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Abstract

A new technique is proposed for scene analysis, called “appearance clustering”. The key result

of this approach is that the scene points can be clustered according to their surface normals, even

when the geometry, material, and lighting are all unknown. This is achieved by analyzing an image

sequence of a scene as it is illuminated by a smoothly-moving distant light source. In such a scenario,

the brightness measurements at each pixel form a “continuous appearance profile”. When the source

path follows an unstructured trajectory (obtained, say, by smoothly hand-waving a light source), the

locations of the extrema of the appearance profile provide a strong cue for the scene point’s surface

normal. Based on this observation a simple transformation of the appearance profiles and a distance

metric are introduced that, together, can be used with any unsupervised clustering algorithm to obtain

iso-normal clusters of a scene.

We support our algorithm empirically with comprehensive simulations of the Torrance-Sparrow

and Oren-Nayar analytic BRDFs as well as experiments with 25 materials obtained from the MERL

database of measured BRDFs. The method is also demonstrated on 45 examples from the CURET

database, obtaining clusters on scenes with real textures such as artificial grass and ceramic tile, as

well as anisotropic materials such as satin and velvet. Results of applying our algorithm to indoor and

outdoor scenes containing a variety of complex geometry and materials are shown. As an example

application, iso-normal clusters are used for lighting consistent texture transfer. Our algorithm is simple

and does not require any complex lighting setup for data collection.
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1. Why Cluster Appearance?

Our world contains scenes of vastly varying appearances. These appearances depend on several

different factors such as lighting, viewing geometry, material properties, and the 3D shapes of

scenes. Extracting these properties from images (or image sequences) for scene analysis is an

important inverse problem in vision. Unfortunately, these properties usually interact non-linearly,

making their estimation from images difficult.

In order to make this problem tractable, several works have assumed prior knowledge of

either lighting or scene reflectance or structure. Methods that assume known lighting include

Woodham’s classical photometric stereo ([1]) for lambertian scenes, as well as several extensions

for non-lambertian low parameter BRDFs, such as the micro-facet model and the dichromatic

model ([2],[3],[19],[4],[5],[6],[7],[8],[9],[10]). Two works that are of particular interest to us are

by Healey ([19]), who segments a lambertian scene into regions that share local surface normal,

and Goldman et. al., ([4]), who demonstrate that clustering of material properties enables the

estimation of scene properties. Complementary to the above methods is the class of inverse

rendering algorithms that estimate low parameter BRDFs and lighting ([11],[12]) using known

3D scene geometry. Ramamoorthi’s thesis ([13]) provides a formal analysis of exactly when

inverse rendering is possible for BRDFs and distant lighting that are represented using Spherical

Harmonics. Finally, Hertzmann and Seitz ([14]) recover the geometry of objects by estimating

combinations of spheres of few “basis materials” that best describe scene reflectance.

In this work, we present a novel approach for appearance analysis of static scenes consisting

of a broad range of BRDFs, without requiring any knowledge about scene geometry, material

properties, lighting, or example calibration objects1. Our approach involves dividing a complex

scene into geometrically consistent clusters (scene points that have the same or very similar

surface normals) irrespective of their material properties and lighting. Such a cue is useful

since the number of unknowns related to scene geometry is reduced within each iso-normal

cluster, leading to a more robust estimation of scene properties. The camera observing the scene

is assumed to be orthographic. As the source moves, observations at each scene point over

time result in a continuous appearance profile (see Fig. 1). The smoothness (continuity) of the

1In previous work, this was achieved only for simple BRDF models such as lambertian or Torrance-Sparrow

([15],[16],[17],[18]).
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Fig. 1. Appearance Profile and Extrema: Here we show an image sequence obtained by illuminating a static scene with

a moving, distant source. The appearance profile of a scene point is the observed intensities at a single pixel over time. The

appearance profiles show several extrema (peaks and valleys) as illustrated on the right. More often than not, scene points with

the same surface normal exhibit extrema at the same time instances. Similarly, most extrema locations do not match for scene

points with different normals. This makes extrema locations excellent features for our clustering algorithm.

appearance profile is a strong notion that has not yet been fully exploited in computer vision2.

In particular, we will show that the information contained in the derivatives of these profiles

(specifically, when the derivatives are zero and extrema occur) is related to the surface normal

of a scene point. Intuitively, if cast shadows are ignored, scene points with the same surface

normal should ‘light up’ and ‘go dark’ at the same time. More precisely, this means that the

foreshortening at a scene point creates brightness maxima and minima in the appearance profile.

The idea of using foreshortening extrema for clustering is related to the notion of orientation

consistency first proposed by Hertzmann and Seitz ([14]) and used to compute the surface

normal at a scene point by comparing it with an “example” object with known shape and BRDF.

In contrast, this method computes orientation consistencies between scene points of unknown

2Exceptions include space-time stereo [20] and the work of Hayakawa ([21]) that uses an arbitrary moving light source to

alleviate the ambiguity in photometric stereo for Lambertian objects.

March 18, 2008 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



3

normals and BRDFs, without requiring any example object. The trade-off here is that a longer

sequence of images is required than if example objects were available.

Our idea of exploiting brightness extrema as a feature for iso-normal clustering is supported by

empirical evidence from both simulations and real data. In the first of these experiments surface

normals were sampled uniformly on the hemisphere of directions and appearance profiles were

created with the Torrance-Sparrow and Oren-Nayar analytic models for BRDFs ([3],[5]). We

observed that extrema in iso-normal profiles that are shared (occur simultaneously) were invariant

to material variations in the models, such as changes in albedo or surface roughness. A similar

result was obtained for rendered scenes, using a well-known ray-tracing method ([32]), again

using the Torrance-Sparrow and Oren-Nayar models. In addition, iso-normal profiles created

from real measurements of 25 BRDFs in the MERL database ([34]) are shown to share their

extrema. Finally, experiments were performed with real textures made of anisotropic materials,

such as velvet and satin. Even in such scenarios, those profiles that were generated from scene

points with the same surface normal share extrema locations in time.

Once a profile’s intensity maxima and minima are detected, a technique is needed to compare

profiles to obtain iso-normal clusters. This is addressed by introducing a transformation to the

appearance profile that linearly interpolates between extrema locations. Those profiles which

share all their extrema locations become identical after the transformation. The transformed

profiles can be used with any supervised or unsupervised clustering technique to obtain robust

geometrically consistent scene clusters. In this paper, the simple clustering technique of k-means

is used for all our results. We expect that more sophisticated methods would produce even better

iso-normal groupings. Our algorithm uses the dot-product distance metric employed previously

([28]) to match profiles with shared extrema. Finally, our method requires that the user just

hand-wave a light source and therefore image acquisition is not difficult. This is in contrast to

methods that require complex illumination setups ([23]).
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Clustering results are shown for scenes with textures from the CURET database and demon-

strate that our method is able to cluster a variety of textures, such as artificial grass and straw,

as well as anisotropic materials such as satin, fur, velvet, and metal paper. Our method produces

valid iso-normal sub-clusters for scenes with complex geometry containing curved surfaces

and shadows. We demonstrate clustering both on indoor scenes with everyday objects, such

as tables and chairs, and a difficult outdoor scene from the WILD database. An application of

our method in graphics is demonstrated by transferring profiles between scene points in iso-

normal clusters. This allows texture transfer that is consistent across all the lighting changes in

the given image sequence.

In summary, this paper presents a simple technique for creating iso-normal clusters for complex

scenes. Such a strong geometric cue can be used to robustly estimate scene properties such as

materials, lighting and geometry. Therefore, we believe our method has broad significance for

vision and graphics.

2. Appearance Profiles and their Extrema

Consider images of a static scene illuminated by a smoothly-moving, distant light source.

An appearance profile is a vector of intensities measured at a pixel over time, as illustrated in

Figure 1. Direct clustering of these profiles fails to produce iso-normal groupings, even after

normalizing for scale and offset in brightness. This is because the intensities are non-linear

functions of geometric and material properties of a scene point. To create iso-normal clusters, it

is critical to obtain a feature from the appearance profile that is invariant (or at least insensitive)

to material properties. In this paper, such a feature is obtained by exploiting the continuity

(smoothness) of an appearance profile, which yields information about the derivatives of the

BRDF with respect to time. Our key idea is to detect brightness extrema (peaks and troughs),

where the first order time derivatives of the appearance profile are zero. Extrema are said to be

shared between two appearance profiles if they occur at the same time instance in both profiles.

In this section, strong empirical evidence consisting of simulations and real data support shared

extrema as a feature for iso-normal clustering.

An important factor that determines where extrema occur in a profile is the path of the light

source. Consider a distant point light source that is being waved by a user. The trajectory of the

light source is unstructured and it contrasts with the light source paths created by gantry setups
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used in many previous works (such as [23]). While a structured path may have a regular shape,

such as a spiral (see Figure 2), an unstructured path created by ’hand-waving’ the light source may

not have any standard, recognizable shape. Since the light source changes its position smoothly,

but randomly, at every time-step the intensities at every scene point are generated stochastically.

The empirical evidence in this section will show that iso-normal profiles produced by such

unstructured paths share many extrema.

Fig. 2. Structured versus Unstructured Paths for the Light Source. Engineered setups such as a gantry may produce paths

such as the spiral shape shown on the left. In contrast, in our method the user hand-waves the light source. This results in

unstructured paths, such as the three shown on the right.

2.1 Shared Extrema in Iso-normal Profiles

Intuitively, shared brightness extrema are important since scene points that have the same

normal should ‘light up’ and ‘go dark’ at the same time. We investigate the extrema present in

profiles generated by BRDF simulations, rendered scenes, measured BRDFs and real textures.

These experiments provide strong empirical evidence that shared extrema locations can be

exploited to obtain iso-normal clusters.

BRDF Simulations: In Figure 3 profiles are generated for 50 unique surface normals that were

sampled uniformly from the hemisphere of directions. The simulations consist of four BRDF

models: Lambertian, Oren-Nayar, Torrance-Sparrow and Oren-Nayar + Torrance-Sparrow. The

user creates a smooth, unstructured path for the light source on the hemisphere of directions.

The material properties were varied (roughness σ from 0 to 1 and albedo ρ from 0 to 1) for each

of these models producing over 20,000 profiles for each normal. The top row of Figure 3 shows

some of these profiles for a particular surface normal which demonstrate significant variation
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Fig. 3. Simulations showing the link between Extrema and Surface Normal: Appearance profiles are simulated for four

BRDFs over a range of 20,000 material properties (only a few are shown for clarity). Profiles are only shown for two normals,

although we simulated profiles for 50 (marked by blue dots on the hemisphere, on the left). In the graphs above, the extrema

location of a profile is marked on the time axis by a colored dot. Note that profiles from the same local normal (top row) share

most of the extrema locations, whereas profiles from different normals (bottom row) do not.

Fig. 4. Profiles from iso-planar regions of rendered scenes show the link between Extrema and Surface Normal: Three

piecewise planar shapes are rendered using both the Oren-Nayar general lambertian model, as well as the Torrance-Sparrow

off-specular model under smoothly moving distance light source. Varying the roughness parameters σ in both models produced

2,000 profiles, of which we show a few here. Profiles from three normals in the rendered images are shown, and iso-normal

profiles have the same color. These experiments indicate that iso-normal profiles share the same extrema. The common maxima

for each of the three normals is marked using the same color as the profiles.
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in the profile shape due to changing material properties. Despite these differences extrema

locations were found that were common to over 95% of a normal’s profiles and therefore

insensitive to the changes in albedo and roughness. Furthermore, these shared extrema locations

were unique to a particular normal. In the bottom row of Figure 3, profiles from two different

normals are shown, with their shared extrema locations marked on the x-axis.

Rendered Scene: A scene was rendered using a commonly used ray-tracing tool ([32])

generating profiles under conditions similar to real scenes, with effects such as cast shadows and

interreflections. In Figure 4 such a scene is shown consisting of three piecewise planar objects: a

pyramid, a box, and a diamond. This was rendered using the Oren-Nayar and Torrance-Sparrow

models whose material properties were varied (roughness σ from 0 to 1 and albedo ρ from

0 to 1) to create 100 instances of the scene, two of which are shown in Figure 4. A light

source moving in an unstructured path was simulated, producing 40 renderings of each such

scene instance. There are nine unique normals in our scene and, unlike the previous scenario,

each normal was associated with at least 2,000 profiles. On the left of Figure 4, four images of

the rendered scene are shown with different material properties. When the objects are rendered

with the Oren-Nayar model, increased roughness makes the objects appear flatter and darker.

Similarly sharp highlights in the Torrance-Sparrow model, such as on the right facet of the green

pyramid, become blurred as roughness increases. On the right of Figure 4 profiles from three

different normals are plotted and, for clarity, only the maxima locations are marked on the x-axis.

Even though all the profiles vary significantly with change in material properties, the iso-normal

profiles share the same extrema.

Measured BRDFs: The two previous experiments dealt with profiles generated from artificial

scenes. Next, 25 real materials were selected from a BRDF database measured by Matusik et

al ([34]). To create appearance profiles from these measured BRDFs, the light source path

was simulated by the user, similar to the previous cases. For each material, the hemisphere

of directions was sampled uniformly to create 25 unique normals. Each normal was used to

generate profiles whose material properties corresponded to the measured BRDFs. For each of

these normals, over 90% of the profiles shared their extrema, and in Figure 5 we show 5 such

profiles from two such different normals. These experiments demonstrate that the extrema feature

has significance beyond the commonly used BRDF models.
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Fig. 5. Profiles from real, measured BRDFs: Matusik et al ([34]) measured a large number of real world materials by

using spheres, as shown on the left in a figure reproduced from their paper. Profiles were created from these measurements by

simulating the path of a hand-waved light source and these are shown for two different surface normals. In each graph, the

profiles for five materials share extrema locations (given by red dots) and these locations are different for the two normals.

Fig. 6. Real profiles from different materials show the link between Extrema and Surface Normal: Six experiments

are conducted by placing textures at different orientations with respect to the camera. Note that the appearance of the different

patches vary greatly, even though they are all flat on the board. Some profiles are shown from each of the textures in a color-

coded fashion. Even though these materials are anisotropic (satin and velvet), their profiles still share extrema, which are marked

by black dots on the x-axis.
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Real Textures: In addition to the above simulations, real experiments were conducted with

four anisotropic textures: silk, crepe satin, mink velvet, and royal velvet. These materials cannot

be modeled by the Oren-Nayar and Torrance-Sparrow BRDFs. The textures were attached on a

planar board so that they all have the same surface normal, as shown in Figure 6. The profiles

from these textures were measured for six different orientations of the board, and some of these

are shown in the figure. These materials have complex appearance effects; for example, the

maroon mink velvet exhibits strong vertical specularities which change in position and width as

the orientation of the board is changed. Even though the profiles are drastically different from

each other, they still share some extrema because they have the same surface normal.

In conclusion, we have presented four sets of experiments providing strong empirical evidence

that shared extrema can be used as a material-invariant cue for a scene point’s local surface

normal. In the next section, an algorithm is presented that exploits this feature to produce iso-

normal clusters.

3. Algorithm to Create Iso-normal Clusters

Our algorithm is extremely simple to implement and is summarized in Table 1. It has four

steps, a) collect images of a scene by simply waving a source smoothly and randomly while de-

tecting brightness extrema, b) transform the appearance profiles (Figure 7) and c) use a common

similarity metric to d) cluster the scene. Any number of sophisticated learning techniques (such

unsupervised, semi-supervised or supervised methods) can be used for the clustering part of our

algorithm. In this section, we will discuss the transformation and metric which are powerful

enough to allow the relatively simple k-means algorithm to produce accurate results. A useful

heuristic for deciding the number of clusters to input to the algorithm is also provided.
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Table 1

Step 1 (Input):

While acquiring frames by randomly waving a light,
Detect intensity extrema at each pixel and

store their occurrences in time.

(No need to store whole image sequence)
end

Step 2 (Transformation):
Construct a feature vector from each scene point’s profile

by piece wise linear interpolation of its extrema stored in

Step 1 (Figure 7).

Step 3 (Metric):
Compute distance metric between (normalized) feature vec-

tors �a and �b using dot-product: Distance = 1 - �at�b.

Step 4 (Output):
Cluster the normals based on the metric in Step 3.

Table 1. Algorithm: Our method is simple to implement. The input to the algorithm is a sequence of scene

images that are collected by hand-waving a light source. At each pixel, only the locations of all the brightness

maxima and minima are stored. We then linearly interpolate these extrema locations as shown in Figure 7.

Therefore, each pixel location is associated with a transformed profile. These profiles are then grouped using the

dot-product dissimilarity metric with any clustering algorithm, such as k-means or hierarchical clustering.

Transformation applied to profiles: From the discussion in the previous sections, it may

appear obvious that extrema locations in a profile should be directly used for clustering. However,

in real-world scenarios the extrema location is sensitive to noise. In addition, it is not clear how to

compare profiles with different numbers of extrema. These issues are solved by a transformation

of the appearance profiles that involves linearly interpolating between extrema locations. The

new, transformed profile consists entirely of line segments, as shown in Figure 7. The slope

of each line segment is the sign of the profile’s derivative in that segment: it is either +1 or

−1. Since profiles sharing all their extrema have identical sign for their first derivatives, after

transformation such profiles will become identical. There is no difficulty in comparing profiles

with different numbers of extrema since all the transformed profiles have the same length. In

addition, the transformed profile can be recreated just from extrema locations and the whole

profile need not be stored in memory. Moreover, detecting an extrema requires deciding if the

profile brightness values are increasing or decreasing in a small window of time. This means
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Fig. 7. Transformation Applied to Appearance Profiles: This illustration shows the effect of transformation on two

hypothetical appearance profiles. Consider the ’segments’ between extrema. The slope of transformed profile is the sign of

the first derivative of a segment. Therefore two segments that have positive first derivative (monotonically increasing) get the

same positive slope of 1. Note that in segments where there are no unshared extrema, the transformed values are identical.

the whole sequence of images need not be stored in memory and, in theory, our algorithm can

run in real time by processing only a sliding window of fixed size and storing only the extrema

locations for each profile.

Distance Metric between Profiles: To cluster the transformed profiles a distance metric

must be specified. We use the “dot-product” metric which has been shown to accurately match

extrema locations of profiles ([28]). Mathematically, if A and B are the transformed appearance

profiles of two scene points, the “dot-product” metric is simply 1 − aT b, where a and b are

the unit vectors obtained by normalizing the profiles A and B. We also analyzed and compared

clustering accuracy of the dot-product metric with the Euclidean metric using two common

unsupervised clustering methods, k-means and hierarchical clustering (Figure 8), for a simple,

table-top piecewise planar scene. The factor of improvement achieved with varying numbers of

clusters and numbers of extrema used in clustering is plotted in the figure. In all cases, our

metric shows significant improvement.
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Fig. 8. K-means versus Hierarchical Clustering. The clustering results for a simple piecewise planar scene whose ground

truth can be obtained easily are analyzed. The factor of improvement is the ratio of the clustering accuracy using our metric

to the clustering accuracy using the Euclidean metric. The left hand side plot shows the factor of improvement variation with

increase in number of clusters. As expected, this graph plateaus due to over clustering. The right hand side plot shows the factor

of improvement obtained for different number of extrema used in the appearance profiles. Note that the k-means graph is jagged

because initialization is non-deterministic. In both cases, our metric performs significantly better than the Euclidean metric.

Finally, one of the parameters that needs to be decided by our algorithm is the number of

clusters, k. Calculating the number of clusters automatically is an unsolved problem in machine

learning. It may be possible to use domain specific knowledge about appearance profiles to

calculate the right k for our clustering algorithm, but that would require some knowledge of scene

properties. Instead we advocate a well-known and simple method to decide k called hierarchical

agglomerative clustering, which involves merging clusters. First, over-cluster the scene with a

large k. In successive steps, clusters are merged if their distance is less than some user-defined

threshold. However, there are many cases, such as smoothly moving cast shadows and curved

surfaces, for which there are an infinite number of valid clusters in the scene. Clustering simply

gives a piecewise approximation, and the best choice of a k for the algorithm is hard to obtain in

such cases. In these scenarios we suggest the user input a reasonably large value of k. Although

this over-clusters the scene, it makes sure that the sub-clusters produced are consistently iso-

normal.
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4. Experiments with Real Scenes

We will now demonstrate our algorithm using a wide range of real indoor and outdoor scenes

with complex scene structure and material properties. Our setup consists of a Canon XL2 digital

video camera observing a static scene as shown in Figure 9. As discussed before, number of

clusters is decided using a simple merging technique, For example, in Figure 10 we cluster

a painted house model where the number of clusters, k, was automatically selected when the

distance between clusters became greater than a user-defined threshold (which was 0.5 in this

experiment).

Fig. 9. Our acquisition setup with a Canon XL2 video camera, a 60 watt light attached to a wand. In real experiments the

camera and light source are further away to satisfy orthographic assumptions.

Our algorithm was first tested on piecewise planar scenes consisting of real textures from

the CURET database ([29]). The CURET patches are arranged in a scene and light source

Fig. 10. Choosing the number of clusters: Here the number of clusters, k, are varied for a particular scene. In each case

the clusters created are still iso-normal. Merging the clusters at each step allows us to create bigger iso-normal clusters. The

merging is stopped when the distance between cluster centers is larger than a user-defined threshold.
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is waved, creating 200 video frames. Note the boxed regions at the top of Figure 11. These

textures are artificial grass and real straw, whose appearances are quite complex; for example,

artificial grass has many specularities and is also rough. The second row shows steel wool and

real wool, which are 3D textures with uneven height from the patch surface. Our algorithm

clustered all these textures properly, even though their material properties were very different.

In Figure 12, our algorithm clusters anisotropic materials, such as velvet, satin, shiny paper

and fur, implying that our method works even in some cases that are not described well by

our illumination model. Results are also shown for non-planar objects which contain an infinite

number of normals. In these cases, our method creates a piecewise planar approximation of the

continuous curved surface. For example, in the cylinder in the figure, the clusters are thin vertical

stripes corresponding to regions of similar surface normal.

In Figure 13 we show more complex planar scenes, containing occlusion, cast shadowing and

inter-reflection. In these regions, our method may over-cluster the scene, but note that the smaller

clusters are still geometrically consistent. Clustering was also demonstrated on some everyday,

indoor scenes such as the chair and table shown in Figure 14. Even though these are non-

lambertian scenes with materials such as wood, plastic, metal and smooth tile, our algorithm

creates meaningful clusters. In Figure 15, clustering results obtained for outdoor images of

a scene collected from the WILD database ([30]) are shown. Note that this scene does not

satisfy many of our assumptions. For example, it is illuminated by the sun and sky instead of

a randomly-moving point light source. There is also significant depth in the scene (see [30]),

violating the orthographic assumption. A good result is still obtained because the diverse and

random illumination due to weather (sunny, cloudy, fog, mist) creates appearance profiles with

enough intensity variation to produce valid clusters.

We believe iso-normal clusters will enable a variety of applications in vision and graphics. One

such application is transferring texture in videos. The challenge here is to transfer appearance that

is consistent under varying illumination. Profiles within a cluster share the same intensity extrema

and therefore the corresponding scene points ’light up’ and ’go dark’ together. Transferring

profiles within a cluster creates new pixels whose brightness varies consistently, as shown in

Figure 16. The complex appearance effects of the materials are preserved through the length of

this video sequence.
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Fig. 11. Results obtained when our algorithm is used to cluster materials in the CURET Database. Image sequences

of real CURET textures were obtained by waving a light source (We did not use the still images distributed by Columbia

University). Notice the top row containing materials such as artificial grass and straw and the middle row with examples of real

wool and steel wool. Despite significant appearance differences, these samples cluster together accurately because they share

the same surface normal. Please see video at [33] for better visualization.

Fig. 12. Clustering curved surfaces with complex (possibly anisotropic) materials When anisotropic BRDFs are present in

the scenes, our method still produces meaningful clusters. Furthermore, for curved surfaces, our method produces a piecewise

planar approximation. Please see video at [33] for better visualization.
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Fig. 15. Clustering WILD Database: Note the complex appearance effects that occur in this data set. Our transformation

of the appearance profile and the dot-product distance metric does significantly better than using Euclidean distance metric on

raw profiles. In both cases, k-means was used to cluster appearance profiles. Note: some sub-clusters were merged for better

viewing only. Please see video at [33] for the variation in appearances in the input image sequence.

Fig. 16. Texture transfer of complex materials (such as velvet and satin) between similar surface normals in a scene. A patch

of the original scene is chosen by the user and a simple repetitive texture synthesis method is used to transfer this patch onto

other areas of the scene with the same surface normal. Note the consistency in geometry and lighting in the transferred regions.

Please see video at [33] for many more lighting variations.
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5. Discussion

The clustering algorithm based on brightness extrema that is presented in this paper produces

results for many real-world surfaces. However analytically proving that our method will work

for scenes with arbitrary materials and geometry is difficult. In the discussion below, we will

both describe some of our algorithm’s limitations, as well as suggest certain heuristics supported

by empirical evidence.

Number of Extrema: We have shown empirical evidence linking shared extrema in profiles

and surface normal. This raises the question as to what would be the minimum number of

extrema needed to properly cluster a scene, and the related number of frames required in the

input video. This is difficult to calculate because the number of extrema needed depends both

on the geometry of the scene and its material properties. For example, in the first six rows

of Figure 17, planes consisting of very dissimilar materials are placed at different orientations.

Cross-clustering between the two planes becomes less likely if the materials are different and

larger angles between the planes allow easier disambiguation. In contrast, in the last four rows

of Figure 17, more extrema are needed since the materials are identical. These conflicting factors

of material and geometry properties make it difficult to say exactly how many extrema will be

needed, especially since both these factors are unknown to our algorithm. Although we do not

address this issue here, we propose a heuristic that takes advantage of the fact that the user can

interactively create profiles by controlling the light source trajectory. Consider a situation where

the user is aware of the approximate range of normals in the scene. The light source could be

moved in a way that crosses directly over these surface normals (such that foreshortening is

maximum) at different times, creating extrema that are picked up by the clustering algorithm.

In a similar way, waving the light source over the normal of a region with difficult material

properties could result in needing fewer frames to create iso-normal clusters.

Orthographic Projection: Another assumption that we have not relaxed is that of orthographic

projection. If the scene has significant depth, then this is violated and therefore surfaces that

have the same local normal, but are at great distances from each other, may cluster separately.

However, in a manner similar to the case of cast shadows, the solution is to overcluster the scene.

The important point to note here is that each of the separate clusters created are still iso-normal.
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Fig. 17. Material vs. Geometry Variation: We analyze how the clustering result changes as the number of shared extrema

are increased, in a scene with two planes. In all cases, increasing the shared extrema creates better clustering. In the first six

rows, drastically different materials allow easy disambiguation of the two planes. Fewer extrema are needed to disambiguate

the two planes, irrespective of the angle between the planes. In contrast, in the last four rows, more extrema are needed as the

angles between the plane increases since the materials are identical.
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Fig. 18. Varying some aspects of our algorithm: Here we show the variation in the quality of results as we change different

parameters. The top row illustrates the scene, as well as two views of the light source path on the unit sphere. In the second

row, the length of the video is changed to include progressively increasing numbers of extrema. As the numbers of extrema

increase the resulting clusters become more iso-normally consistent. In the last row, we show how the clustering results change

as the sampling of the profiles changes. Note that iso-normal clusters are produced even while sampling every fifth frame. This

shows that even if we do not have the exact extrema locations in the profile, the rough estimate given by sub-sampling is good

enough to create iso-normal clusters.

Sampling Rate: We also need to address the issue of sampling in our appearance profiles.

We have used the continuity of the smoothly moving light source to capture extrema locations.

However, in reality, incident intensity is measured through discrete frames of the camera and,

therefore, we can only obtain a sampled version of the actual appearance profile. What is the

minimum sampling rate of the appearance profile such that clustering still gets valid iso-normal

clusters? Consider a scene illuminated by a light source waved by a user, as in Figure 18. In

the last row the sampling of the profile is slowly increased, and the results of clustering at

each step is shown. Although at very low sampling rate the clustering breaks down, it remains

robust for all other sampling rates. This is not surprising once we recall that our intuition for

using brightness extrema as an iso-normal feature was that foreshortening makes scene points
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’light up’ or ’go dark’. If the path of our light source is smooth, then the foreshortening term,

�n.�s(t), is low frequency and, therefore, many samples are not required to capture its effect in

the appearance profile. To calculate the exact minimum sampling frequency, the path of the light

source as well as the scene geometry are needed, both of which are unknown to our algorithm.

Since the foreshortening component has low frequency, we suggest collecting data using a video

camera with frame rate above 30 fps. In practice, we have seen that this is sufficient to enable

proper sampling of the profiles.

6. Conclusions

Recovering all aspects of a physics-based appearance model is difficult when scene properties

such as lighting, geometry and materials are unknown. Unsupervised machine learning methods

are very useful in vision when the sole input are images of the scene. We believe our method

is novel because it brings together the effectiveness of an unsupervised learning algorithm with

the physical meaning of an appearance model. The key insight was to use the continuity of the

light source to extract information about the scene geometry using both a clustering algorithm

and an appearance model. In summary, we have described how the derivatives of appearance

(encoded as extrema locations) are related to scene geometry. We demonstrated an algorithm

to exploit these extrema to create iso-normal clusters of a scene and to use these clusters for

effective scene analysis. Our algorithm has no prior information about geometry, material or light

sources. Although there are significant areas that require future work, we believe our method

holds promise for several applications in vision and graphics.
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