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ABSTRACT

We consider the addition of physically-based weather effects like haze, fog and mist to
images. Most computer graphics images are rendered under clear day or night conditions
and little attention has been devoted to efficiently adding realistic weather effects. Mul-
tiple light scattering is dominant in a variety of atmospheric conditions (in general, most
participating media) and is hard to model accurately using simple approximations such
as single scattering and diffusion. In the past, accurate multiple scattering simulation has
therefore required very expensive volumetric Monte Carlo methods. This paper focuses
on multiple scattering from light sources immersed in participating media such as bad
weather and fluids. We derive a new analytic formula for multiple scattering from a point
light source in a medium. We extensively validate our model using monte carlo simula-
tions as well as using controlled experiments with a light source immersed in milk. The
model accurately predicts complex scattering effects produced by a wide range of con-
centrations of the medium. For rendering area sources of complex shapes and radiance
distributions, we show that the analytic formula reduces to a simple depth-dependent con-
volution of the image. This leads to an efficient implementation of adding physically-based
glows around sources. We demonstrate fast and accurate addition of weather effects to real
photographs. Although the paper focuses on atmospheric effects, the results can be used to
render sources through virtually any participating medium such as smoke, tissue and blood.

1. INTRODUCTION

Real-world imagery often includes weather effects like haze, fog and mist. However, most
computer graphics images are rendered under clear atmospheric conditions, and simulation
of weather effects has not received much attention. An important feature of images in
bad weather is the glow around bright light sources, caused by multiple scattering in the
atmosphere. The shape and extent of the glow depends on the particular type and density of
particles constituting the weather condition. For instance, minute molecules in pure air do
not produce glows, whereas larger particles such as aerosols, water droplets and impurities
in haze, fog and mist can produce significant glows. While these effects are important
in creating realistic images in bad weather, they are difficult to accurately and efficiently
simulate using current computer graphics methods.
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Volumetric Monte Carlo or finite element simulations, equivalent to volume ray trac-
ing and radiosity, can give accurate results for general conditions and have been applied
by a number of researchers [Pattanaik and Mudur 1993; Blasi et al. 1993; Languenou
et al. 1994; Max 1994; Rushmeier and Torrance 1987; Antyufeev 2000]. These methods
are based on numerically solving an integro-differential equation known as the radiative
transfer equation [Chandrasekhar 1960; Ishimaru 1978], analogous in some ways to the
rendering equation for surfaces. However, these simulations are very time consuming (un-
less the implementations are highly parallelized and hierarchical [Lecocq et al. ]), leading
us to look for alternative simple and efficient analytic models or approximations.

This paper presents a novel analytic solution for the scattering (including both single and
multiple scattering) from a point source in a participating medium with arbitrary scattering
properties (phase function), and a wide range of densities (optical thickness). The deriva-
tion is based on analyzing the spherical radiative transfer equations. To our knowledge, this
represents the first such derivation of an analytic formula for general multiple scattering in
the radiative transfer literature, generalizing previous work [Ambartsumian 1945; Marshak
1947; Elliott 1955; Chandrasekhar 1960]. Using our analytic formula, it is possible, for
instance, to model the effects of small aerosols and large water drops constituting weather
conditions like haze, fog and mist; the effects of impurities in smoke and water; as well as
the effects of molecules and proteins in tissues, blood and milk. In simultaneous work, we
have applied inverse methods to a simpler version of the model presented here to the com-
puter vision problem of determining weather conditions from photographs [Narasimhan
and Nayar 2003].

The closest previous analytic work in computer graphics is the application of the dif-
fusion approximation for optically dense media by [Stam 1995]. Earlier, [Kajiya and
Herzen 1984] simulated clouds by deriving an analytic formula in terms of spherical har-
monics, but truncated the expansion after the first order harmonic, essentially obtaining a
diffusion equation. Diffusion theory is based on the idea that multiple scattering within
a dense medium eventually makes the angular radiance distribution almost uniform. Dif-
fusion has been applied in plane parallel media such as clouds [Kajiya and Herzen 1984;
Koenderink and van Doorn 2001] and subsurfaces of translucent materials [Jensen et al.
2001], where sources are outside the medium. However, it is not suitable for scattering in
bad weather, because it cannot capture highly directional effects, where the sources and
observer are both within the medium. Indeed, if applied to our problem, the glows around
the light sources in figure 12 would fill the entire image, instead of having a finite extent
with a rapid decay of intensity at large angles.

We validate our formula using monte carlo simulations as well as using real experi-
ments with a spherical bowl of milk at different concentrations, that correspond closely to
the conditions under which we derive our model. The experiments indicate that previous
approximations like diffusion theory cannot fit the shape of the measured angular distri-
butions, while our model gives accurate fits to within 3% with a small number of terms.
Experiments on outdoor light sources (like street lamps) as well as experiments with a
modified milk setup indicate that our model is reasonably accurate even in cases where the
theoretical assumptions are not fully satisfied.

To efficiently apply our analysis to light sources of complex shapes and radiance distri-
butions, we show that the glows can be computed by a depth-dependent image convolution.
This makes implementation simple, requiring less than 25 lines of Matlab code. As a re-
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sult, we have an interactive method to add physically correct glows to light sources seen
through any participating medium. We demonstrate using three examples how our model
can be applied to efficiently simulate weather effects in photographs. Further, we show
that other approximations like single scattering [Ebert and Parent 1990; Sakas 1990; Max.
1986; E. Nakamae and Nishita 1986; Nishita and Nakamae 1987] qualitatively cannot cap-
ture the glows around light sources that are critical to hazy, foggy or misty appearances of
the resulting images.

While this paper focuses on scattering of light from a source within a participating
medium, we expect our model to be applied in the future to problems where the sources are
outside the scattering media such as in the simulation of clouds [Kajiya and Herzen 1984;
Nishita et al. 1996; Koenderink and van Doorn 2001] or subsurface scattering [Hanrahan
and Krueger 1993; Dorsey et al. 1999; Pharr and Hanrahan 2000; Jensen et al. 2001]. We
believe our analysis and formulae are likely to have broad impact in computer graphics
applications ranging from rendering 3D models to image-based rendering, and in various
fields like medical imaging, underwater imaging and digital entertainment.

The paper is organized as follows. Section 2 describes the analytic scattering model
from a point light source in a spherical medium. In section 3, we describe the validation of
our model using brute force monte carlo simulations. In section 4, we extensively validate
the model using real experiments with milk. In section 5, we describe the effect of source
visibility on multiple scattering and show that visibility is not a big problem in the presence
of lamp covers, say, if we have a direct line of sight to the source. Sections 6 and 7 discuss
issues related to rendering and present results of adding weather effects to photographs.
Section 8 concludes with a description of future work.

2. ANALYTIC MULTIPLE SCATTERING MODEL

We present an analytical model to compute the light field (radiance at any spatial location in
any direction) due to scattering from an isotropic point source, immersed in a homogeneous
infinite scattering medium. This model includes the effects of both single and multiple
scattering, which do not need to be handled separately. In section 7, we will extend this
model to handle sources of complex shapes, sizes and radiance distributions.

Consider the homogeneous scattering medium shown in figure 1(a). An isotropic point
source at the center illuminates the medium. The light field due to this source is said to
exhibit spherical symmetry. In other words, the light field I in the medium only depends
on the radial optical thickness T = oR (0 is the extinction coefficient of the medium and R
is the radial distance from the source) and the angle 6 = cos ~! u from the radial direction.
As we shall show, I can be expressed in terms of a Legendre polynomial series. We call
the angular distribution of intensities I(T, i) for any T as the 3D scattering point spread
function (PSF). The main symbols used in this paper and their associated meanings are
tabulated in Table I.

2.1 Model Derivation

We present the derivation of an analytic form for I(T, ut) in this subsection. The derivation
is rather lengthy and involved. So, readers interested mainly in the implications of our
model to graphics can skip this subsection.

We follow the physics-based theory of radiative transfer [Chandrasekhar 1960; Ishi-
maru 1978] for modeling light scattering within a spherical medium. The key idea in this
approach is to investigate the difference between light incident on, and exiting from, an
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Fig. 1. (a) An isotropic point source illuminating a spherical homogeneous scattering medium. The multiple
scattered light field in the medium depends on radial optical thickness T = OR and the angle 0 from the radial
direction. The light field is said to exhibit spherical symmetry. (b) Plane parallel model used by most previous
works to describe multiple scattering and diffusion. The source is generally collimated and is outside (infinitely
far away from) the medium. Such a model can be used for scattering in clouds or subsurface scattering, for
instance, but not in our case where the source is divergent and is within the participating medium.

| Symbol || Meaning |
1 Light Field
Iy Radiant Intensity of Isotropic Point Source
R Radial distance in Spherical Medium
c Extinction Coefficient
T =o0R Optical Thickness
Wo Single scattering Albedo
P Phase Function of Medium
Ly Legendre Polynomial of order k
u=-cos0 Cosine of angle 6 from the radial direction
q Henyey Greenstein Phase function Parameter
Cm Model Constants

Table I. A table denoting the main symbols and their associated meanings.

infinitesimal volume of the medium. Mathematically, the change in flux through a small
volume is given by an integro-differential equation, called the Radiative Transfer Equa-
tion (RTE). The directional intensity at any location in the atmosphere is then obtained
by solving this equation. We begin by writing the spherical radiative transfer equation
(RTE) [Chandrasekhar 1960] :

T

2
oI  1—u?dI 1
Homt—F ﬁ——I(THUH'EO/

+1
| Pleose (T, ')y’ o’ (1)
1

cos ot = pupt’ + 1/ (1= p?)(1— ') cos(9p — ¢'). )

P(cosa) is called the phase function of the particles in the medium and it denotes the
angular distribution of light scattered by any particle. « is the angle between the incom-
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ing irradiance direction (8’,¢’) and the outgoing scattered radiance direction (6, ¢). For
simplicity, the angles are written in terms of their cosines as 4 = cos 0, ' = cos 6’.

STEP 1: ELIMINATING PARTIAL DERIVATIVE g—‘]‘

In the first step, we eliminate the partial derivative of I with respect to u by integrating
the RTE with respect to u over the range [—1,+1]. Most of the details of this step are
adapted from [Chandrasekhar 1960]. However, a key difference in our approach to elimi-
nating the partial derivative is to use exact integrals instead of approximating the integrals
by linear summations [Chandrasekhar 1960].

By integrating P over the azimuth angle ¢’, Ishimaru and Chandrasekhar define a func-
tion that does not depend on the azimuth angle as,

2n

1
PO (u,u') = E/ P(cosa)d¢’ . (3)
0

As we shall see, the use of P(¥) simplifies the mathematics involved in modeling the mul-
tiple scattering around a point light source. Substituting into equation 1 we get,

o 1-wrol
Hor T ou

+1
1
—I(T,M)+§/ PO (u,w" (T, 1" )dy' . 4)
1

Chandrasekhar defines a function Q,,(t), for some m > 0, such that

_d((1= 1) On(w)) ~ Un(w)
Ln(p) = i S Qm(u)—im(mH) o)
Consider the integral
+1
_uo. (2L
fa M)Qm(a“)dw ©)

-1

Integrating by parts and using 5, it has been shown that we can eliminate the partial deriva-
tive with respect to u (see [Chandrasekhar 1960]),

+1

+1
ol
/l(l—uz)Qm <@>du =/II(T,M)Lmdu- (7)

When there is no confusion, we drop the parameters u and 7T for brevity. Multiplying 4 by
O and integrating with respect to u over [—1,+1], we get,

+1 +1
oI 1—u?  dI

_/uQmﬁdqu_/ T Qmﬁdu

“1 21

+1 1 +1 +1
=~ [ Qutdu+5 [ Qudu [ PO 1T 0w (8)
51 21 1
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Substituting equation 7, we can rewrite the RTE as,
+1 +1
ol 1
n—=—d — [ L,ld
/ HOm ot + / #
~1 —1

+1 | +1 +1
=—/ledu +§/Qm(u)du / PO (u,w" [(T, 1 )dy )
4 4 4

STEP 2: LEGENDRE POLYNOMIALS FOR P(cos &)

Most phase functions (both isotropic and anisotropic) can be expanded using Legendre
polynomials L; [Chandrasekhar 1960]:

P(cosa) = Y Wily(cosar). (10)
k

As an example, for the popular Henyey-Greenstein phase function [Henyey and Greenstein
1941] (for purely scattering media),

1—¢°
(14+q*—2qcosa)3/2 "

(1)

P(cosa) =
where, g € [0, 1] is called the forward scattering parameter. Here, the coefficients of the
Legendre polynomial expansion are shown to be:

W = 2k+1)g*, k>1, (12)

Note that our derivation is not limited to any particular phase function. In other words, we
may simply use different coefficients Wy for different phase functions. By using (2), it has
been shown that [Ishimaru 1978]

PO,y =Y Wile(W)Li(1). (13)
k=0

As we shall show in the appendix A, this expansion of PO greatly simplifies the mathe-
matics in our derivation.

STEP 3: LEGENDRE POLYNOMIALS FOR I(T, u)

This is the key step in our derivation. We assume that a particular solution to the RTE is
of the separable form:

In(T, ) = gm(T) frn (1) - (14)

Since I, does not depend on the azimuth angle ¢, the angular dependence f, can be rep-
resented using Legendre polynomials. Note that previous methods [Marshak 1947; Elliott
1955] that solve the RTE for isotropic phase functions have used spherical harmonics ex-
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pansion of I, which is not necessary for spherical symmetry. Substituting into 9, we get,

+1 +1 +1
g;n/.umemdﬂ"‘g?m /memdﬂ +gm/ Omfmdu
1 21 21

+

1 +1
_% / Omdu / P(O)(.ua“/)fm(.ul)d“/ =0. 15)
-1 —1

It turns out that just equating f,, to the Legendre polynomial L,, does not produce mean-
ingful non-trivial solutions to the RTE. Instead a simple extension where f,, is written as
the sum of two consecutive Legendre polynomials allows us to compute meaningful and
non-trivial solutions to the RTE:

(1) = Lo 1 () + Ln() | (16)

Similarly, we shall expand L' (1) and pL’;(u) using Legendre polynomial series [Mac-
Robert 1967]:

L'y(u)
WL k(1)

(2k = 1)Ly () + (2k = 5) L3 (1) + ...
KL (1) + (2k — 3)Li_a(u) + ... . 17)

We exploit the orthogonality of Legendre polynomials that appear in the f,, P(cos ) and
PO terms to simplify the equation in 15. We substitute equations 5, 16, 13 and 17, into
equation 15 and simplify each term using the orthogonality of Legendre polynomials:

+1 2 i .
= ifi=j=mn;
LI.L.d — J 2n+1 18
/ it {0 otherwise (18)

The above property can be used to greatly simplify the mathematics and only the main
results are listed below.

—Term 1 in Equation (15):

+1
2
! wfmdtt = ¢ | ———— . 19
gm_/uQ Jmdu = gy, ((m+1)(2m+1)) 19)
-1
—Term 2 in Equation (15)
1
g—’”]L fod = S (2 (20)
7 ) IR E e\ ot )
-1
—Term 3 in Equation (15)
+1
. 28m
gm | Omfmdu = mm+ 1) 21
-1
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—Term 4 in Equation (15)
+1 +1 ) W
Em (0) / / o Em m—1
N m P ) m — . 22
2/1Q d/vt/1 (1, 10°) fin () d o <2m_1) (22)

The fact that P(¥) can be expressed as products of Legendre polynomials is clearly a con-
siderable advantage in simplifying the terms of equation 15. Substituting the 4 terms from
equations (19, 20, 21, 22) into equation (15), we obtain
g;n"" ngO‘m +8&mBm =0
(23)
The solution to (23) is,
gn(T) = Ipe PnT~omlcel 24)

where the following form for g,, along with the above equation for f,, satisfies the RTE:

gn(T) = e Pl —culoxT
_ m _ m—1
B = m <1 2771—1)7

where, I is the radiant intensity of the point source. Note that the function g,,(7T)
captures the attenuation of light in the medium, whereas the Legendre polynomial L ,, (1)
explains the angular spread of the brightness observed due to multiple scattering. Note that
the above equation automatically satisfies the boundary condition: g ,,(e0) = 0.

STEP 4: SUPERPOSING SOLUTIONS

In the final step, we simply superpose solutions corresponding to different values of m
to get the final solution.

IT.1) =, cngm(T) (Lot (1) + L(w)) - (26)
m=1

For our analysis, we use the solution to the RTE given by all ¢,, = 1 and we show this
produces accurate results in the paper.
Hence, we rewrite the above equation as,

=

T, 1) =" (gn(T)+gus1(T)) Lm(u), 27)

m=0

with gg = 0. Note that this series solution is valid (converges) only for 7 > 1. However,
for cases with small g, multiple scattering is minimal for 7 < 1, and we can simply use a
single scattering approximation in that domain.
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2.2 Notes on the Derivation and the Solution

We present in this section some observations about our derivation of the model as well as
some features of the model itself.

2.2.1 Features of the Model. The model is valid for both isotropic and anisotropic
scattering and thus describes multiple scattering within several participating media. For
instance, in the Henyey Greenstein phase function, the parameter ¢ = O corresponds to
isotropic scattering, and 0 < |g| < 1 corresponds to anisotropic scattering.

The model is valid for both absorbing and purely scattering media. The zero'” coeffi-
cient of the phase function, Wy, called the single scattering albedo, denotes the ratio of the
scattering coefficient to the extinction (scattering + absorption) coefficient. When Wy = 1,
there is no absorption of light and the medium is said to be purely scattering. The Henyey-
Greenstein phase function is modified to handle absorption by multiplying equations 11
and 12 by the factor Wj. Note that monte-carlo or other numerical simulation methods for
scattering do not converge for the case of purely scattering (infinite) media. In the rest of
the paper, wherever not explicitly mentioned, Wy is assumed to be 1.

2.2.2  Separating Reduced and Diffuse Intensity. Note that a separation of total inten-
sity into a sum of reduced intensity and diffuse scattered intensity is sometimes done in
solving certain RTEs. See for example, the problems of “Diffuse Reflection and Transmis-
sion” based on the Plane parallel RTE. In this case, it has been shown by Chandrasekhar
[Chandrasekhar 1960], Ishimaru [Ishimaru 1978] and Antyufeev [Antyufeev 2000] that a
separation helps in solving the plane parallel RTE. However, the same texts mentioned be-
fore do not use this separation while describing spherical RTEs which is the focus of our
work. In our derivation, we do not separate the reduced and diffuse intensities. Instead, we
obtain an expression for the total intensity (reduced + diffuse) directly from the Spherical
RTE.

2.2.3 Normalizing the Solution. A simple glance at the solution suggests that the flux
can be arbitrarily large due to T2 = 6>R? being in the denominator. However, this can be
easily fixed by using the constants ¢, = o2 instead of ¢,, = 1. In this way, Io/R? can be
factored out of the PSE. However, in many cases, where the exact values of /¢ and o may
not be known, the above issue can be handled by normalizing the maximum to be 1. This
not only factors out I/ R? but also removes the factor ¢,, = 2. Thus, effectively, ¢, = 1
is still valid.

2.2.4 Choice of Particular Solution g,(T) f,n(1). Note that our particular solution is
a separable product of two functions - g,,(T'), which is only a function of optical thickness
T; and f,,(u), which is only a function of cosine u of the angle (see equation 14). At
first glance, this form suggests that the angular distribution of the PSF independent of
the optical thickness 7. This is incorrect, since the above separable formulation is only
a single term in the entire solution. The complete solution in fact is a DOT product of
gm terms and f, terms for m > 0. Thus, the final form of the solution is such that the
angular distribution of the PSF does depend on the optical thickness 7. We wish to bring
to the readers’s attention to prior papers (for instance, [Ambartsumian 1945]) that have
followed this approach of using separable functions in solving other RTEs and have shown
this approach to be more accurate for larger values of T.
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Fig. 2. Number of coefficients needed in the model. Sharply peaked PSFs (small T) require a large number of
terms in the series expansion (27), whereas less than 10 terms are needed for wide PSFs (large T). (b) Using
small number of terms for narrow or peaked PSFs (q = 0.9, T = 1.02) produces ringing effects.

2.2.5 Number of Terms and Convergence. The separability of the particular solution is
precisely the reason for our solution to not converge for T < 1. Here we present a discus-
sion about the convergence of our solution. Note that for 7 < 1, the attenuation function
gm does not decrease with each term m and hence the infinite series will not converge.
However, for T > 1, it is simple to observe that each successive term g, progressively
attenuates the angular term L,, (which has an absolute upper bound of 1) and eventually
reaches 0. For a particular error tolerance, larger the value of T, the faster the convergence.
In the case of T < 1, the solution produces a delta function. However, the magnitude of
the delta does not converge to a finite value. We must also analyze the convergence of the
solution for different values of g for fixed T. Note that for large g (close to 1), the PSF
should include more terms to be accurate and thus shows slow convergence. On the other
hand, for smaller g the convergence is faster.

The number of terms needed in the model (eq. 27) depends on the values of T and g as
well as the precision required. Note that g, decreases rapidly for large optical thickness T
or small g. Hence only a few terms (for 7 > 2, m < 10) are required for sufficient accuracy
(Iess than 0.1 percent deviation from 500 terms). Higher order terms are needed when the
optical thickness T or g is close to 1 (for T =~ 1.02, m ~ 200), and the medium exhibits
significant anisotropy. Figure 2 gives the number of terms for an accurate approximation
for different values of 7.

2.2.6 Initial/Boundary Conditions and the choice of ¢, = 1. There are several reasons
for the particular choice of coefficients c,, = 1. Imagine that the constant of integration for
a particular solution is k,, (see equation 24). Thus, different particular solutions may have
different k,,,s. However, note that the spherical RTE represents scattering from an isotropic
point source. Hence, the complete solution must agree with the isotropy of the point source.
In this sense, our derivation must satisfy an initial condition that the radiant intensity /o of
the point source be the same for all angles. Thus, k,, = Iy used as an integration constant
for a particular solution must be the same for all particular solutions. This results in the
radiant intensity being a global scale factor to the PSF as required. Thus when the particular
solutions are combined, the choice of ¢,, = 1 allows for this condition.
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Fig. 3. Plot showing the total energy in the back hemisphere (4 <= 0) of the multiple scattered
intensity for a range of optical thicknesses and phase function parameter values. Theoretically, the
backscattered diffuse energy goes to zero at infinity. However, the plot shows that the model can be
used for media with finite extent if the optical thickness is reasonably large. A common boundary
condition enforced is that there be no inward flux at the boundary of the medium. Since the back
hemisphere energy is low for large optical thicknesses, this boundary condition is accurately satisfied
by the model.

Furthermore, the choice of ¢,, = 1 must also satisfy boundary conditions. A desirable
boundary conditions for forward scattering media is that the backscattered energy (I(T, 1)
for u <=0) is zero at the boundary of the medium. Note that the solution trivially satisfies
this condition for an infinite medium. The plot in figure 3 shows the decay of the total
energy in the back hemisphere (u <= 0) with distance. Theoretically, the backscattered
diffuse energy goes to zero at infinity. However, the plot shows that the model can be used
for media with finite extent if the optical thickness is reasonably large and is also evidenced
by our real experiments (see next section). Note also that I(T,—1) = 0 giving a realistic
PSF that is maximum for u = 1, stays positive and decreases rapidly to 0 at u = —1.
This makes the angular profile a true point spread function, and avoids scattered light
from completely filling the screen (washout), which is not the case in reality (for eg., mild
fog). We have also shown that this choice is accurate through real experiments as well as
numerical Monte Carlo simulations. See the next section on validation. Further boundary
conditions may have to be applied depending on the problem at hand (for instance, handling
visibility) and this is a topic of future work.

2.2.7 Relation to Diffusion. The popular diffusion model [Stam 1995; Koenderink and
van Doorn 2001; Jensen et al. 2001] for highly dense media is simply a 2 term approxima-
tion to the full solution of the RTE. In other words, the angular distribution of diffusion is
linear, i.e., aLo(u) +bL (1) = a+ bu. We will show that diffusion is inherently incapable
of representing multiple scattering in media of various densities and that our model with
higher order terms is much more accurate. An important distinction to be made between
our model and the diffusion approximation is that our model is derived using the RTE for
spherically symmetric media (figure 1(a)) whereas the popular diffusion model is derived
from the RTE for plane parallel media (figure 1(b)). Hence, the forms and the boundary
conditions are somewhat different from our model.
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2.2.8 Wavelength Dependence:. Note that in general the parameters g and T of our
model will vary with the wavelength of light radiated by the source. Therefore, if we are
interested in multiple wavelengths (typically, 3 in the case of color images), then the light
field due to multiple scattering can be computed from our model using the corresponding
sets of values for the parameters ¢ and 7. The values of g and T for different wavelengths
have been estimated and tabulated in the atmospheric optics literature [Kopeika 1981] and
can be directly used with our model.

3. COMPARISON WITH MONTE CARLO

In this section, we compare our model to the results obtained using the standard Monte
Carlo technique for simulating scattering. We use a brute force monte carlo renderer (Dali)
[Jensen ]. As expected, the Monte Carlo technique is very slow. In our experience, the
simulations took anywhere between a few hours to days to obtain accurate results. The
simulations were run in parallel on a 32 machine Pentium III PC cluster each with 256MB
RAM. The large variation in the timing is due to the fact that monte carlo simulations are
strongly effected by the parameters used to describe the participating medium (W, T, q).
For instance, consider the single scattering albedo W. Note that monte carlo does not con-
verge for pure scattering infinite media (Wy = 1). For Wy < 1, smaller the single scattering
albedo faster the convergence. Similarly, the larger the optical thickness (7T'), the longer
Monte Carlo takes to converge.

In figure 4, we show two plots obtained using monte carlo simulations of scattering and
the corresponding PSFs obtained using our analytic model. Both the model as well as
the corresponding Monte Carlo simulation were run on the same set of input parameters
(Wo, T,q). The number of photon samples used in the Monte Carlo simulation was 250,000
with a maximum of 150 scattering events (bounces) simulated for each photon. The an-
gles (cos™! 1) were computed using an orthographic mapping (see figure 10). Thus our
analytic model can be used accurately as well as instantaneously irrespective of the values
of the parameter set describing the participating media. Due to the large simulation time
required for the Monte Carlo technique, we validate our model more extensively using real
experiments with milk described in the next section.

4. VALIDATION USING EXPERIMENTS WITH MILK

In this section, we describe the extensive experiments we performed to validate our model.
The main challenge here is to carefully design the experiments under controlled settings
that conform to the theory as closely as possible. We chose the scattering medium to
be milk since it strongly scatters light and hence the multiple scattering effects are pro-
nounced. Furthermore, we can dilute milk with water to create different optical thick-
nesses. To accurately simulate a spherical medium, we constructed a 40 cm diameter
spherical container made of transparent plastic (Lucite) and filled it with milk. The ap-
paratus used for the experiments is shown in figure 5. At the center of the container is a
small spherical frosted glass bulb. We acquired images of the bulb from various angles and
found that the bulb emits light more or less uniformly in all directions (except the narrow
back region of the bulb holder) making it essentially isotropic. At the top of the container
is a flat opening used to fill milk, to insert the light source and also to clean the bowl. Note
that this is a fundamentally different experiment from that done by [Jensen et al. 2001].
We have the source inside a large spherical container, while [Jensen et al. 2001] have the
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Fig. 4. Comparison with Monte Carlo Simulations. Two plots show the PSFs obtained using a brute force Monte
Carlo renderer (Dali) and our analytic model. While Monte Carlo takes a long time to converge (8 hrs on a 32
PC cluster), our model can be computed in real-time.

source and observer outside a semi-infinite plane-parallel medium. We acquired images
of the apparatus with a radiometrically calibrated high dynamic range (12 bits per pixel)
Kodak DCS 760 camera. Fifteen different concentrations of milk obtained by diluting milk
with different amounts of water were used in our experiments.

A mapping between the observed intensities in the image domain and the 3D scattering
PSF is achieved using the geometry of figure 5(b). The mapping between the angle y and
U is obtained by using simple trigonometry:

D R D?
= == —\/1—==5 sin? 28
sin(m—cos—tu) siny’ - K gy (28)

where, R is the radius of the spherical bowl and D is the distance from the pinhole to the
center of the bowl. We must also handle refraction at the milk - air interface. We assume
that that the refraction at the milk - glass and glass - air interfaces are minimal since the
glass is very thin. The refractive index of milk was assumed to be 1.4 [Nallasamy 1984].
We do not handle inter-reflections or total internal reflections. We further assume that the
fresnel coefficient of refraction is constant for all incident angles. This is generally true
for most angles except the grazing angles. Then, we use Snell’s Law to map the refracted
angle u in figure 5 to the incident angle u; as:

SH_ 4, (29)

sin
The angle u; is then used to fit our model. We verified the accuracy of our model by fitting
the best PSF to the observed PSF (radial profile) for each image. The PSF model in eq. 27
has only three parameters Wy, T and g. We fit the observed PSF using a simple non-linear
search tool in Matlab. The parameters of the PSF generally depend on wavelength of inci-
dent light. Ideally, we must constrain the model parameters according to their wavelength
dependencies. However, since we lack this information in this experiment, we fit the model
separately for each color channel.

A small representative set of 4 images (out of 15 milk concentrations) with the corre-

sponding measured PSFs and the computed model fits is shown in figure 6. We see that in
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(a) Experimental Setup

Isotropic Source
Imaging Plane

Scattering Medium (Milk) Image of Glow

(b) Measurement Geometry
Fig. 5. (a) Apparatus for measuring scattering within milk. On the left, a small bulb is positioned at the center of
a spherical container made out of Lucite plastic. During experimentation, this container was filled with milk and
placed in a black enclosure to avoid reflections from outside the container. The white background is shown only
for clarity. The inter-reflections visible in the image were negligible when the container was filled with milk (see
figure 6(a)). The small glass bulb is frosted which makes it roughly diffuse/isotropic. (b) The geometry shown on
the right is used to measure multiple scattered intensities in different directions. The mapping between the image
ray (angle y) and the scattered ray (angle 0) is given in eq. 28.
all cases, our model produces very accurate results (to within 3%). The parameters W and
q do not vary with concentration and hence we forced them to be constant for all the 15
experiments while fitting. This makes the validation much more strong. For comparison,
we also empirically fit a 2-term diffusion-type angular dependence, i.e. a + bu (the first
two terms of our model). The diffusion approximation gives large errors (20% — 50%) in
the left three plots. In fact, the real data is concave, while a function of the form a + bu is
only linear in u. This clearly shows that we need higher order terms, and a diffusion-like
model does not have the flexibility to capture the shapes of the angular distributions of
interest. For dense media (large T'), shown in the rightmost image, it is conceivable that
a diffusion-type model could be fit to the data, although we again emphasize that our an-
alytic formula is different from diffusion as we are solving a different problem (spherical
RTE and not plane parallel RTE). These results show that our model works for a range of
densities.
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Note that we try to validate the model by fitting our model to observed milk data. We
wish to clarify that we were not able to obtain the precise values for g, T and W for the
milk experiments we performed. Nallasamy [Nallasamy 1984] presents the scattering co-
efficient o and forward scattering parameter g as a function of the sizes of the fat molecules
in milk. Since we do not have information about the sizes of fat molecules used in our ex-
periments, it is not possible to obtain the right scattering coefficients. Furthermore, the
above paper does not give information about the absorption coefficient. Hence, we could
not obtain the scattering albedo Wy also.

In order to validate the model in a more strict sense, we performed the fitting in the
following manner. First, we forced the parameters Wy and ¢ to be constant for all the 15
concentrations. Then, we searched for the best fit optical thickness T for each concentra-
tion. The values we obtained after fitting were approximately Wy = 0.8, ¢ = 0.85, and
T =1{1.1,1.2,1,3,1.5,1.7,1.9,2.2,2.3,2.5,2.8,3.0,3.2,3.5,3.8,4.5}. The search space
was Wy € (0,1) in steps of 0.1; g € (0, 1) in steps of 0.1 and T € (1, 10) in steps of 0.05. The
good fits suggest that the parameters are consistent with observations. The values shown
are for the red channel. Similar values were obtained for the green and blue channels re-
spectively. Note that we do not know how to constrain the relative ratios of parameters of
the different color channels and hence we fit the model independently to each channel.

5. ACCURACY OF MODEL WITH REAL OUTDOOR LIGHT SOURCE

We also validated the model using a real light source in the outdoors. Imagine an outdoor
light source in foggy conditions. The commonly appearing glow around the source is due
to multiple scattering. Our model can be used to describe the glow around a light source
in bad weather. We verified this model using images of distant sources and their glows
with a high dynamic range (12-bits per pixel) Kodak digital camera. Weather data from a
weather website was obtained at the time of image acquisition (rain, g ~ 0.95, 2.25 miles
visibility). The source was about 1 km away from the sensor. The PSF measured from the
image of the glow of one of the sources, and the PSF computed using our model are shown
in figure 7. The angle cos ~! u is measured from the radial direction originating from the
source. The comparison between the measured and computed PSFs shows the accuracy of
our model.

6. EFFECT OF SOURCE VISIBILITY ON MULTIPLE SCATTERING

In section 2, the model was derived for an isotropic point source in open space without any
occluders in the medium. In the previous section, we validated our model under controlled
settings (spherical container, isotropic source, no visibility issues) that suited the theory.
In this section, we describe the effect of blocking out different parts of the light source, on
the observed scattering PSF.

If we have a direct line-of-sight to the source, occluders at large angles to the line-of-
sight (including back covers of lamps) cause little problem since the scattering PSF falls
off rapidly at large angles. To validate this claim, we conducted several carefully designed
experiments using the setup in figure 5 to demonstrate the effect of source visibility on
our model. In other words, we block different solid angles of the source and measure the
scattered light field for several milk concentrations. The top row in figure 8 shows the
various visibility configurations used in our experiments. To block different solid angles of
the light bulb, we constructed a tube made of several filter adapter rings threaded together.
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(a) High dynamic range photographs captured with different milk concentrations (increasing from left to right).

R

(b) Images rendered using our model.
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(c) Fits to the real data (red) with a 2-term diffusion like model (blue) and our model (green).

Fig. 6. Validation with real data. (a) 4 out of 15 images of different concentrations of milk in the spherical
container. Note that the definition of the source decreases as milk concentration increases (from left to right),
showing that the PSFs are wider. The top parts of the images are flat since the container has a flat opening large
enough to fill milk, insert the light source and also to clean the bowl. (b) Images rendered using our model in eq.
27. Some of the color variations are due to images being displayed at different radiance scales. (c) Plots of real
radial angular profiles for selected experiments as well as fits with our model and an empirical 2-term diffusion-
like model. The fits were performed for each color channel independently (for brevity, only the red channel fits
are shown). Note that u = cos 0 (figure 5(b)). It is clear that our model is accurate while the 2-term fit fails to
capture multiple scattering effects.

The more the number of rings used, the more the blockage. The threading in the black rings
are designed to trap incident light. Using the radii of the rings and the bulb, we analytically
computed the solid angle that is blocked. A schematic representation of the visible solid
angle of the source is shown in the second row of figure 8. For each source visibility
configuration, we measured the scattered light field (PSF) for different milk concentrations.
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Fig. 7. Verification of the analytic model using a distant light source as seen on a rainy night. (a) Image of a
distant point source and its glow. (b) Iso-brightness contours of the image showing roughly concentric rings. (c)
Comparison between measured PSF and PSF computed using the model.

In total, we conducted experiments using seven different visibility configurations with
each of five milk concentrations. A subset of these experiments are shown in figure 8. In
these experiments, we observed that blocking parts of the back hemisphere of the light
source did not significantly impact the angular distribution of the scattered light field. This
can also be explained by noting that forward scattering is much greater than backward scat-
tering (as predicted by our model too). The PSF curves for all the visibility configurations
for each milk concentration is shown in figure 9. We observe that the PSFs for visibility
angles 3157, 2707 and 240° are almost identical. Only as more and more of the solid an-
gle is blocked (visibility angles 180°,90°,60°,30°), do we see a significant change in the
observed PSFs. Since we fit our model to the visibility configuration of about 340 ¢ in the
previous section and found that the fit overlaps with the 315 ¢ configuration as well (we do
not show this curve for clarity), we conclude that partial occlusion of the back hemisphere
of light sources does not effect our model appreciably.

7. ISSUES RELEVANT TO RENDERING

So far, we described multiple scattering from a point light source. In practice, however,
there are three obstacles for rendering general sources and scenes by directly using eq. 27:
(a) visibility issues in real scenes, (b) sources of complex shapes and radiances and (c)
efficiency of the algorithm. We address these issues in this section.

7.1 Visibility Issues in Real Scenes

Previously we presented experiments with varying occlusions of the source when the
source and the observer have a direct line of sight and observed that partial occlusions
of the back hemisphere do not effect the PSF appreciably. Thus our model can be directly
applied in these cases. In practice, however, real sources are blocked by complex scene ge-
ometry, say adjacent scene objects. It is not clear how to enforce these complex boundary
conditions using our model. In this paper, we will not deal with these complex visibility
issues. In future work, we wish to understand the precise limitations of our model under
complex visibility conditions. However, our experiments on real light sources [Narasimhan
and Nayar 2003] have shown that eq. 27 is usually accurate and suffices to produce visually
compelling results as long as the occluders are far away from the source.
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Fig. 8. Effect of Light Source Visibility on Multiple Scattering. The first two images (on each row corresponding
to the blocked angles of upto 120 degrees) are very similar, while we see only small differences in the image
pertinent to the 180 degree case. This shows that our model (which is derived for 360 degree visibility) can
reasonably approximate upto a back-hemisphere of light being blocked.
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Fig. 9. PSFs showing the effect of Light Source Visibility on Multiple Scattering. (a) - (d) PSFs measured using 4
increasing milk concentrations. In each plot, the observed PSF's for 7 different source visibility solid angles are
shown. Notice that the Red, Green and Blue curves corresponding to partial occlusions of the back hemisphere
are very similar. From this we conclude that occlusions of upto 120° do not show appreciable differences in the
scattered intensities. Hence our model can be applied accurately even for these cases source occlusion.

7.2 Sources with Complex Shapes and Radiances

First, we discuss how to apply the 3D PSF to simulate the glow around a point source in the
image domain. Two schematics are shown in figure 10 to measure multiple scattered rays
from different directions depending on whether the camera is a pinhole or an orthographic
camera. Similarly, to simulate multiple scattering measurements in lens-based cameras
with finite aperture, the appropriate incoming rays and their angles need to be considered.
The 3D PSF is converted to a 2D PSF in the image domain using the projection angles
(cos~! u) shown in figure 10. Similarly, for a camera that is placed outside the medium,
we may use the inverse of the mapping function given in eq. 28. Since the 3D PSF is
rotationally symmetric, so is the 2D PSF.

For an area source of arbitrary shape and radiance distribution, we subdivide the source
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Fig. 10. Measuring the 3D multiple scattering PSF in the image domain with a pinhole and an orthographic
camera. The projection of the 3D PSF onto the image yields the 2D PSF.

into source elements, apply the PSF to each source element and add the results. This
follows directly from the linearity principle of light (assuming incoherence). Note that the
PSF depends on the distance of each source element. If the entire area of the source is
at the same depth from the observer (as is usually the case), then the PSFs corresponding
to different source elements will be the same. Then, the multiple scattering from an area
source is simply a convolution of the image of the source with the 2D PSE.

7.3 Efficient Algorithm to Simulate Glows

We described that the glows around a single light source can be implemented as a con-
volution. For rendering glows around multiple sources at different depths, the method
essentially reduces to a spatially varying (depth dependent) convolution. This allows the
use of a range of fast spatially varying filtering tools in image processing to simulate glows.
To summarize, a step-by-step algorithm to add glows to light sources of arbitrary shapes
and radiance distributions in an image is given below.

(1) Segment the image into regions (sources) of equal depths. For synthetic scenes, the
depths come from computer models. For real scenes, depths may be estimated using
computer vision techniques or range sensors. Note that we require only coarse depth
information as opposed to a monte carlo simulation that requires precise depth infor-
mation. This makes it simple to manually assign depths to real photographs and this
is the approach we have taken in our experiments.

(2) For each image region at the same depth R, perform the following steps:

(a) Input the model (PSF) parameters T = oR and q (or in general, any other phase
function parameters). The PSF parameters can be specified interactively, or come
from computer models.

(b) Compute the 3D PSF using eq. 27. Then, compute the 2D PSF in the image
domain using the image projection shown in figure 10, or using the geometry of
figure 5(b) when the sensor is outside the medium.

(c) Convolve the image region for a given depth with the 2D PSF obtained in the
previous step.

The algorithm suggests that although the mathematical derivation of the analytic formula is
complicated, implementation is straightforward and efficient. Our current implementation
is about 25 lines of Matlab code.
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7.4 General Implications for Rendering

Our model has broad applicability for efficient volume rendering of synthetic or real scenes
and sources, as seen through any participating medium. For instance, consider the render-
ing of a computer generated 3D model of a scene illuminated by various light sources. To
generate a foggy or hazy appearance of the scene, we need to simulate physically-based
3D glows around the sources and their brightness contributions at the scene points. Given
the 3D geometry of the scene, we can assume that any scene point is at the edge of a
spherical medium of radius equal to the distance of the scene point from the source. We
can then compute the irradiance at the scene point due to the source using eq. 27. Since
all of these computations are analytical, the implementation can be made very efficient for
simulating realistic weather effects. Similarly, the model can be used for rendering in other
application domains such as medical endoscopy or for underwater imaging.

The model can also be used in the context of adding multiple scattering effects (glows)
to images using only rough depth estimates, which, in most cases, can be easily provided
by manual segmentations of the photographs. While this is conceptually similar to the
works of [Nakamae et al. 1990; Spencer et al. 1995; Beckman et al. 1994], those methods
consider glare effects and diffraction in the cornea, a very different problem. Also, brute-
force Monte Carlo simulation of glows is too computationally intensive to be tractable.
In contrast, our method is efficient allowing us to interactively create images that appear
hazy, foggy or misty. Potentially, this can be used in image-based rendering applications
or simply as a photoshop-like tool to add weather effects to images.

8. ADDING WEATHER TO PHOTOGRAPHS

We now demonstrate the addition of weather effects to a single photograph using a manu-
ally provided rough depth map and some extensions like the attenuation and airlight mod-
els. We show results obtained using photographs of three different scenes shown in fig-
ure 11(a), figure 12(a) and figure 14(a). All the photographs were acquired using a 12 bits
per pixel Kodak DCS 760 color camera. The camera was radiometrically calibrated (linear
response function). Multiple exposures of the scene were captured and combined to obtain
very high dynamic range photographs of the scene.

8.1 Simple Convolution

In our first example, we added 3 different weather conditions (¢ = [0.9,0.8,0.5] and T =
[1.05,1.8,3.0] respectively) to the cluster of light sources shown in figure 11(a) at roughly
the same depth from the observer. In this case, a single convolution of the original image
with the 2D PSF was computed. Note that although the light sources occlude each other,
this method still produces visually pleasing results.

8.2 Depth Dependent Convolution with Attenuation

The scene in the previous example was assumed to be at the same depth from the observer.
Now, we present an example scene where several depths are visible and we apply depth
dependent filters (PSFs with depth dependent values for T') at each depth separately. Con-
sider the traffic scene shown in figure 12 acquired at night. The scene was hand segmented
into rough regions of different depths. For instance, a simple ramp function was applied
to the road. The resulting depth map is shown in figure 13. The light sources were iden-
tified using simple thresholding and the appropriate PSF was used to convolve sources at
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(a) Original Photograph (b) Mild Fog (q=0.9, T =1.05)

(c) Dense Mist (q =0.8, T=1.8) (d) Highly Dense Haze (q = 0.5, T =3.0)

Fig. 11. Light sources glowing under different atmospheric conditions. (a) Original image of a cluster of lamps.
(b) - (d) Appearances under different atmospheric conditions and densities (or optical thickness values, T) using
a simple convolution of the original photograph with the corresponding scattering PSF.

each depth separately. For regions in the background, we just applied a simple exponential
attenuation model analogous to that used in OpenGL. Thus the final expression for each
pixel in the image is a linear combination of the attenuation and the multiple scattering
model in eq. 27:

Loe " 8(1—p)+1(T,p), (30)

where, L is the radiance of the background scene point. Note that the attenuation model
can only dim the intensities of light sources and cannot produce glows (angular spreads)
around the sources. Hence, we multiply the attenuation model by a delta function in the
head-on direction § (1 — ) . Results on applying our model with two different optical thick-
nesses and with ¢ = [0.95,0.75] are shown in figure 12(b) and (c).

Note that simple techniques like Gaussian blurring cannot produce glowing images
shown in figure 13(b). Another simple approximation could be using a Gaussian blurred
image added to the attenuated image. These approximations do not work since we can-
not set the width of the blur filter according to the depth of scene point in a physically
consistent manner. Ad hoc methods could be tried requiring time consuming human inter-
vention, but note here that our method provides an accurate physics-based way of setting
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Fig. 12. On the left is a real photograph of a traffic scene on a clear night. The next images show the effects
of mist and fog (with different atmospheric visibilities) added interactively using our analytic model for multiple
scattering from light sources. Notice the glows around the sources (street lamps, car headlights and advertisement
signs) and that the brightnesses and extents of these glows depend on the depths of scene points. As we shall show,
simple approximations like Gaussian blurs, single scattering or diffusion cannot accurately model these complex
multiple scattering effects.

Fig. 13. On the left, roughly segmented depth map of the scene in figure 12. The road is modeled using a simple
ramp (linear) function. Brighter values denote farther scene points. On the right, Gaussian blurring with different
widths (proportional to scene depth) applied to each depth separately. Note that such operations cannot produce
realistic glows around light sources in photographs. Compare the Gaussian blurred image to the more realistic
images in figures 12(b) and (c) generated using our model.

parameters of the model taking into account the depths of light sources.
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8.3 Depth Dependent Convolution with Attenuation and Airlight

The third scene we demonstrate is a scene photographed in the evening with decora-
tive lights on trees. In this case, we took into account environmental illumination (due
to the sky) in addition to the attenuation model and the multiple scattering model men-
tioned above. The sky was assumed to be overcast. The scattering due to skylight, called
airlight [Koschmieder 1924], was assumed to be mainly single scattered. The simple at-
tenuation plus airlight model was then applied to the original photograph according to a
rough depth segmentation of the scene. The final expression used to render these images
is as follows:

[Loe "+ Lyy(1—e )] 8(1—pu)+1(T, ), 31)

where Lg,, is the horizon brightness [Narasimhan and Nayar 2002]. As in the second
example, we multiply attenuation and airlight by a delta function in the head-on direction.

Two different amounts of mist and fog (g = [0.8,0.9], minimum 7 = [1.05,2.0]) were
added to the image in figure 14(a). These results are illustrated in figures 14(c) and (d).
Note the glowing appearance of the trees and also that the extent of the glows vary with the
distance of the trees from the observer. Further, compare our technique with only single
scattering shown in figure 14(b). The results in figure 12 and figure 11 indicate that our
technique suffices to produce high quality images without noticeable artifacts, and that
single scattering on its own cannot produce any glows. Each simulation took less than a
minute using Matlab potentially making the method interactive.

In summary, our method for adding weather effects to images is physically-based, fast
(near real-time), produces much better results than current approximations like diffusion,
blurring and single scattering, and at the same time, the implementation is very simple.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed multiple scattering in participating media like haze, fog and
mist, with the practical motivation being addition of weather effects to images, capturing
features like the glows around light sources. This is a different problem from that typically
handled in plane-parallel diffusion, since we are considering strong angular dependence
with the source and observer in the medium. In fact, neither the diffusion approximation,
single scattering nor simple blurring can produce the results in this paper. We derived and
applied a new analytic formula based on a Legendre polynomial expansion of the spher-
ical radiative transfer equation. We extensively validated our formula using Monte Carlo
simulations as well as real experiments with milk under controlled conditions. We ap-
plied the results to fast simulation of weather effects in real photographs using rough depth
maps. Though the derivation is mathematically involved, the implementation is simple
(essentially, spatially varying filtering) and is orders of magnitude faster than Monte Carlo
simulation.

Current limitations of the work include practical issues like spatially varying media,
non-isotropic sources and limitations of visibility. We believe this is a first important step,
and there are clear ways they could be addressed in future work. Some initial directions
are presented below.

—Analytic Bases for Variations of the Spherical RTE: In this work, we developed analytic
bases (Legendre polynomials) for multiple scattering from a point light source placed at
the center of a spherical medium. Future work includes the derivation of similar analytic
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(a) Original Photograph (f) Airlight + Attenuation model (minimum T = 1.05)

(c) Mild Mist (q = 0.8, minimum T = 1.05) (d) Dense Fog (q = 0.9, minimum T = 2.0)

Fig. 14. Decorative lights on trees glowing in fog and mist. (a) Original Photograph. (b) Foggy image rendered
using single scattering (airlight + attenuation models). (c) and (d) Glows are added to lights on the trees. Note
that multiple scattering effects due to light sources are significant as compared to single scattering effects.

bases for simple variations on the spherical RTE configurations of medium and source
geometry. For instance, what happens when the source is not at the center of the medium
but rather at a different location inside or outside the medium? Then, the light field also
depends on the azimuthal angle from the radius vector. In this case, we believe that
using spherical harmonics can enable us to capture the multiple scattering within this
volume.

—Analytic approximation for Visibility of Sources: In our analytic model, we assumed
that an isotropic point source is immersed in a spherical medium with no other objects
or occluders. In reality, the source could be occluded by nearby objects or could be
non-isotropic. Areas of darkening may be seen in the medium where the occluders cast
shadows. This is a hard problem to solve analytically. However, we believe that certain
analytic approximations can be obtained. For instance, to darken the areas in the shadow
region, we may place negative isotropic sources in the interior of the occluder so as to
create the right area of darkening. To handle non-isotropic sources, we need to consider
only a source obtained by blocking a finite solid angle of an isotropic source. Note
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that an arbitrary non-isotropic source could be constructed from smaller solid angles of
isotropic sources.

—Guiding Monte Carlo Ray Tracers using Analytic Models: One of the main problems of

Monte Carlo approaches to rendering volumetric effects is that they are computationally
very expensive. Their computation cost depends on the parameters of the medium (say,
the volume of the medium and the density of particles in the medium). In other words,
the time required to render an image of a scene in dense fog could be several orders of
magnitude greater than the time required to render the same scene in mild fog. Also, the
time required to render a larger (scaled) version of the same scene with the same particle
density could be orders of magnitude higher. Thus, rendering scenes by interactively
changing parameters of the scene (be it parameters of the medium or the objects in the
scene itself) can be more or less ruled out. On the positive side, Monte Carlo methods
can accurately take into account arbitrary source and medium configurations, complex
visibility effects as well as arbitrary source radiance distributions.
A possible direction of future work could be to use of our analytic models and approxi-
mations to guide Monte Carlo techniques to faster and more accurate convergence. We
believe that our analytic models will provide starting estimates that are very close to the
final solution in most cases. Thus, the hard dependence of Monte Carlo on the param-
eters of the scene is alleviated. Also, we can take advantage of the flexibility in Monte
Carlo to render subtle effects due to complex scenes, that are not captured using the
analytic models. This hybrid method enjoys the advantages of both the techniques.

Using the above set of models and algorithms, it may be possible to render a wide
variety of volumetric effects (atmospheric, underwater, subsurface) efficiently as well as
accurately in general settings.
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A. APPENDIX : RELATION TO DIFFUSION

In this section, we discuss how the final formula in eq. 27 relates to the popular diffusion
model. We write down the first 2 terms of the series explicitly, taking /o = 1 for simplicity,

o= 3(1-Wo)T e—3(1-a)T
gl(T):T §(T) = 3 (32)
e 3(1=Wo)T e—3=W)T =3 (1=q)T
I(T,p) =0 Lo(u)+{ T }LI(N)+---

where these formulae include both single and multiple scattering. First, consider the case
when W) is close to 1, so there is very little absorption. Since ¢, = m+ 1, and g,, depends
on exp[—a, log T], succeeding terms g,, decay as 1/T™"!. Thus, regardless of the expo-
nential factors, for large optical thicknesses T, g1(7) will be the dominant term, and we
will have a two term expansion g1(7)(Lo(u) +Li(u)). Substituting Lo =1 and L; = p,
we get,

o 3(1-Wo)T

I(T,u) ~ o

Conceptually, this is very similar to the two term diffusion expansion, valid for very op-
tically dense media (large 7). As with standard diffusion theory, the dependence on the
medium, as determined by g is weak, vanishing in the above formula. However, the stan-
dard diffusion equation is derived using radiative transfer in plane parallel media shown in
figure 1(b) and its form is different.

We note that as for diffusion, the coefficient of u decays as 1/ T2, as it must for flux
to be conserved (we will scale the solution by 62 as explained in the paper). Next, we
consider the angular dependence 1+ u. This angular dependence ensures that the source
intensity is maximum head on (u = 1), always remains positive, and eventually decays
to O (for u = —1). It also ensures that the common boundary condition that there be no
inward intensity (or the simpler condition that there be no inward flux), in case of a finite
medium (for some extent T) is approximately satisfied, since I(T,u) is relatively small
for u < 0. Diffusion theory is consistent with similar boundary conditions, but they are
not usually applied for a spherical finite medium of radius 7', but for semi-infinite plane
parallel atmospheres. The standard diffusion model for a point source has the coefficient
of Ly decaying as 1/T instead of 1/T2. This causes the field to become uniform with angle
at large T. However, that would predict no angular dependence or uniform glows over the
entire image, which is clearly unphysical in our scenario; standard diffusion theory cannot
be applied to situations involving strong angular dependences of sources inside media.

(1+1). (33)
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