








Glass, plastic and metals (power spectrum has large support)

Scattering media show small support

Scene with two concentrations, showing analyzed patches

Wax materials show small support

Broken wax has anomolously large support

Figure 8. We take the power spectrum of the three dimensional Fourier transform of each scan video, and integrate the time frequency

dimension. The resulting 2D matrix is mostly sparse. Low non-zero support gives an indication of scattering and subsurface scattering.

second approach could be used for in-depth analysis of the

scene materials. In particular, we point out that our ability to

remove the ambient light is critical, and allows us to mea-

sure high-frequency reflection and refraction effects, such

as caustics, that might be too faint to notice for a 15 lumens

projector under ambient illumination. It is these types of

effects that allow us to classify and detect challenging ma-

terials. Furthermore, while there has been previous work on

using structured and controlled illumination to obtain the

full light-transport matrix [25] (and therefore identify the

scene material properties), we attempt to do the same with

a single slice of the light transport function. In this sense,

our sensor enables a low-power, low-cost version of dome-

based material identification work [27].
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(a) Glass (left) and metal (right) scenes with one frame of line-stripe video showing caustics
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Figure 9. Histograms of the number of maxima at each scene point can distinguish between metal and glass scenes. At the top we show a

few of the scenes that we investigated. At the bottom left and center we show maxima histograms for each scene, from 1 to 15 (log scale).

Most of the metal maxima are concentrated to the left (most scene points have few maxima). Integrating the histograms from 5-15 gives a

feature that clearly separated metals from glass (bottom right). The two failure cases are due to broken glass and the glass plate.

4.1. Fast per­frame analysis

Fig. 6 shows a per-frame analysis of a scene with milky

water bottles and another with glass objects. Our method

has five steps: (1) For each column, find the maximum in-

tensity pixel (2) At this pixel, apply two filters (see figure

inset), (3) If filter 1’s response is greater than a threshold,

it is glass (4) Otherwise, if the response to the second filter

is greater than a second threshold, label as milk. If there is

no labeling, then it is a diffuse material. In the figure, we

have marked glass as red, milk as blue and diffuse as green.

The biggest errors are for clear glass when the camera sees

mostly the background. This is a fast classification, since

for each column the filters are only applied once.

4.2. Full scan analysis

For a diffuse object, with no inter-reflections, each scene

point is illuminated exactly once by the line scan. How-

ever, for complex scenes, the light stripe can be scattered,

reflected and refracted such that scene points might be il-

luminated many times. We present heuristic features that

exploit this temporal variation in a scene point’s incident

illumination. First we point out that simple detection of

a single, sharp peak in a scene point’s appearance profile

[13] strongly suggests lambertian/diffuse reflectance. If the

profile has no peak, then the projector is not illuminating

this pixel and therefore it is in shadow. Fig. 7 shows two

scenes where pixels are classified into shadow (blue), dif-



fuse (green) or other (red). If most of the scene is classified

as “other”, we continue with further analysis.

Once we eliminate the possibility of diffuse material

dominance, we can use a simple, heuristical feature which

can potentially detect scenes with scattering media or sub-

surface scattering surfaces. We have compared 7 scenes

containing wax candles, diffuse styrofoam and milky wa-

ter (two concentrations) with seven other scenes containing

glass, metal, paper, and wood (Fig. 8). For each scan video,

we compute the three dimensional Fourier transform, and

integrate the power spectrum over the time frequencies. The

resultant features are shown to the left of the scenes. This

2D feature’s support is small for the wax and milk scenes,

but large for other scenes. In particular the y-axis has many

non-zero components in the non-scattering scenes. We be-

lieve that thresholding the spectral support has the potential

to indicate the dominance of scattering materials. We show

a failure case of a broken candle, where the presence of non-

smooth edges may add higher terms to the power spectrum.

With the possibility of diffuse or scattering material

dominance removed from consideration, we now focus on

distinguishing between reflective or refractive surfaces. We

conducted line scan experiments on 11 metallic scenes and

10 glass scenes including colored metals and glass, broken

glass, brushed and polished metal pieces. Fig. 9(a) shows

three scenes from each class, with frames showing the pro-

jected line stripe. Note the different types of reflective and

refractive caustics that are produced. We have empirically

found that the number of intensity maxima in the appear-

ance profile at each pixel can be very discriminative. An in-

tuitive explanation is that since reflective caustics are caused

by opaque objects, the number of observed caustics at each

scene point is less than in a refractive material, where the

camera can view through the material onto the diffuse back-

ground, allowing the observance of many more caustics.

In Fig. 9(b), we show two visualizations of the heuristi-

cal feature, one each for glass and metal. In the first image,

each row corresponds to one of the 11 metal scenes we in-

vestigated. The rows are a histogram of the number of ob-

served maxima in that scene’s scan video, ranging from 1 to

15 (in log-scale). The second image shows similar data for

10 glass scenes. Note that, the histograms for the metallic

scene is more heavily concentrated in the first few entries.

This means that metallic scenes have fewer maxima in their

appearance profiles than glass scenes. We can exploit this

by counting the number of scene points that exhibit maxima

greater than a threshold (four in our case). Fig. 9(c) shows

the plot of these scene points for the glass (blue) scenes and

metallic scenes (red). Note that, except for two scenes, there

is a clear difference between the metals and glass. These

two anomalous scenes are easily explained; one is a glass

plate with almost no caustics, and the other is the broken

glass scene which breaks our smoothness assumption.

In addition to the intensity maxima at each pixel, we

also empirically investigated four other features for disam-

biguating metals from glass in Fig. 10(a)-(e). In (a) and

(b), we show two non-discriminative features; the histogram

of edges and histogram of fourier frequencies. As before,

rows correspond to the scene IDs and columns to the en-

tries of the histogram. In (c) we show the raw features ob-

tained from a low-res histogram of gradients (HOG). The

top three discriminative features (d) for metal and glass

show promise, but we believe more data is needed before a

discriminative hyperplane can be learned. In Fig. 10 (e), we

create an approximate “indirect” image, as in [19], by inte-

grating each appearance profile after removing the intensity

maxima. The images have reduced direct component, and

visually appear discriminative. While simple edge features

do not capture this difference, better features could be tried.

5. Conclusion: Towards mixed scenes

A combination of the online and offline features intro-

duced above, should enable a fast “light-probe” for material

detection. As a proof-of-concept (Fig. 11), we implemented

a cascaded approach to classifying a scene with mixed ma-

terials. We first apply the fast per-frame analysis and then

the diffuse/shadow/other classification to each pixel. Then,

we apply the fourier and maxima histogram analysis to a

6x6 tiling of the scene. Note that without ambient light sub-

mission, there are many errors in the scene.

In conclusion, we have designed and built a structured

light sensor that can work in ambient light, enabling recon-

struction under direct sunlight. We also show that the re-

moval of ambient light allows the measurement of visual

effects, such as caustics, and can lead to classification of a

scene’s dominant material property. In the future, we would

like to exploit multiple viewpoints (similar to [22]) to show

reconstruction of objects with complex materials.
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