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Abstract

We introduce a compact structured light device that

utilizes a commercially available MEMS mirror-enabled

hand-held laser projector. Without complex re-engineering,

we show how to exploit the projector’s high-speed MEMS

mirror motion and laser light-sources to suppress ambient

illumination, enabling low-cost and low-power reconstruc-

tion of outdoor scenes in sunlight. We discuss how the line-

striping acts as a kind of “light-probe”, creating distinctive

patterns of light scattered by different types of materials.

We investigate visual features that can be computed from

these patterns and can reliably identify the dominant mate-

rial characteristic of a scene, i.e. where most of the objects

consist of either diffuse (wood), translucent (wax), reflective

(metal) or transparent (glass) materials.

1. Introduction

Structured light has been a popular research topic for

many decades [28]. However, some difficult research chal-

lenges still remain. Ambient illumination can be a problem;

for example, the Microsoft KinectTM works quite well un-

der cloudy illumination and at night, but struggles under

direct sunlight [2]. Another issue is the presence of materi-

als that exhibit complex visual effects. While the separation

of global illumination [20] can address some of these is-

sues, highly reflective or refractive scenes with many caus-

tics can still create errors. In this paper, we show that an off-

the-shelf, commercial, visible light projector can be used to

create a structured light sensor that allows 3D line-striping

even in the presence of direct sunlight. When the scenes

have complex material properties, our sensor obtains visual

features that help identify scenes that have a dominant ma-

terial property. By “dominant” we mean that a user-defined

fraction of the visible scene points belong to either diffuse,

translucent, transparent and highly reflective surfaces.

Our key idea is to exploit certain characteristics of Mi-

crovision Showwx TM hand-held projectors. Recently these

devices have enabled new possibilities [3] since they have

the advantages of low-power and very large depth of field.
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Figure 1. Left: Workings of the Showwx+TM projector (from Mi-

crovision website [1]). Right: Our structured light sensor with a

Flea3TM camera and the Showwx+TM projector.

While our approach also has these features, we are, instead,

interested in the ShowwxTM’s steering micro mirror that

controls red, green and blue lasers [1] at high frame rates

(18kHz horizontally and 60Hz vertically). These features

offer three advantages for removing ambient light. First,

since the lasers have a narrow-bandwidth, an appropriate

filter placed on the camera can block some of the unwanted

ambient light. Second, if we block much of the remaining

ambient light with a low image exposure, the very high hor-

izontal frequency of the MEMS steering device still allows

the detection of a horizontal line stripe. Finally, the vertical

frequency of the MEMS mirror allows background subtrac-

tion at near real-time rates, further removing all visual input

except the line stripe. This final sensor line-striping data ap-

pears as if taken in the dark.

Such a sensor that enables line-striping in ambient illu-

mination would be useful to a variety of platforms. These

include search-and-rescue robots that find and dispose of

dangerous materials. These robots work outside, perhaps in

daylight, and need to detect various materials. In addition,

they are limited in payload and power. Our sensor enables

two applications for these types of platforms.

The first is low-power and low-cost reconstruction of dif-

fuse scenes under strong ambient lighting (e.g. direct sun-

light). Most active 3D devices that work in the outdoors use

time-of-flight sensors (an exception is [17]), which are ex-

pensive in terms of cost and power consumption. Our sen-

sor uses a hand-held projector, and therefore consumes less

power. Furthermore, the fast micro mirror can potentially

allow for near real-time reconstruction.
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The other application of our sensor relates to the scene’s

material properties. Since the measured data appears with-

out ambient light, we can detect subtle visual effects, such

as caustics, that would otherwise be washed out. In this

sense, our sensor is a kind of “light-probe”. For future work,

we would like to exploit this type of data to extend previ-

ous research on reconstruction of glass [18], environment

matting [4] and relighting [25] to scenes with ambient light-

ing. In this paper, we explore the visual features that show

preliminary promise for disambiguating scenes into groups

that have a dominant material property. We will consider

four types of effects: diffuse reflectance, sub-surface scat-

tering/medium scattering and reflective or refractive caus-

tics. We investigate a variety of materials such as paper,

wood, metals, glass and milk and demonstrate the potential

of our sensor with two heuristically based algorithms, one

fast and one off-line, for dominant material classification.

1.1. Previous work

Projectors are commonly used in reconstruction [28], re-

lighting [10], light transport analysis [20, 25] and defocus

[9]. Our paper is related to a recent trend towards build-

ing projector-camera systems that utilize reflective micro-

mirrors for high-speed control of light. For example, [19]

build a programmable camera by exploiting a projector’s

DMD (digital micro-mirror device) and show applications

such as adaptive dynamic range and optical filtering. A

single-pixel camera has been demonstrated by applying ran-

dom projections onto incoming radiance with DMDs [26].

Interactive applications [5, 23] are possible when the illu-

mination changes faster than humanly perceivable. DMD

kits are used in stereoscopic displays [11] and high-speed

range finding [15]. Off-the-shelf projectors can be used for

reconstruction of dynamic scenes [14].

Unlike these previous efforts, which exploit the optical

features of larger projectors, we are interested in the new

wave of smaller, more compact designs. The optics of these

projectors are fundamentally different from larger projec-

tors: many use laser light sources and do not suffer from fo-

cusing issues. Recent efforts in the fields of augmented re-

ality, human-computer interaction and ubiquitous comput-

ing exploit the properties of these new projectors [8, 24, 6].

However, almost all this previous human-centered work is

targeted at indoor scenes (such as offices). Instead, we want

to enable vision applications, outdoors and under sunlight.

Recently, there has been work on classification of glass

and other materials based on applying learning techniques

to visual cues obtained by passive sensors [16, 7, 12]. Un-

like our active sensor, however, once these methods detect

the lack of complex material (diffuse scene), they cannot

obtain depths. [27] obtains BRDF slices for classification,

but requires an illumination dome, while our setup is low-

power and mobile.

2. Sensor description

We use the ShowwxTM evaluation kit (Fig. 1), which

contains a PicoP display engine and has a sync connection

that is used to trigger a 480x640 120Hz Flea3TM camera.

The projector consists of three lasers, red, green, and blue,

that are optically combined into one beam. The color of

the beam is controlled by changing the intensity of each

laser. A MEMS scanning mirror steers the beam horizon-

tally and vertically and thereby produces the projected im-

age. We investigated the distortion of this projected image

and found that it is not well described by the standard ra-

dial and tangential lens distortion. It appears that the manu-

facturer adjusted the timing for drawing the horizontal line

pixels so that there are no vertical distortions. Therefore,

vertical lines are straight and horizontal lines have a “bow-

tie” distortion. To correct for the distortions we created a

lookup table that corrects each individual pixel. In all the

experiments in this paper, the projector displays only a sin-

gle image of uniform intensity.

An advantage of this projector is that its displayed im-

ages are in focus everywhere. Another feature, one we

explicitly take advantage of, is that the high-speed MEMS

scanning mirror illuminates each scene point only for a very

short time. The update rate per image is 60Hz in scan line

order and, since there are 480 rows, it projects 28.8k lines/s.

Each line takes 28µs to draw and each pixel is illuminated

for only 33ns. After each image nothing is projected for

about 3.4ms in order for the mirror to return to its origin.

This is a 15 lumens projector with nominal maximum out-

put power and laser wavelengths as R: 90mW/635nm, G:

60mW/526nm, B: 50mW/440nm. We measured the wave-

length of the red laser to be 637.9nm at room temperature

(22.6◦C) with a FWHM of 0.8nm. The projector eventu-

ally heats up and the wavelength drifts to 644.2nm (FWHM

1.0nm), showing a temperature drift of 0.1nm/◦C.

3. Ambient light suppression

One challenge with structured light setups in the out-

doors is the very strong ambient lighting, e.g. sunlight.

There are 5 common ways to increase the signal-to-ambient

light ratio: (1) Increase the power of the projector’s light

source (2) Use a wavelength where the ambient light is low

(3) Narrow band filter (4) Pulsed light source and fast shut-

ter (5) Background subtraction.

For completeness we want to mention that there are also

the methods of spatial differencing, using polarization and

spectral estimation (see [21] for a discussion). The power of

a laser is restricted by eye-safety concerns. For our particu-

lar projector we choose the red laser which at its maximum

power of 90mW is brighter than the green and blue lasers.

The ambient light from the sun is usually similar across

red, green and blue wavelengths. Compared to 635nm (red)



Figure 2. Ambient light suppression: Upper left: Picture taken of

the scenario. A fluorescent lamp and a flashlight are in the field

of the projection. Upper right: Scene taken with 18ms shutter.

The direct light saturates the image. Lower left: Scene taken with

56µs shutter. Lower right: Scene taken with 56µs shutter and

background subtraction.

there is 7% more ambient light at 526nm (green) and 7%

less at 440nm (blue). To have significantly less ambient

light one needs to go to the UV or IR. A particular interest-

ing wavelength is 938nm where there is 78% less ambient

light from the sun. An ambient reduced projector could be

specially constructed for that wavelength.

We are using a bandpass filter with a central wavelength

of 640nm and a FWHM of 20nm. This bandwidth takes into

account the uncertainty of the central wavelength (20% of

bandwidth), the drift of the laser with temperature and that

the central wavelength of the filter changes with incident

angle. The fact that the projector draws the lines sequen-

tially (see previous section) makes it effectively a pulsed

light source. For one line the system is on for 28µs and off

for the remaining 16640µs, a ratio of about 1/600. We use

a camera that has a shutter down to 30µs and is triggered

by the projector. We can choose different trigger delays in

software to select the line we want to observe. It turns out

that the trigger is not stable enough at these short times and

we need to extend the shutter time to 56µs. That gives us a

consistent line that is 2 pixels thick.

Lastly the background can be suppressed by taking an

image with the projector on and one with the projector off.

The second image is subtracted from the first to get the re-

sponse without background. It is not actually necessary to

shut the projector off; instead, we choose a different trigger

delay which effectively moves the location of the projected

line. In this way, one gets two images with the same back-

ground but with different projected lines. Subtracting one

from the other and keeping only the positive values gives us

a single line-stripe.

Figure 3. We show a setup (top left) to reconstruct a scene in direct

sunlight. At a shutter speed of 56µs, the ambient light is greatly

reduced and one line stripe remains visible. There is some specular

reflection off the metal bracket from sunlight (see insert). Back-

ground subtraction further reduces the ambient illumination and

specular reflection (lower left). The quality of the remaining line

allows for the reconstruction of the scene (lower right).

Fig. 2 demonstrates how effectively the ambient light

can be suppressed. A fluorescent lamp and a flashlight are

positioned in the field-of-view of the sensor (Fig. 2 upper

left). Even with the bandpass filter in the camera the direct

light saturates the image when the shutter is 17ms (Fig. 2

upper right). Notice that at this shutter speed we can still see

most of the scene. When the shutter time is reduced to 56µs

only a line of the projection is seen (Fig. 2 lower left). The

ambient light is also greatly reduced. The fluorescent light

is barely visible and from the flashlight only the light bulb

itself is clearly seen. After image subtraction, there is no

more background (Fig. 2 lower right). Notice that the pro-

jected line is visible even directly on the fluorescent lamp;

the brightness of the lamp does not destroy any information.

The ambient light suppression we have described enables

our sensor to reconstruct scenes in daylight. In Fig. 3, we

show our sensor reconstructing a scene in bright sunlight.

Note that the system is powered simply by a laptop: it is a

mobile scanner. Also, when the projector is switched on,

the projected uniform image cannot be seen. However, the

ambient light suppression is effective (Fig. 3 upper right

and lower left) allowing the successful detection of the line

and the reconstruction of the scene (Fig. 3 lower right).

At a shutter of 56µs the projection is a 2 pixel-wide line

and is clearly noticeable. Notice that the metal bracket has

a small bright spot due to the specular reflection of the sun

(Fig. 3 insert). This spot causes spurious data points if it

is not eliminated through background subtraction. We have

calculated the sum-of-squared differences for a patch on the

wall in the figure (by fitting a plane to it) which is 0.8mm at

a distance of about 0.5m.



Figure 4. Indoors, our sensor can reconstruct scenes within a 6

meter range. We have noticed that this range is approximately

halved in sunlight.

Figure 5. We show a transparent scene, whose complex refractive

properties cause our sensor to give incorrect depths.

Our sensor has a range of around 6 meters for diffuse

scenes, as we demonstrate with a white poster board as

target and moderate ambient light (see Fig. 4). In bright

sunlight, this maximum range decreases to about 3 meters.

Note that we obtain this with a 15 lumens projector in broad

daylight, and that the Kinect does not work for even short

ranges in such bright sunlight [2]. We mounted the sensor

on a 100 lb reconnaissance robot and showed that its low

power and weight makes it a viable sensor for the target

platforms.

In Fig. 5 we show the reconstruction results for a plas-

tic bottle with water. This scene creates caustics when a

line plane intersects it, creating many errors in the recon-

struction. While we cannot reconstruct these materials, we

are able to identify that these regions are erroneous. Fur-

thermore, we will show how analysis of the caustics and

reflected patterns can be used to classify scene materials.

4. Identifying a scene’s dominant material

character

In this section, we demonstrate how our system acts as

a “light-probe”, allowing optical measurements of a scene’s

illumination patterns, that are usually washed out under am-

bient light. Distinctive visual features are computed from

the observed light patterns and could be used to identify the

material properties of a scene.

We will outline the potential power of these visual fea-

tures by focusing on a simpler sub-problem: finding a

scene’s dominant material characteristics. We will assume

that the scene is placed in front of a diffuse background and

that most of the objects display a common optical character-

istic. Our goal will be to identify scenes with a “dominant”

property, i.e., where a user-defined fraction (or higher) of

Figure 6. We show fast material classification for two scenes, a

pair of bottles of milky water and a scene with glass objects. The

middle frames are a single image from the line-stripe scan. The

inset in the first row shows the two filters we use. Green=diffuse,

blue=milky, red=glass.

Figure 7. The top row has a scene with glass and metal. The bot-

tom row has diffuse bowls. We classify each pixel by looking at

the number of intensity maxima. Zero maxima imply a shadowed

region. A single maxima implies diffuse/lambertian and many im-

ply a more complex material.

the observed scene points belong to either (1) lambertian

materials, (2) dispersive media and subsurface scattering

materials, (3) reflective surfaces or (4) refractive surfaces.

We set the default fraction to be 1

2
(majority), and this can

be varied for other applications.

In our experiments, the scenes are static. However, since

our sensor scans the scene at a 60Hz, the features we inves-

tigate could also be used for dynamic scenes. We present

a two-tiered, heuristic-based approach to classifying com-

plex materials. The first is a per-frame fast method, while

the second takes in as input a whole scan of the scene. The

first method makes no assumption as to the scene geome-

try. The second method applies fourier analysis, and makes

the assumption that the scene geometry has low spatial fre-

quencies. This is a weak, smoothness assumption on scene

geometry and, from our empirical results, only prevents us

from recognizing the most difficult scenes (such as those

dominated by broken glass).

The advantage of the first method is its speed, while the



Glass, plastic and metals (power spectrum has large support)

Scattering media show small support

Scene with two concentrations, showing analyzed patches

Wax materials show small support

Broken wax has anomolously large support

Figure 8. We take the power spectrum of the three dimensional Fourier transform of each scan video, and integrate the time frequency

dimension. The resulting 2D matrix is mostly sparse. Low non-zero support gives an indication of scattering and subsurface scattering.

second approach could be used for in-depth analysis of the

scene materials. In particular, we point out that our ability to

remove the ambient light is critical, and allows us to mea-

sure high-frequency reflection and refraction effects, such

as caustics, that might be too faint to notice for a 15 lumens

projector under ambient illumination. It is these types of

effects that allow us to classify and detect challenging ma-

terials. Furthermore, while there has been previous work on

using structured and controlled illumination to obtain the

full light-transport matrix [25] (and therefore identify the

scene material properties), we attempt to do the same with

a single slice of the light transport function. In this sense,

our sensor enables a low-power, low-cost version of dome-

based material identification work [27].
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(a) Glass (left) and metal (right) scenes with one frame of line-stripe video showing caustics
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Figure 9. Histograms of the number of maxima at each scene point can distinguish between metal and glass scenes. At the top we show a

few of the scenes that we investigated. At the bottom left and center we show maxima histograms for each scene, from 1 to 15 (log scale).

Most of the metal maxima are concentrated to the left (most scene points have few maxima). Integrating the histograms from 5-15 gives a

feature that clearly separated metals from glass (bottom right). The two failure cases are due to broken glass and the glass plate.

4.1. Fast per­frame analysis

Fig. 6 shows a per-frame analysis of a scene with milky

water bottles and another with glass objects. Our method

has five steps: (1) For each column, find the maximum in-

tensity pixel (2) At this pixel, apply two filters (see figure

inset), (3) If filter 1’s response is greater than a threshold,

it is glass (4) Otherwise, if the response to the second filter

is greater than a second threshold, label as milk. If there is

no labeling, then it is a diffuse material. In the figure, we

have marked glass as red, milk as blue and diffuse as green.

The biggest errors are for clear glass when the camera sees

mostly the background. This is a fast classification, since

for each column the filters are only applied once.

4.2. Full scan analysis

For a diffuse object, with no inter-reflections, each scene

point is illuminated exactly once by the line scan. How-

ever, for complex scenes, the light stripe can be scattered,

reflected and refracted such that scene points might be il-

luminated many times. We present heuristic features that

exploit this temporal variation in a scene point’s incident

illumination. First we point out that simple detection of

a single, sharp peak in a scene point’s appearance profile

[13] strongly suggests lambertian/diffuse reflectance. If the

profile has no peak, then the projector is not illuminating

this pixel and therefore it is in shadow. Fig. 7 shows two

scenes where pixels are classified into shadow (blue), dif-



fuse (green) or other (red). If most of the scene is classified

as “other”, we continue with further analysis.

Once we eliminate the possibility of diffuse material

dominance, we can use a simple, heuristical feature which

can potentially detect scenes with scattering media or sub-

surface scattering surfaces. We have compared 7 scenes

containing wax candles, diffuse styrofoam and milky wa-

ter (two concentrations) with seven other scenes containing

glass, metal, paper, and wood (Fig. 8). For each scan video,

we compute the three dimensional Fourier transform, and

integrate the power spectrum over the time frequencies. The

resultant features are shown to the left of the scenes. This

2D feature’s support is small for the wax and milk scenes,

but large for other scenes. In particular the y-axis has many

non-zero components in the non-scattering scenes. We be-

lieve that thresholding the spectral support has the potential

to indicate the dominance of scattering materials. We show

a failure case of a broken candle, where the presence of non-

smooth edges may add higher terms to the power spectrum.

With the possibility of diffuse or scattering material

dominance removed from consideration, we now focus on

distinguishing between reflective or refractive surfaces. We

conducted line scan experiments on 11 metallic scenes and

10 glass scenes including colored metals and glass, broken

glass, brushed and polished metal pieces. Fig. 9(a) shows

three scenes from each class, with frames showing the pro-

jected line stripe. Note the different types of reflective and

refractive caustics that are produced. We have empirically

found that the number of intensity maxima in the appear-

ance profile at each pixel can be very discriminative. An in-

tuitive explanation is that since reflective caustics are caused

by opaque objects, the number of observed caustics at each

scene point is less than in a refractive material, where the

camera can view through the material onto the diffuse back-

ground, allowing the observance of many more caustics.

In Fig. 9(b), we show two visualizations of the heuristi-

cal feature, one each for glass and metal. In the first image,

each row corresponds to one of the 11 metal scenes we in-

vestigated. The rows are a histogram of the number of ob-

served maxima in that scene’s scan video, ranging from 1 to

15 (in log-scale). The second image shows similar data for

10 glass scenes. Note that, the histograms for the metallic

scene is more heavily concentrated in the first few entries.

This means that metallic scenes have fewer maxima in their

appearance profiles than glass scenes. We can exploit this

by counting the number of scene points that exhibit maxima

greater than a threshold (four in our case). Fig. 9(c) shows

the plot of these scene points for the glass (blue) scenes and

metallic scenes (red). Note that, except for two scenes, there

is a clear difference between the metals and glass. These

two anomalous scenes are easily explained; one is a glass

plate with almost no caustics, and the other is the broken

glass scene which breaks our smoothness assumption.

In addition to the intensity maxima at each pixel, we

also empirically investigated four other features for disam-

biguating metals from glass in Fig. 10(a)-(e). In (a) and

(b), we show two non-discriminative features; the histogram

of edges and histogram of fourier frequencies. As before,

rows correspond to the scene IDs and columns to the en-

tries of the histogram. In (c) we show the raw features ob-

tained from a low-res histogram of gradients (HOG). The

top three discriminative features (d) for metal and glass

show promise, but we believe more data is needed before a

discriminative hyperplane can be learned. In Fig. 10 (e), we

create an approximate “indirect” image, as in [19], by inte-

grating each appearance profile after removing the intensity

maxima. The images have reduced direct component, and

visually appear discriminative. While simple edge features

do not capture this difference, better features could be tried.

5. Conclusion: Towards mixed scenes

A combination of the online and offline features intro-

duced above, should enable a fast “light-probe” for material

detection. As a proof-of-concept (Fig. 11), we implemented

a cascaded approach to classifying a scene with mixed ma-

terials. We first apply the fast per-frame analysis and then

the diffuse/shadow/other classification to each pixel. Then,

we apply the fourier and maxima histogram analysis to a

6x6 tiling of the scene. Note that without ambient light sub-

mission, there are many errors in the scene.

In conclusion, we have designed and built a structured

light sensor that can work in ambient light, enabling recon-

struction under direct sunlight. We also show that the re-

moval of ambient light allows the measurement of visual

effects, such as caustics, and can lead to classification of a

scene’s dominant material property. In the future, we would

like to exploit multiple viewpoints (similar to [22]) to show

reconstruction of objects with complex materials.
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