
probability ϵ, the bandit performs exploration and choses one among the |A| actions with
equal probability. With probability 1− ϵ, it performs explotation and chooses the action that
has the highest Q-value.

We use multi-armed bandits to intelligently switch between the four curtain placement strategies
described in Sec. 8.4.
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8.5.2 Self-supervised rewards
The bandit framework requires a reward function to evaluate actions. How should we design
a reward function that is available at test-time using only light curtain placements and
measurements?

We propose to obtain the reward function in a self-supervised manner. Since our eventual
goal is accurately estimating occupancy and velocity, we aim to place curtains that lead to
the largest improvements in occupancy and velocity estimates. Furthermore, since we use
forecasted occupancy as our evaluation metric, we will use the same for our reward function.

How do we compute the accuracy of forecasted occupancy at test time, without needing
ground truth, in a self-supervised way? Let us revisit the dynamic Bayes network show in
Fig. 8.6 to answer this question.

Figure 8.6: The Dynamic Bayes network [Thr02] from Fig. 8.1 demonstrating how self-
supervised rewards are computed. Belief distributions are represented by dynamic occupancy
grids. At timestep t− 1, the belief bel(xt−1) was forecasted by applying the motion model to
obtain the prior belief bel(xt) at timestep t. Then, the current light curtain measurement zt

obtained by placing a curtain at locations ut is used to update this grid to bel(xt). Therefore,
we attribute the accuracy of occupancy and velocity estimates of bel(xt) (evaluated using
forecasted occupancy) to ut. Note that the forecasted occupancy is computed in the next
motion update as bel(xt+1). Our main insight is that the occupancy (partially) observed
by the next light curtain measurements zt+1 in the next timestep can be used to evaluate
bel(xt+1). This acts as a self-supervised reward for ut. The reward is used by multi-armed
bandits to intelligently switch between multiple placement policies. The self-supervised reward
is computed “for free”; by reusing quantities already computed during recursive Bayes filtering,
we do not require any extra forecasting steps or any extra light curtain placements.

Recall that belief distributions are represented by dynamic occupancy grids. At timestep t− 1,
the grid representing the belief bel(xt−1) was forecasted by applying the motion model to
obtain the prior belief bel(xt) at timestep t. Then, in the measurement update step, the
current light curtain measurement zt obtained by placing a curtain at locations ut is used to
update the grid to bel(xt). Therefore, we attribute the accuracy of occupancy and velocity
estimates of bel(xt) to ut.

The accuracy of occupancy and velocity is evaluated using forecasted occupancy. Our task
reduces to computing the accuracy of forecasted occupancy of bel(xt) in a self-supervised way.
This is possible by resuing intermediate quantities output during recursive Bayesian updates.
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First, note that the forecasted occupancy of bel(xt) is bel(xt+1) computed by the next motion
update step. Our main insight is that before applying the next measurement update step,
bel(xt+1) can be evaluated using the occupancy (partially) observed by the next light curtain
measurements zt+1 at t + 1. This acts as a self-supervised reward for the previous light curtain
placement ut.

The next observations zt contain partial, but substantial information about occupancy. This
information comes from multiple sources: (1) the intelligent curtain zt+1, (2) (possibly multiple)
random curtains that are continuously placed by the SENSE thread (see Sec. 8.3), and (3)
freespace information obtained using raycasting (see Sec. 8.2.4).

An advantage of our self-supervised reward is that it is essentially computed for free! This
is because (1) occupancy forecasting of bel(xt) is performed anyway as part of the motion
update step, and (2) the partial occupancy information from zt+1 is computed anyway in the
next measurement update step. By reusing quantities already computed during recursive Bayes
filtering, our self-supervised reward does not require any extra forecasting steps nor any extra
light curtain placements.

8.5.3 Non-stationary rewards
Vanilla multi-armed bandits assume that the reward distribution for each action is stationary.
The Q-value of an action after it was been performed n times is computed as Qn = 1

n

∑n
i=1 Ri,

where Ri is the reward obtained in the i-th trial. This is equivalent to the following recursive
update rule: Qn+1 = Qn + 1

n
[Rn −Qn], where the Q-value is incremented by the error scaled

by a decaying factor 1
n
.

However, in our case, a single placement strategy may not be superior to the rest at all times
and in all situations. The reward distribution for each strategy (action) may change with
time. Hence, we assume that our rewards are non-stationary. For non-stationary rewards, we
wish to give more weight to recent rewards than to older rewards. Therefore, the decaying
parameter is replaced by a constant step-size parameter α: Qn+1 = Qn + α [Rn −Qn]. This
weights newer rewards exponentially more than older rewards according to the expression:
Qn+1 = (1− α)n Q1 + ∑n

i=2 α (1− α)n−i Qi.

8.6 Experiments

8.6.1 Environments
Simulation environment: We use a simulated environment consisting of various blocks
moving in a variety of motions (see Fig. 8.7 (a)). The environment contains cylinders and
cuboids, moving in (1) linear, harmonic (oscillatory) motion along different directions, (2)
curved sinusoidal motion, and (3) random Brownian motion. Since ground truth is available
in simulation, we evaluate forecasted occupancy in this environment using ground truth
occupancy.

Real-world environment: Our real-world environment consists of two pedestrians walking
in front of the sensor in multiple directions and at different speeds (see Fig. 8.7 (b)). Since
ground truth is not available in the real-world, we evaluate forecasted occupancy in this
environment using partially observed occupancy from light curtain measurements (see our
self-supervised reward in Sec. 8.5).
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(a) (b)

Figure 8.7: (a) Simulated environment: the simulated environment used for velocity estima-
tion. It consists of differently shaped objects (cuboids and cylinders) moving in (1) linear
oscillatory/harmonic motion along various directions, (2) curved sinusoidal motion, and (3)
random Brownian motion. (b) Real-world environment: the real-world environment consists of
two pedestrians walking in front of the sensor in multiple directions and at different speeds.

Classification
accuracy Precision Recall F1-score IOU

↑ ↑ ↑ ↑ ↑
LiDAR
(5 Hz) 0.9584 0.2498 0.1073 0.1360 0.0787

Random curtains
only 0.9662 0.2698 0.0567 0.0850 0.0468

Max. depth
probability 0.9610 0.2448 0.1146 0.1388 0.0792

Max. occupancy
information gain 0.9609 0.2717 0.1266 0.1493 0.0857

Max. velocity
information gain 0.9648 0.2728 0.0581 0.0838 0.0458

Max. occupancy + velocity
information gain 0.9629 0.3026 0.1251 0.1544 0.0895

Multi-armed bandits
(Ours) 0.9623 0.2814 0.1402 0.1690 0.0976

Table 8.1: Accuracy of occupancy and velocity estimation (measured using forecasted occu-
pancy and fully observed ground truth occupancy) in simulated environments.

The velocities of the objects in both environments change continuously with time. Our task is
to estimate the occupancy and velocity of each visible point on the objects.

8.6.2 Quantitative analysis
Table 8.1 and 8.2 show the performance of various light curtain placement policies under
multiple metrics that evaluate forecasted occupancy. The main metrics we focus on are F1-score
and IOU, shown in blue. In both sets of experiments, multi-armed bandits that combine the
four other intelligent curtain placement policies using our self-supervised reward outpeform all
other methods. This shows that intelligently switching between multiple placement strategies
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Classification
accuracy Precision Recall F1-score IOU

↑ ↑ ↑ ↑ ↑
Random curtains

only 0.9852 0.6306 0.2357 0.2405 0.2136

Max. depth
probability 0.9832 0.5943 0.2727 0.3047 0.2353

Max. occupancy
information gain 0.9811 0.5733 0.3041 0.3319 0.2515

Max. velocity
information gain 0.9864 0.6221 0.2615 0.2545 0.2232

Max. occupancy + velocity
information gain 0.9822 0.5899 0.3175 0.3421 0.2727

Multi-armed bandits
(Ours) 0.9854 0.6467 0.3647 0.3703 0.3053

Table 8.2: Accuracy of occupancy and velocity estimation (measured using forecasted occu-
pancy and partially-observed, self-supervised occupancy) in a real-world environemnt with
walking pedestrians.

may be more beneficial than only using one given strategy at all times.

Between the other four strategies, maximizing occupancy uncertainty and maximizing a linear
combination of occupancy and velocity uncertainty perform comparably. This is followed by
maximizing depth probability. Maximizing velocity uncertainty tends to perform the worst,
and by a large margin in the simulated environment. Fortunately, multi-armed bandits learn to
downweight the velocity uncertainty based policy (see Sec. 8.6.3). We also compare against
other baselines: using only random curtains (without placing any intelligent curtains), and with
a simulated Velodyne LiDAR. Unsurprisingly, only using random curtains performs the worst.
All intelligent curtain policies except maximizing velocity uncertainty are able to outperform
LiDAR. Interestingly, the latter policy performs comparibly to and sometimes worse than
random curtains-only.

Table 8.3 shows an analysis specific to the multi-armed bandit method. The first column
shows the frequencies (in percentages) of selecting each action (curtain placement strategy).
The second column shows the average Q-value computed by the multi-armed bandit for each
action. Higher Q-values are better; the action with the highest Q-value will be selected during
exploitation. We see that the best performing policies according to Tables 8.1, 8.2 are selected
most frequently. Unsurprisingly, they also have the highest Q-values. The following trend
holds: that the lower the performance of an individual policy when used in isolation, the lower
is its average Q-value and the less frequently it is chosen. However, a combination of all
policies (MAB) is better than any one.

8.6.3 Qualitative analysis
Visualizing velocities and occupancies: Fig. 8.8 shows how we visualize 2D velocities and
occupancies (both ground truth and estimated velocities and occupancies). The visualization
of an example ground truth grid is shown in Fig. 8.8 (b). We use the HSV colorwheel shown in
Fig. 8.8 (a) to jointly visualize velocities and occupancies. The ‘value’ encodes the occupancy
probability; dark means low occupancy probability and bright means high occupancy probability.
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Frequency
of selection

Avg. Q-value
function (IOU)

Max. depth
probability 22.9% 0.261

Max. occupancy
information gain 31.1% 0.276

Max. velocity
information gain 13.4% 0.202

Max. occupancy + velocity
information gain 32.5% 0.292

Table 8.3: Quantitative analysis of the multi-armed bandit method. The first column shows
the percentage of times each action (i.e. curtain placement policy) was chosen. The second
column shows the average Q-value of each action computed by the multi-armed bandit. Higher
Q-value is better; the action with the highest value is selected during exploitation.

The ‘hue’ encodes the direction of velocity. For example, the bluish-purple hue of the cuboid
in Fig. 8.8 (b) means that the cuboid is moving upwards in 2D i.e. away from the sensor in
3D. ‘Saturation’ encodes the magnitude of velocity. This means that white is stationary (e.g.
the walls of the environment) whereas colorful corresponds to high speed.

Example from simulation. Fig. 8.10 shows an example of velocity estimation in the simulated
environment. The top-left panel shows the dynamic occupancy grid with estimated velocities
and occupancies. The top-right panel shows the ground truth velocities and occupancies
queried from the simulator. The top-center panel shows the color-coding for 2D velocity from
the top-down view. The bottom-left panel shows partial occupancies observed from light
curtain measurements. This is input to the dynamic occupancy grid during the measurement

(a) HSV colorwheel used to visualize velocities. (b) GT velocities of the simulated environment.

Figure 8.8: (a) The HSV (hue-saturation-value) colorwheel used to visualize 2D velocities and
occupancies. Value corresponds to the occupancy probability. The hue corresponds to the
direction of the velocity. Saturation corresponds the magnitude of velocity. (b) Ground truth
velocities and occupancies of the simulated environment. The grid shows a stationary wall to
the left and two objects. The bluish-purple square is moving upwards in 2D (i.e. farther away
from the sensor in 3D) whereas the other objects in white are stationary.
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update step. The bottom-center panel shows intelligent curtains in blue. The bottom-right
panel shows the raw light curtain image. Intensities are high in the raw image when object
surfaces intersect the curtain.
When objects move down, they are estimated as yellowish-green and when they move up, they
are estimated as bluish-purple. Similarly, when objects move right, they are colored with a
blue tinge, and when they move left, they appear reddish. The estimated velocities appear to
be consistent with the ground truth.
Real-world examples. Fig. 8.11 shows qualitative results on the real-world environment
using multi-armed bandits (MAB). In both figures (a) and (b), the top-right panel shows the
current strategy selected by the MAB, while the bottom-right panel plots the Q-values of each
action across time. Higher Q-value is better. The action with the highest Q-value will be
selected during exploitation. Fig. 8.11 (a) contains two pedestrians walking at relaxed speeds.
The velocity direction is correctly inferred for each pedestrian by the dynamic occupancy
grid – the pedestrian walking to the right is shown in greenish-blue and the person walking
to the left is colored in red. The current action selected maximizes occupancy probability.
Fig. 8.11 (b) contains a harder environment where a lone pedestrain performs fast motion:
running and jumping. The direction of velocity is correctly inferred as moving top-left (left
and away from the sensor) i.e. reddish pink. The color saturation is high indicating that the
pedestrian is indeed moving at a high speed. The current action selected maximizes depth
probability. We can also see from both (a) and (b) that the MAB learns a low Q-value for
the yellow policy. The yellow policy corresponds to maximizing velocity uncertainty, and is
the worst performing of all 4 strategies (see Tables 8.1, 8.2). This indicates that multi-armed
bandits are successfully able ignore strategies that do not perform well.

Figure 8.9: Mobile active light curtain perception platform: A light curtain device (in blue) is
mounted on top of a mobile robot. We use this setup to perform real-world experiments.
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Figure 8.10: Velocity estimation in simulation. Top-left: estimated velocity and occupancy
using the dynamic occupancy grid. Top-right: ground truth occupancy and velocity. Top-
center : color-coding for visualizing velocity. Bottom-left: Partial occuapancy observations
from light curtain measurements that are input to the dynamic occupancy grid. Bottom-center:
intelligent curtains in blue. Bottom-right: raw light curtain images; intensities are high when
objects surfaces intersect the curtain.
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(a)

(b)

Figure 8.11: Velocity estimation in the real world using multi-armed bandits (MAB).
For both (a) and (b): Top-right panel: current strategy selected by the MAB. Bottom-right:
the Q-values of each strategy. Higher Q-value is better; the action with the highest Q-value is
chosen during exploitation. For an explanation of other panels, please refer to Fig. 8.10.
(a) Two pedestrians walking at a normal pace. The directions of motion are correctly inferred
for each person as walking right (greenish-blue) and walking left (reddish). The current action
selected maximizes occupancy uncertainty. (b) A harder environment where one person is
running fast. The direction of velocity is correctly inferred as moving top-left (left and away
from the sensor) i.e. reddish pink. The color saturation is high indicating the larger magnitude
of velocity. The current action selected maximizes depth probability.
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CHAPTER 9
Conclusion and Future Work

In this thesis, we have laid the algorithmic foundations of active perception using programmable
light curtains. We investigated the use of light curtains for various perception tasks: ob-
ject detection, depth estimation, obstacle detection and avoidance, and velocity estima-
tion. We decomposed the overall architecture of our perception systems into three compo-
nents: SENSE (sensing using light curtains potentially in conjunction with other sensors),
THINK (state estimation and prediction from sensor measurements), and ACT (deciding
where to place the light curtain). We proposed several methods for each component, namely,
using sparse but accurate sensors (single-beam LiDARs), using dense but inaccurate sensors
(cameras), deep learning based methods, Bayesian inference, Bayes filtering using dynamic
occupancy grids (occupancy grids + particle filters), information gain, safety envelopes, multi-
armed bandits with self-supervised rewards, and dynamic programming to incorporate light
curtain constraints for computing curtains that maximize a task-specific objective, or to
produce analytical detection probabilities for probabilistic safety guarantees.

In Chapter 4, we developed a method to incorporate the velocity and acceleration constraints
of the light curtain device into the constraint graph. Then we developed a planning algorithm
using dynamic programming that efficiently computes the feasible curtain that maximizes
any task-specific objective while satisfying light curtian constraints. Furthermore, we showed
how random curtains can be sampled from the constraint graph to discover obstacles with
very high probability. We developed another dynamic programming based algorithm that
analytically computes the probability of random curtains discovering obstacles, providing
theoretical safety guarantees for obstacle detection and avoidance. The constraint graph and
dynamic programming were used by all active perception tasks.

In Chapter 5, we looked at active object detection. We proposed using light curtain measure-
ments in conjuction with a single-beam LiDAR to detect 3D bounding boxes around objects
in a scene. We trained a deep-learning based 3D object detector to detect objects of the
required semantic classes and output bounding boxes. We placed curtains at the locations of
highest detector uncertainty to maximize information gain and sense more 3D points. This
incrementally and consistently improved detection performance.

In Chapter 6, we performed depth estimation of a scene by combining measurements from a
light curtain and a monocular RGB camera (a dense but inaccurate sensor) using a Bayesian
inference framework. We used a monocular depth estimator to input an RGB image and
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output a depth distribution. We treated this distribution as a prior and combined it with
likelihoods from light curtain measurements to refine the monocular depth estimates.

In Chapter 7, we estimated the safety envelope of the scene at each timetep. We trained
a deep neural network to predict the location of the safety envelope in the next timestep
from previous light curtain measurements alone. Then, we placed verification curtains at the
predicted object locations to sense visible surfaces and estimate and track the safety envelope
across time. At the same time, we continuously placed random curtains to discover obstacles.

In Chapter 8, we developed a method to explicitly predict the velocity of each point in the scene
using light curtains. We used a probabilistic Bayes filtering approach using dynamic occupancy
grids that combine conventional occupancy grids with particle filters. After estimating the
velocity and occupancy of each location in the scene, we combined the information-gain based
and verification-based placement strategies. We used a multi-armed bandit framework to
intelligently switch between multiple strategies. This was enabled by a novel self-supervised
reward function computed at test time using light curtain placements alone. We saw that
this approach improved the accuracy of velocity and occupancy estimation over individual
placement strategies used in isolation.

However, much more could be done to improve active perception using light curtains:

• Currently, dynamic occupancy grids have been implemented on a single-core CPU.
Parallelizing the particle filter-based motion updates across multiple CPU cores or over
a GPU could potentially improve the accuracy and efficiency of velocity estimation.

• In this thesis, we used an ϵ-greedy algorithm for multi-armed bandits to switch between
multiple curtain placement strategies. It may be worth exploring other algorithms such as
Thompson sampling and upper-confidence bound (UCB) that could potentially improve
exploration.

• Another direction to improve multi-armed bandits is to incorporate context. Apart from
allowing the rewards to be non-stationary, the current multi-armed bandit algorithm
does not take any form of context into account. Contextual bandits take as input
feature representations of the current context to make more informed decisions. Such
representations could either be hand-designed or learned for selecting among multiple
curtain placement strategies.

• The velocity estimates produced by dynamic occupancy grids are being used to compute
where the next light curtain should be placed. However, these estimates could be used
for other downstream tasks such as trajectory forecasting, obstacle avoidance and robot
motion planning. They could be used to improve simultaneous localization and mapping
(SLAM) systems which usually assume that all objects in the environment are stationary.
Explicit velocity estimates could be first used to classify whether scene points are static
or dynamic, and then to subtract dynamic objects from the scene. This could potentially
improve the performance of SLAM systems.

• The intensity model of programmable light curtains can be improved by incorporating the
geometry (surface normals) and reflectance properties of objects in the scene. Improving
the light curtain sensor model and making it more physically accurate would likely
improve the performance of Bayesian inference using light curtains.
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• In this thesis, we treat light curtain placement as a short horizon problem, such as
placing light curtains to maximize the information gain in the immediate next timestep,
placing curtains to verify predicted object locations of the next timestep etc. Instead, we
could model active perception using light curtains as a long-horizon partially observed
Markov decision process (POMDP). Solving POMDPs is generally intractable even for
very small state spaces. However, with advances in reinforcement learning algorithms
and increased compute capacity, this research direction could potentially be promising
for active light curtain perception.

With this thesis, we aim to lay the foundations and provide the initial set of tools for intelligently
controlling programmable light curtains. However, we think these are only the first steps along
a new and exciting research direction ripe with many interesting and unsolved problems for
safe and accurate active robot perception using controllable sensors.
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