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Abstract

We derive a new class of photometric invariants that can be
used for a variety of vision tasks including lighting invari-
ant material segmentation, change detection and tracking, as
well as material invariant shape recognition. The key idea
is the formulation of a scene radiance model for the class of
“ separable” BRDFs, that can be decomposed into material
related terms and object shape and lighting related terms.
All the proposed invariants are ssimple rational functions of
the appearance parameters (say, material or shape and light-
ing). Theinvariantsinthis classdiffer fromoneanother inthe
number and type of image measurements they require. Most
of theinvariantsin this class need changesin illumination or
object position between image acquisitions. The invariants
can handlelarge changesin lighting which pose problems for
most existing vision algorithms. e demonstrate the power of
theseinvariants using scenes with complex shapes, materials,
textures, shadows and specularities.

1 Invariantsin Vision

Appearances of scenes depend on a variety of factors such
lighting geometry and spectrum, scene structure and matefl
properties, medium in which light travels, viewing geomet
and sensor properties. Most often, these parameters com
non-linearly to yield an image. Recovering these factors fro
images is an important problem in vision. Direct estimatio,
of these parameters from a set of images of a scene, howev
is generally hard. Photometric invariants provide an intermg-

diate solution to this problem.
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ample, they may work only for Lambertian or matte surfaces
(normalized RGB, [3, 27, 11, 1, 8], reflectance ratios [16], in-
trinsic images [26], color invariants [7, 6, 24]), or for specific
surface geometry [22, 16], or may be only quasi-invariant
[28, 2]. The dichromatic model [23, 10] has been used to
separate diffuse and specular reflections (the diffuse compo-
nentis invariant to specularities) [12, 19, 20, 21, 4]. However,
most of the dichromatic model based works assume either (a)
objects with homogeneous reflectance, or (b) specific models
for diffuse and specular reflections, or (c) prior knowledge
about the diffuse or specular colors, or (d) require at least
six light sources [13]. In this work, we do not separate reflec-
tion components but are interested in separating material from
lighting and shape. Compact representations of objects using
images under a large number of lighting conditions have been
proposed for lighting invariant recognition [1] and shadow
removal [14, 5]. However, they often do not have a physical
meaning (in terms of object material properties) and therefore
hard to use for a problem like material segmentation.

In this paper, we present a class of photometric invariants
have the same computational framework for a large set
RDFs, sensor types as well as the number of image mea-
[gurements. We begin by deriving a simple image formation
g}p{el that is valid for the class of “separable” BRDFs. We
[pake no assumption on the exact models of BRDF (Lamber-
an, Torrence-Sparrow, etc.) in our image formation model.
glen, we show how to decompose the observed image mea-
urements into material properties of scene points and the
ighting and scene geometry. This is the key idea for creating
lighting and shape invariants as well as material invariants.

Invariants usually transform images into a simpler featuf@ost of the invariants in this class need changes in illumi-

space where more accurate algorithms can be developedrgfion or object position between image acquisitions. The
the task at hand. To be effective, invariants must satisfy Wéapilities of the invariants increase when the changes in the
properties - (a) they must be invariant to certain appearanggne lighting are large. Thus, our method proves effective

parameters (say, lighting) and (b) they must have good dig-challenging illumination conditions that pose problems for
criminability with respect to other parameters (say, materigiost existing vision algorithms.

properties). Good invariants can be effective for common v.

sion tasks such as illumination invariant recognition, materiihe invariants and their d|§cr|m|nat|on strengths are exper-
segmentation and lighting insensitive tracking. iImentally demonstrated using several representative scenes

with complex shapes, textures, shadings, shadows and specu-
There has been a lot of previous work in developing invarfarities. We show that the class of photometric invariants can
ants and we will reference a few here. In several instanc@gye implications for vision; for instance, it can be used for
the invariants are effective only in special situations. For e¥ghting insensitive material segmentation, change detection

*This research was supported in parts by Siemens Corporate Rese&@8Rl tracking under complex lighting conditions.
Princeton, NJ 08540 and an NSF ITR Award (No. 11S-00-85864).
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Table 1. Examples of commonly used separable BRDF models for diffuse surfaces. Table shows rigtaridlgeometry=, terms for
diffuse reflectancek’; andG, terms represent material and geometry properties of smooth diffuse surfacds, aheG, terms represent
material and geometry properties of rough surfaces. The subscepts- denote the incident and the reflected directions measured with
respect to surface normal. Herkjs the source intensityy, is the diffuse albedog is the surface roughness, = Max[6;, 6] and

B = Min[6;,0,] . The cosine terms:6s x) should be replaced by/az |0, cos z] to prevent them from being negative (attached shadows).
Multiple sources can be represented by just summing up (or integrating) thems for each source.

Model Ks Gs Surfaces| Smooth| Rough
NIR (Spike/Delta)| ps F(n) 3(0; —0,)(or) Diffuse 1 5
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Torrence-Sparrow p, F () | EAE0L0ul00) 50 Hybrid 2 3

Number of KG terms

Table 2: [Left] Examples of commonly used separable BRDF models for specular surfaces. Table shows Aiatamthigeometry=,

terms for specular reflection. The spike/delta model holds for smooth specular surfaces. The Torrence-Sparrow model well approximates
the specular reflection from rough surfaces. Multiple sources can be represented by just summing up (or integrétiteghrtbiéor each

source. HereG AF is called theGeometric Attenuation Factor, and 6, is the inclination of a micro-facet from the surface normal. The
Fresnel coefficientF(n) is assumed to be constant with respect to incident angle. This assumption is valid for several materials when
illuminated and viewed from non-grazing angles [1Right] Typical number ofK' G terms needed for various real world surfaces.

2 Separable BRDFs The Oren-Nayar model [18] is used for rough diffuse surfaces

The radianceC from a scene point can be written as the sur?ind we can write a two term separable formulation as:

of diffuse a_nd_s_pecular r_adiancesﬁ:: Lq+ Ls.In many L=Lg=KiG+ KoGo, ©)
cases, the individual radiancég and £, can be further writ-

ten as products of (a) material related terms and (b) lightthere, the subscripts 1 and 2 denote the first and second terms
ing/viewing geometry and object shape related terms as: of the Oren-Nayar diffuse reflection model. See table 1 for
exact equations. Note that the normalized RGB or reflectance
ratio [16] invariants used for Lambertian surfaces do not hold

n
L= Z Kj(material) G;(shape, lighting, viewpoint) for rough surfaces

j=1
(1) Specular Surfaces: For smooth surfaces such as mirrors, the
where, theX terms depend only on intrinsic material properspecular reflection is described using a delta function which
ties such as diffuse and specular albedos, refractive index aath be rewritten using our notation as :
surface roughness. On the other hand, Ghterms depend
only on the viewing/illumination geometry and object shape L=Ls=K3Gs, (4)

{J(:rtrr:]sg?mn tre&gt‘r‘:’?]z'tce:?a"’l‘,t,etgfrlnzrgﬁgr:&ié\:xqesrggg;?ﬁz where, K3 denotes the specular albedo and Fresnel coeffi-
Py y ient andGs is a double-delta function. For rough specular

geometry te”rr_ns. We now shqw that the above "separab %rfaces, we write the Torrence-Sparrow model [25, 17] in
BRDF model” is valid for a variety of real world surfaces,

; separable form as:
Tables 1 and 2 illustrate the separable forms for several com-p

monly used BRDFs. This formulation is key to computing L=Ly=KiGy. (5)
the class of photometric invariants presented in this paper.
i?ee table 2 for exact equatidnNote that most existing pho-

Diffuse Surfaces: For matte surfaces, the Lambertian mod o .
gmetrlc invariants do not hold for specular surfaces.

is widely used. In terms of the separable model, we can wri

1A caveat for theGy term in the Torrence-Sparrow model is that it con-
L=L;=K G,y , (2) tains the surface roughness tesmSurface roughness at a microscopic level

. . _ can be considered as a geometry term (standard deviation of the Gaussian
where, K, denotes the diffuse albedo a6 is the dot pmd distributed orientations of the surface normals of the micro-facets) and hence

uct of source direction and intensity, with surface normak somewhat ambiguous.



Hybrid Surfaces: Hybrid surfaces can have both diffuse an€onsider the following set of image measurements made us-
specular reflectance properties. For smooth hybrid surfaciegy different values of the material termd§; and K ; and the

we can write the radiance model as geometry term&7; andG:

L=Lg+ Ls =K G+ K3G3, 6 1 2 3 1 1

d 1G1 + K3Gs (6) EV g® g® KM KO
where, the subscript denotes the diffuse product term and Eél) Ef) E§3) = K((f) K® x
subscript3 denotes the specular product 'Ferm. Once again, E?(,l) E?(,Q) E§3) K((iii) KS(S)
refer to tables 1 and 2 for exact expressions. On the other ) ) 5
hand, for rough surfaces that exhibit both diffuse and specular Gfi ) Gfl ) Gfi ) )
reflectances} K G product terms are needed : gV ¢®» g®
4
L=Ly+L,= Z K.G. . ) The superscripts are written within brackets to avoid confu-
T4 I sion with powers. For brevity, we write

At any instant only one of73 or G4 is significant [17]. So3 E=KG. (10)

K G products can approximate radiance. Table 2 summarizes
the number of product terms needed for different surfaces.The variation in the/{ terms could be due to measurements

We have shown through several examples that scene radia%@ugh different color f_iltergﬁ = {rg,b} in a camera. In
can be expressed as an inner product of material téfraad 1S €ase, the superscripts (1), (2), (3) denote the red, green

geometry terms?. Note that the model (1) by itself doesa”d blue material properties of a single scene point. In an-

not explicitly take into account the exact expressions for tffner case, the superscripts of thieterms could correspond

K or the terms. The model is valid for any BRDF that isl® multiple scene point® = {py, pz, p3} with different ma-

separable into material and geometry termst {ust for the terial properties. Si.millarly., the variation in tkiéterm_s could
examples shown in tables 1 and 2). In other words, the sepa- b'e.due to changes in lightinig = {, M n}. and/or Obje.Ct. po-
rable form masks the complexity of the material or geometrRitioNSO = {z,y, 2}, between multiple image acquisitions,
properties of the scene and the illumination. As a result, tf& could correspond to the terms of different scene points.
invariants presented in this paper do not depend on the &1 Geometry (G) Invariants

plicit expressions for BRDF. ) ) o
To compute a function of the measuremeﬁtﬁ that is in-

3 TheClass of Photometric | nvariants variant to allG terms, we consider the following sub-matrices

. . e from the first two columns of the matri:
The invariants we present can be broadly classified into two

categories: (alG-Invariants that depend solely on th& E?) Ef) KD K§1) o @

terms and are invariant to illumination, viewing and scen gD g® = K‘fg) K GEII) G‘(iz)
geometry, and (bK-Invariants that depend solely on th@ 2 2 d s s °

terms and are invariant to material properties of the sceng. E?) Ef) Kél) KW szl) fo>

Any invariantin each category depends on the numbé&fGf D p@ | T G K§3) gV g
products used as well as the number and type (say, RGB, gray ° 3 d ‘ ) )

scale) of image measurements. Taking the ratio of determinants of the above sub-matrices,
For example, we consider a radiance model with onl§y@ we eliminate all thex terms to get a G-invariant:
product terms. Since image irradianEeis proportional to

scene radiancg, we write Eil) E§2) - Eél) Eig) - Kfll) K® - Kf) KM

(1) (2) 1) (2 (1) 7-(3) (3) (1) °
B =gl = g(KGa+ K.G,), ® BB -EET Ky K- KUK

(11)

whereg accounts for camera gain. In the remainder of thehe above expression depends only on the material terms K
paper, we will combingy with source intensity (as a scaleand not the geometry (lighting, shape, viewpoint) terms G.
factor of theG terms) and drog when we write the image Note that 3 different G-invariants can be obtained by cycli-
formation model. The subscriptsand s do not have any cally changing the superscripts of theterms in eq. 11.
particular S|g_n|f|cance. In one mstance,_the subsetiptay 32 Material (K) Invariants
denote the diffuse term and the subscephay denote the o o _ .
specular term, or both the subscripts may denote only diffuksing a method similar to the derivation of the G-invariant,
terms of rough diffuse objects it is simple to show that one of 3 different selections of sub-
2Note the model in the form of eq. 8, when the subscripts denote diff [atrix pairs in eq. 9 also ylelds a K-invariant. Computing the

use X . .
and specular terms, has been considered by several researchers [20, 25@@."”"”3”5 ot x 2 sub-matrices selected from the first two
However, this is just a special case of the general model (1).




rows of the matrixE and taking their ratios, we get: 1| G-Invariant
0.6

E§1) Ef) _ Eél) Ef) - G((il) GO _ fo) G w2

ENEY —ENE® oV al —aP el 02
The above expression depends only on the geometry terms G -0.2
and not the material terms K.
3.3 Discussion on the Invariants ~0.6
Depending on the application at hand and the sensor used, 1 Trials (x 10*)

only some of the matrix elemenE may be measurable. So,
not all K-invariants or G-invariants can be computed from o _ _ _
the measurements. However, we shall show that in severigure 1: G-Invariant simulations (using Oren-Nayar model) illus-

instances. these invariants can be measured and appliedréﬁ—ng the discriminability to about 25000 sets of values for material
fectively tc’) common vision tasks parameters (diffuse color albedos and roughness) of a scene point

with fixed surface normal and viewing direction. Two lighting di-
Handling Color : Observe a colored scene point ungelif-  rections are used to compute the G-invariant. The absence of long
ferent illumination conditions (as in figure 3). Both the camflat regions in the plot shows good discriminability.

era and the scene remain stationary. The elements dKthe
matrix in eq. 10 correspond to intrinsic colats= {r, g, b}

of the observed scene point. Also, the elements inGhe matrices and ratios of their determinants eliminate either the
matrix correspond to the changes in lightiblg= {l, m}. Kt ther t A | idek3? prod-

Then the required G-invariant computed at every pixel inde- erms or €rms. AS an example, cons prod-
pendently is written from eq. (11): uct terms in the radiance model. The measurement matrix is

larger when compared to eq. 9 and is written as :

0 0.5 1 15 2 25
Material Parameter Combinations

BB - B B K K - KK E(4x4) =K(4x3).G(3 x4) (15)
() gp(m) (1) (m) = (r) 7-(b) ® ) (13) = . .
EDEM _EDEM™ 0 O _ g

Then, the determinant ratio of twdb x 3 sub-matrices oE
Note here that we require only one change in scene illuminaill yield the necessary K-/G-Invariants.
tion (i.e., the third column in eq. (9) is not necessary). How-
ever, we need three colorimages under three different lightidg 1 nvariant Discriminability and Sensitivity
conditionsL = {l,m,n} to compute a material invariant or

. X . In theory, the value of the invariant expression may not be
K-invariant according to eq. 12: Y P y

unigue to a particular material. So, two or more materials
D) (m D) (m D ~(m m) (1 could have the same determinant ratio. However, this am-
B Eé - Ef(? B = Gg) G‘(" - GEI )Gg) . (14) biguity decreases by using invariants computed using cyclic
EVEM -EPEM @Y el -aial combinations of superscripts in eq. 11. To empirically show
S ) ) ) that they indeed have good discriminative power, we simu-
If lighting in fixed in the environment, but the objects argaieq 4 fixed scene point and illumination/viewing geometry
moving, then the lighting superscripts = {/,m,n} need \ith ahout25000 different combinations of material parame-
to be just replaced by the object superscripts- {z,y,2}.  ters (color diffuse albedos and surface roughness) using the
Handling Gray-Scale : Using color makes it possible toOren-Nayar model. The plot of the G-invariants vs. trial
compute invariants locally at every scene point. To conmumber is shown in figure 1. The absence of long flat regions
pute invariants in gray-scale images we need multiple scenghe curve shows that the invariant is discriminative. The
points. In other words, the superscripts 1, 2, 3 will correspomgimerical stability of the invariants depend on the amount of
to different scene point® = {pi,p2,p3}. In this case, in- change in lighting/viewing geometry between image acqui-
variants computed will be sparse. However, they will be valigitions. To study how the stability of G-invariant to lighting
for, say, scene points with same geometry terms (similar sghanges, we simulated several degrees of lighting changes (by
face normals and source directions), and thus can be useglianging the directions of 2 sources) on a scene point whose
interesting grouping algorithms. material and geometric properties are fixed. The plot of the
computed invariant in the presence of noise for a range of
lighting changes, shows that the invariants stability increases

show in this paper will be based on oG terms (seﬁef &8)' with increased change in lighting (see figure 2). We will leave
However, they can be easily generalized to include the detailed statistical analysis for both the discriminability

terms. The key idea in computing ti#é-/G-invariants is that the sensitivity issues for future work
the image measurements are arranged in the form of squ%'ljéi ltivity Issu uture work.

Handling more than 2 KG terms: All the invariants we



10 G-Invariant Figure 4 shows the same bust against a more complex red vel-
vet background. The cloth has creases and folds producing
shadows and the bust itself casts shadows on the cloth. The
G-invariant in this case should produce not only a flat image
for the bust but also a flat image (of a different brightness) for
the crumpled cloth. The G-invariant in fig. 4(c) is computed
from 2 images (figs. 4(a) and (b)). The intensity histograms
Degrees of the in (a, b) do not have distinctive peaks for different ma-
O nolr Seration of Spurcss terials. However, the histogram in (c) has two separate peaks
) o " _ _corresponding to the bust and the cloth. It is clear that a sim-
Figure 2: Lighting change sensitivity plot: Noise (STD = 1 in le thresholding of the invariant image yields a near perfect

scale of 0-256 gray levels) was add to the simulated radiances L . .
gradual change in light source positions. The G-invariant then coﬁwe-gmematlon in spite of the complex shadowing.

puted is plotted against the angular separation in degrees of 2 Scene 2: Textured Objects

light sources between image acquisitions. For very small lighti

n . . . . .
changes, the invariants are unstable in the presence of noise ancﬁ]% previous subsection described experiments with an ob-
stability increases with increased change in lighting. ject made of homogeneous material. We now describe an

experiment performed with a textured doll made of cotton
; . Cind . shown in figure 6. The G-invariant computed should be a
5 Experimental Results: Finding Materials flat 2D texture of the doll without any shadowing or other
We now describe various experiments that demonstrate dwmplex shading due to the 3D shape of the doll.

invariance to object shape, illumination intensity and dire(ﬁs before, several images under different illumination con-

tion and viewi?g geomlgtrly gsing eq.f f' The G'igvar(ij"?‘f?'iﬁtions are captured (figures 6(a,b,d,f)). Three different pairs
are gom_puted rom mu tiple images of the scene under diffefy images are used to compute the three G-invariant images
ent lighting conditions. We have chosen the scenes so ag

: . . : fown in figs. 6(c,e,g). The G-invariants were computed us-
bring OUt. t.he power of invariants in th? presence of ShadOWﬁg the same expression (eq. 13) used before. Notice that the
specularities and other complex shadings. shading on the object as well as shadows present in the origi-
All our experiments are done using a 12-bits per pixel Karal images are completely eliminated yielding a flat textured
dak DCS 760 digital camera. Multiple images with differeréippearance of the doll. This facilitates simple 2D template
exposures are acquired, radiometrically calibrated and comatching type of algorithms for recognition.
bined to obtain high dynamic range radiance maps of t . e
scenes. Since our goal is to showcase the physics behind h% Scene 3. Complex Specularities
invariants, we have chosen to use high quality data in olir this example, we will demonstrate the G-invariant in the
experiments. For low quality data, probabilistic analyses prpresence of strong specularities due to nearby sources. Note
posed by earlier works (eg., [15]) can be used to decide whéhet this is a hard case for most existing techniques. The ob-
in the image the computed invariants are unreliable. jectis a green plastic pear shown in figure 7. Three images of
. . the pear are acquired under different lighting conditions and
51 Scenel: Complex Shapeand Self-Shadowing are shown in figures 7(a,b,d). Notice the strong specularities
The object of interest in the first experiment is a ceramic bush the images present at different positions. The G-invariant
of David shown in figure 3. The bust has complex shape airlages computed using two pairs of images are shown in fig-
creates specular effects as well as self shadows. The objeets 7(c) and (e). Figure 7(f) shows a K-invariant computed
was imaged under different lighting conditions using fluoresising all the three original images. The expression used to
cent (a) and halogen (b,c,d,e) light sources. The fluorescentnpute the K-invariant is the same as eq. 12 with the su-
source was ambient room illumination whereas the halogpsrscripts of the K and E terms denoting the different color
sources were nearby area sources. The bust is made ughannels r, g, and b. Note that all the specularities are visi-
the same material irrespective of the complex shading. Thk in the K-invariant image. This K-invariant is a function
G-invariant we compute should therefore produce a constarfiighting and shape but not material properties (diffuse and
(or flat) image that does not have any shading or specularitypecular albedos) of the pear.

G-Invariant + Noise

True G-Invariant

The result of applying eq. 13 to image pairs is shown by Gs o .
invariantimages (figs. 3(f)-(i)). Each invariant image is com- Implicationsfor Vision

puted using a different pair of images ([(a),(b)], [(a),(c)], etc)n this section, we discuss the various applications for the
The accuracy of the invariant shown using the histogramsiakariant class we developed in this paper. The invariants,
the invariant images, are narrow and at the same bin posspecially the G-invariants, are very useful in transforming
tions. The standard deviation of the G-invariantimages weimages taken under complex lighting conditions into simpler
between 2.3 and 2.6 gray levels (out of 256). material maps. Existing vision algorithms for segmentation,



Input ImagegTwo images are used to compute a G-Invariant)

4
Ll

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

G-Invariant Imageg:ach image computed from a pair of input images)

() From 1 and 2 (g) From 1and 3 (h) From 1 and 4 () Fromland5
Histograms of G-Invariant Images

Figure 3: Separating Material from Illumination, Shape and Viewing direction using the G-invariant. [(a) - (€)] Scene 1: A ceramic bust

of David is imaged under different lighting conditions. [(f) - (i)] Computed G-invariant Images. Each image is computed (eq. 13) using a
different pair of images. Histograms of the invariant images are narrow (the invariant images are indeed flat) showing that robustness of the
G-invariant to complex shape and shadows.

recognition and tracking can then be more accurately appliéd Summary

to the invariant images. We presented a class of photometric invariants that can be

We presented two examples of material segmentation in figsed for a variety of vision tasks such as recognition, mate-
ures 4 and 5. Note that lighting insensitive recognition afal classification and tracking. The invariants are valid for the
objects can be made more robust if applied to G-invariaskass of separable BRDFs which can be written as dot prod-
images rather than the raw input images. For instance, tliets of material and geometry terms. All the invariants in this
recognition of the textured doll in figure 6 could be done bglass are determinant ratios of measurement sub-matrices.
applying 2D template matching to the G-invariant image thathey are effective for complex shapes in complex lighting
is devoid of shadows or shading. Recall that most existing iBavironments. The geometry invariants are invariant to spec-
variants for lighting insensitive change detection and trackingarities and to even cast, attached and self shadows. The
rely on the lambertian reflectance model. With the invariang®de required for our algorithm is about 5 lines in Matlab (to
developed in this paper, we believe that more efficient changempute two matrix determinants and their ratios). Our goal
detection and tracking can be performed since our invariansthis paper is to show the capability of the invariant func-
can handle both complex material and lighting. tions on complex materials and lighting conditions. For this,
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(a) Inputimage 1 (contrast stretched) and its intensity histogram

(c) G-Invariant image using (a) and (b) and its histogram.

(d) Material Segmentation

Figure 5: Second example of finding materials in a scene with sim-
ilar colors. The scene consists of two whitish cubes made of sand-
blasted aluminum and marble. Notice the good segmentation despite
cubes being of similar colors.
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