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Abstract. The goal of this work is to build video cameras whose spa-
tial and temporal resolutions can be changed post-capture depending on
the scene. Building such cameras is difficult due to two reasons. First,
current video cameras allow the same spatial resolution and frame rate
for the entire captured spatio-temporal volume. Second, both these pa-
rameters are fixed before the scene is captured. We propose different
components of video camera design: a sampling scheme, processing of
captured data and hardware that offer post-capture variable spatial and
temporal resolutions, independently at each image location. Using the
motion information in the captured data, the correct resolution for each
location is decided automatically. Our techniques make it possible to
capture fast moving objects without motion blur, while simultaneously
preserving high-spatial resolution for static scene parts within the same
video sequence. Our sampling scheme requires a fast per-pixel shutter on
the sensor-array, which we have implemented using a co-located camera-
projector system.

1 Introduction

Traditional video cameras offer a fixed spatial resolution (SR) and temporal
resolution (TR) independent of the scene. Given a fixed number of measurements
(voxels) to sample a space-time volume, the shape of the voxels can vary from
‘thin and long’ (high SR, low TR) to ‘fat and short’ (high TR, low SR) as shown
in Figure 1. For conventional cameras, the shape of the voxels is fixed before

capture (scene independent), and is the same for the entire spatio-temporal
volume. Can we design video cameras that can choose different spatio-temporal
resolutions post-capture, depending on the scene content? We show that it is
achievable by a careful choice of per-pixel temporal modulation along with well-
designed reconstruction algorithms.

While a high spatial resolution camera captures the fine detail in the static
scene parts, it blurs fast moving objects. On the other hand, a high-speed camera
captures fast temporal variations but unnecessarily trades off light throughput
and spatial resolution for the static and slowly moving scene parts. This fun-
damental capture limitation can be overcome by designing video cameras with
the following two properties: (a) The flexibility to decide the spatio-temporal
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(a) High Spatial Resolution(b) High Temporal Resolution (c) Motion-aware Video

(d) (e) (f)

Fig. 1. Different samplings of the space-time volume: For conventional video
cameras, the sampling of the space-time volume is decided before the scene is cap-
tured. Given a fixed voxel budget, a high spatial resolution (SR) camera (a) results
in large motion blur and (d) aliasing. A high-speed camera (b) results in low SR even
for the static/slow-moving parts of the scene (drums in (e)). With our sampling and
reconstruction scheme, the spatio-temporal resolution can be decided post-capture, in-

dependently at each location in a content-aware manner (c): notice the reduced motion
blur for the hands (f) and high SR for the slow-moving parts of the scene.

resolution post-capture in a content-aware (scene dependent) manner, and (b)
the ability to make this choice independently at each video location. In this pa-
per, we take an initial step towards achieving these goals by demonstrating a
hardware setup that enables fast per-pixel temporal modulation, by designing
a necessary space-time sampling scheme and by developing simple yet effective
motion-aware post-processing interpolation schemes.

We determine necessary conditions for a sampling scheme to allow captur-
ing multiple space-time resolutions simultaneously. Data captured with a sam-
pling scheme which satisfies these conditions can be reconstructed at different
spatio-temporal resolutions, independently at each image location. The recon-
struction problem is posed as interpolation of scattered samples using well-known
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anisotropic diffusion techniques. Since the shape of diffusion tensor determines
the local smoothing orientations, by designing different diffusion tensors, we
can essentially achieve a continuum of effective spatio-temporal resolutions. The
correct resolution is automatically determined by designing spatially and tempo-
rally varying local diffusion tensors based on motion information in the captured
data.

Hardware implementation of our sampling scheme requires fast independent

shutter control of each pixel, which is not possible with available commer-
cial cameras. We have built a prototype using a projector-camera setup which
achieves rapid per-pixel temporal modulation during camera integration time.
This setup emulates a flexible spatio-temporal resolution camera with a maxi-
mum frame rate of 240 Hz, even though the frame rate of the original camera
is only 15 Hz. We show several real results that demonstrate variable resolution
trade-off in space and time post capture.

1.1 Related Work

Content-based re-sampling and compressive sampling: Content-based
re-sampling and representation of data is central to most image/video compres-
sion algorithms. Adaptive sampling of data has been used for building content-
aware multi-resolution image and video pyramids for fast data transmission [1].
Recently, the field of compressive sensing has exploited sparsity in data at acqui-
sition time, thus reducing the sensing over-head significantly [2, 3]. In contrast,
our sampling scheme allows re-allocating the saved resources to another dimen-
sion in a content-aware manner. If the captured video-stream is sparse in spatial
domain, high-frequency detail can be preserved in the temporal dimension and
vice-versa.

Multi-dimensional imaging: Several methods trade off spatial resolution to
sample other dimensions such as dynamic range [4], wavelength [5], angular di-
mensions in lightfield [6] and color/polarization [7]. Ben-Ezra et al. [8] used
precise sub-pixel detector shifts for increasing the spatial resolution of a video
camera. In contrast, our goal is to increase TR much beyond the native frame
rate of the camera by trading off SR. Recently, a variety of approaches [9–11]
which increase TR by trading off SR have been introduced. However, these meth-
ods provide the same spatio-temporal resolution tradeoff over the entire image.
Further, the technique in [11] requires long integration time for a single im-
age capture, making it ill-suited for videos. The method presented in [9] simply
rearranges/rebins the captured samples to produce different spatio-temporal res-
olutions, leading to visual artifacts due to aliasing. Our implementation allows
choosing different resolutions for each image location independently, performs
fast acquisition (results on dynamic scenes with up to 240 Hz), requires no
masks, mitigates aliasing, and is simpler to implement with a regular camera,
projector and a beam-splitter.

Spatio-temporal super-resolution using multiple cameras: Hybrid reso-
lution imaging has been used for enhancing the resolution of videos with still



4 Lecture Notes in Computer Science: Flexible Voxels

images [12], and for motion deblurring [13]. Wilburn et al. [14] used an array
of cameras with temporally staggered short exposures to simulate a high-speed
camera. Shechtman et al. [15] combined a set of videos captured at different
spatial and temporal resolutions to achieve space-time super-resolution. Agrawal
et al. [16] used multiple cameras with multiplexed coding for temporal super-
resolution. All these techniques use multiple cameras for capturing videos at
different resolutions that need to be decided pre-capture. The number of re-
quired cameras scales (at least linearly) with the required temporal speed-up. In
contrast, our implementation requires only a single camera and projector, even
for large temporal speed-ups.

2 Multi-resolution Sampling of the Space-Time Volume

In this section, we present our multi-resolution space-time sampling scheme. We
show that this sampling can provide us with multiple spatio-temporal resolutions
at each video location independently, using the same number of measurements
as a conventional camera. Consider the group of 4 pixels in Figure 2a. We divide
the integration time of each pixel into 4 equal intervals. Each of the 4 pixels
is on for only one of the intervals (white indicates on, black indicates off). By
switching on each pixel during a different time-interval, we ensure that each pixel
samples the space-time volume at different locations.

Different spatio-temporal resolutions can be achieved by simply re-binning
these measurements, as illustrated in Figure 2b. For example, the four mea-
surements can be arranged as temporal blocks (marked in red), spatial blocks
(marked in blue) or as 2 × 2 spatio-temporal blocks (marked in green). We de-
fine the [TR, SR] factors for a reconstruction as the gain in temporal and spatial
resolution respectively over the acquired video. Thus, the [TR, SR] factors for
these arrangements are [4, 1

4 ], [1, 1
1 ] and [2, 1

2 ] respectively.

In general, consider the space-time volume Vmn defined by a neighborhood of
m×n pixels and one camera integration time, as illustrated in Figure 2, bottom-
left. The integration time is divided intoK = mn distinct sub-intervals, resulting
in K2 distinct space-time locations. Different divisions of this volume into K

equal rectilinear blocks correspond to different spatio-temporal resolutions. An
illustration is shown in Figure 2. For the rest of the paper, we will use K for the
pixel neighborhood size.

Each division of the volume corresponds to a spatio-temporal resolution1. A
sampling scheme which facilitates all the resolutions corresponding to the differ-
ent divisions should satisfy the following property: each block in every division
must contain at least one measured sample. Since the total number of measured
samples is only K (one for each pixel), each block will contain exactly one sam-
ple. Let xp be the indicator variable for location p ∈ {1, 2, . . . ,K2}, such that xp

is 1 if the pth location is sampled; it is 0 otherwise. Let Bij be the ith block in

1 The total number of such divisions is the number of distinct factors of K. For ex-
ample, for K = 16, we can have 5 distinct resolutions.
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(a) Our sampling (b) Possible interpretations (c) Sequential sampling [9]

Fig. 2. Simultaneously capturing multiple spatio-temporal resolutions: (a)
For a group of K neighboring pixels, each pixel is on for a temporal sub-segment of
length 1

K
(white indicates on, black indicates off). For top row, K = 4. (b) These

measurements can be interpreted post-capture as 4 temporal measurements (red), 4
spatial measurements (blue) or 4 spatio-temporal measurements (green). (c) Sequential
sampling captures only a small sub-set of possible spatio-temporal resolutions. Bottom

row: The temporal firing order for a group of 4 × 4 pixels (K = 16) and the possible
resulting interpretations. With this sampling, we can achieve a temporal resolution
gain of up to 16X.

the jth division of the volume. Then, for any pixel-neighborhood of a given size,
a multi-resolution sampling can be computed by solving the following binary
integer program:

∑

p∈Bij

xp = 1 ∀Bij ,

K2

∑

p=1

xp = K, xp ∈ {0, 1} ∀p (1)

The first constraint ensures that every block in every division contains ex-
actly one sample. The second constraint enforces the total number of samples
to be equal to the number of pixels. For any given Vmn, the constraints can
be generated automatically by computing different recti-linear divisions of the
volume. The bottom row of Figure 2 shows the sampling order for a group of
4× 4 pixels computed by solving the integer program (1). The numbers denote
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(a) [1, 1

1
] (b) [2, 1

1
] (c) [4, 1

4
] (d) [8, 1

8
] (e) [16, 1

16
]

Fig. 3. Generating multiple spatio-temporal resolutions by re-binning cap-

tured data: (a) An image acquired with the temporal firing order given in Figure 2
bottom-left. The pixel neighborhood size is 4 × 4. (a-e) Different re-arrangements of
the measurements, as given in Figure 2, and the corresponding [TR, SR] factors. From
left to right, motion blur decreases but spatial resolution decreases as well. Simple
re-binning of samples results in coded blur artifacts in the reconstructions.

the temporal firing order within an integration time. With this firing order, the
samples can be arranged into 5 different spatio-temporal arrangements, shown
on the bottom right. These arrangements correspond to resolutions with [TR,
SR] factors of [1, 1

1 ], [2, 1
2 ], [4, 1

4 ], [8, 1
8 ] and [16, 1

16 ] as compared to the acquired
image. In contrast, sequential sampling [9] does not satisfy the constraints of the
above binary integer program. As a result, it is amenable to a small sub-set of
possible spatio-temporal resolutions. For the sequential sampling given in Fig-
ure 2c, the 2×2 arrangement is not possible since not all the blocks are sampled.

Simulating multi-resolution sampling: To verify the feasibility of our multi-
resolution sampling scheme, we used a Photron 1024 PCI camera to capture
high-speed images at 480 Hz. The spatial resolution of the images is 640 × 480.
The image is divided into neighborhoods of 4 × 4 pixels. For each set of 16
consecutive frames, we weighted them according to the per-pixel code given on
the bottom-left of Figure 2 and added them together. The resulting video is as
if captured by a 30 Hz camera with a per-pixel shutter operating at 480 Hz. The
scene consists of a person playing drums. While the hands move rapidly, the rest
of the body moves slowly, and the drums move only on impact. An example image
from the sequence is given in Figure 3 (top-left). Notice the per-pixel coded blur
on the captured image (Figure 3a) as compared to usual smooth motion blur
in regular cameras. This is because pixels encode temporal information as well.
By rearranging the pixels according to Figure 2, we get sequences with different
combinations of spatio-temporal resolutions, as shown in Figure 3 (b-e) . From
left to right, temporal resolution increases but the spatial resolution decreases.
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(a) Low TR, High SR (b) Medium TR, Medium SR (c) High TR, Low SR

Fig. 4. Anisotropic diffusion for generating multiple spatio-temporal reso-

lutions: By interpolating the captured data with diffusion tensors of varying spectral
shapes, we can achieve multiple spatio-temporal resolutions. The diffusion process also
mitigates the effects of aliasing. Notice that coded blur artifacts are significantly re-
duced in comparison to the simple rebinning scheme of Figure 3.

3 Interpreting the captured data

In this section, we present post-capture algorithms for interpreting the data cap-
tured using our sampling scheme. One approach is simply re-arranging the mea-
sured samples to generate different spatio-temporal resolutions, as mentioned
in the previous section. This scheme has two disadvantages: first, it restricts
the possible spatio-temporal resolutions of the reconstructions to a few discrete
choices. Second, it does not account for aliasing due to sub-sampling. Conse-
quently, we witness disturbing visual artifacts such as coded blur (Figure 3) and
temporal incoherence (pixel swimming). Such artifacts are specially noticeable
in the presence of highly textured scene objects. In the following, we present a
reconstruction algorithm which effectively addresses these limitations.

3.1 Interpolation of sub-sampled data using anisotropic diffusion

Let I(0) be the initial space-time volume defined over a regular 3D grid. Our
sampling scheme measures samples at a few locations in this volume. The re-
maining locations are considered missing data, as illustrated in Figure 4. We
pose the reconstruction problem as inpainting the missing data by interpolating
the measured samples using anisotropic diffusion [17, 18]. The key idea is that
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by diffusing the intensities with tensors T of different spectral shapes (orien-
tation), we can achieve different effective spatio-temporal resolutions. Consider
the evolution of the image data with the number of iterations n:

∂I

∂n
= trace(TH) , where H =





Ixx Ixy Ixt

Iyx Iyy Iyt

Itx Ity Itt



 (2)

is the 3×3 Hessian matrix of the 3D image data I. The 3×3 diffusion tensor
defined by T = c1λλ

T + c2ψψ
T + c3γγ

T [18] is characterized by its eigen values
c1, c2, c3 and eigen vectors λ, ψ, γ. The solution of the PDE of Eqn. 2 is [18]:

I(n) = I(0) ∗G(T,n) , where G(T,n)(x) =
1

4πn
exp(−xTT−1x

4n
) , (3)

where x = (x y t)T . Starting with the initial volume I(0), this PDE has the
effect of progressively smoothing the data with oriented 3D Gaussians2 defined
by the tensor T . The PDE is repeatedly applied only on the missing data loca-
tions until the intensities from the measured samples diffuse to fill in the holes.

A continuum of spatio-temporal resolutions: By designing diffusion ten-
sors of different spectral shapes, we can achieve different spatio-temporal reso-
lutions of the reconstructed volume. Consider the set of axis-aligned ellipsoidal
kernels T = diag (c1, c2, c3). If c3 >> c1 and c3 >> c2, low-pas filtering occurs
primarily in the temporal direction. Consequently, high-frequency content in the
spatial direction is preserved. The resulting reconstruction, thus, has high spa-
tial resolution and low temporal resolution, as illustrated in Figure 4a. On the
other hand, if c3 << c1 and c3 << c2, then most of the smoothing happens
in the spatial direction, thus preserving high-frequency content in the temporal
direction (Figure 4c). With c1 = c2 = c3, the data is diffused isotropically in
all three directions (Figure 4b). The reconstructions achieved with the simple
scheme of re-arranging samples correspond to special cases of the diffusion ten-
sor. For example, the [1, 1

1 ] reconstruction can be achieved by using a tensor
with c1 = c2 = 0, c3 = 1. Similarly, with c1 = c2 = 1, c3 = 0, we can achieve the
[16, 1

16 ] reconstruction.

Aliasing artifacts: The diffusion process interpolates and regularizes the data
on the 3D grid, thus mitigating the effects of aliasing due to sub-sampling. Con-
sequently, coded blur and temporal coherence artifacts are significantly reduced
in the reconstructions. See the project web-page [19] for comparisons.

4 Motion-aware video

The reconstruction algorithms discussed so far are independent of the captured
data, which, although sparse, can provide useful information about the scene.

2 An equivalent representation of the tensor T is in terms of oriented ellipsoids.



Lecture Notes in Computer Science: Flexible Voxels 9

(a) (b) (c)

Fig. 5. Motion-aware video reconstruction: (a) Quiver plot of the optical flow
between two successive frames of a high TR reconstruction. (b) Color coded magnitude
of the optical flow. Red indicates fast moving objects, green indicates slow moving
and blue indicates stationary objects. Raw data is interpolated with diffusion tensors
oriented along the optical flow vectors (c) to achieve a motion aware reconstruction.
The resulting frame is shown in Figure 1f.

In this section, we present an algorithm to use the motion information in the
captured data to drive the reconstruction process. We call the resulting recon-
struction motion-aware: the spatio-temporal resolution trade-off at each loca-
tion is resolved according to the motion information at that location. Such a
reconstruction would minimize the motion blur for fast moving objects while si-
multaneously maximizing the spatial frequency content for slow moving or static
objects. Following is the algorithm we use for computing such a reconstruction:

Step 1: High TR reconstruction: It can be extremely difficult to recover
faithful motion information in the presence of large motion blur. Thus, a high
temporal resolution reconstruction is imperative for computing accurate motion
information. Our first step is to do a high TR reconstruction using an axis-
aligned tensor T = diag (c1, c2, c3) with (c1, c2, c3) = (1.0, 1.0, 0.05). Such a
reconstruction would smooth primarily in the spatial dimensions, thus preserving
high-frequency temporal content. A small value is assigned to c3 to mitigate
temporal flickering artifacts.

Step 2: Computing optical flow: We compute motion information in the
form of optical flow between successive frames of the high TR reconstruction.
For this, we used an implementation of the optical flow method given by Brox et
al [20]. Since computed on a high TR reconstruction, the optical flow estimates
are fairly robust, even for fast moving objects. Figures 5a and 5b illustrate the
optical flow between two successive frames of the drums sequence using a quiver
plot and color coded magnitudes respectively. Red indicates fast moving objects,
green indicates slow moving and blue indicates stationary objects. Although the
optical flow vectors have high temporal resolution, their spatial resolution is
much lesser than that of the scene itself. Thus, computing optical flow at a
low spatial resolution does not result in significant spatial aliasing. In contrast,
optical flow estimates on the original captured data are unreliable due to the
presence of large, albeit coded motion blur.
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(a) (b) (c)

Fig. 6. Hardware setup for simulating per-pixel shutter: (a-b) Our setup con-
sists of co-locating and temporally synchronizing a camera (15 Hz) and a projector
(240 Hz). Under no global illumination, a camera pixel receives light only when the
corresponding projector pixel is on. (c) The observed irradiance at a camera pixel is
modulated according to the binary pattern on the corresponding projector pixel.

Step 3: Motion driven diffusion: The key idea is to design diffusion tensors
at each location so that they smooth along the motion direction. Let (u, v, 1)
be the optical flow vector at a given location. We define the diffusion tensor as
T = c1λλ

T + c2ψψ
T + c3γγ

T , where

λ =
(u, v, 1)√
u2 + v2 + 1

, ψ = λ× (0, 0, 1) , γ = λ× ψ (4)

form an ortho-normal set of unit vectors. By choosing c1 = 0.95, c2 =
0.05, c3 = 0.05, we orient the diffusion tensor sharply along λ, the motion direc-
tion. Note that this results in a variable diffusion tensor field over the space-time
volume (Figure 5c) as different locations have different optical flow vectors. An
example frame from the motion-aware reconstruction of the drums sequence is
given in Figure 1f. Note that the motion blur is minimized on the fast moving
hands while the drums and the body retain high spatial resolution. Results with
real experimental data are given in Figures 7 and 8.

5 Hardware Implementation of Per-Pixel Shutter

The sampling scheme discussed in the previous sections requires a fast (K times
the frame-rate of the camera) per-pixel shutter on the sensor array. Currently
available cameras have fast global shutters3 implemented as external trigger
modes [22]. However, these modes do not provide per-pixel control. Recently,
DMD arrays have been used to provide precise, per-pixel temporal modulation [9,
23]. These devices are commonly used as light modulators in off-the shelf DLP
projectors. We have implemented per-pixel shutter using a DLP projector in

3 Fast global shutters have been used in the past for motion deblurring [21], but
modulate all pixels simultaneously.
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conjunction with a camera. The projector is used to provide fast, per-pixel light
modulation externally.

The projector and the camera are co-located using a beam-splitter, as shown
in Figure 6. The setup is placed in a dark room. We assume that there is no
ambient or global illumination. Co-location is achieved by aligning the camera
and the projector so that the camera does not observe any shadows cast by
the projector. This procedure takes about 15 mins. Co-location ensures that
the camera and the projector image planes are related by a single homography
irrespective of the scene.

The camera and the projector are temporally synchronized so that for each
camera integration time, the projector cycles throughK binary patterns. The bi-
nary patterns consist of tiles of K pixels repeated spatially. Each tile encodes the
sampling scheme being used. Since there is no ambient illumination, a camera
pixel receives light only when the corresponding projector pixel is on. Conse-
quently, the irradiance at a camera pixel is modulated according to the binary
pattern on the corresponding projector pixel. An illustration is shown in Fig-
ure 6c. This modulation acts as per-pixel shutter. The temporal frequency of
modulation (hence the shutter), is given by the frame rate of the projector.

We used a Point-Grey Flea2 camera and a Multi-Use-Light-Engine (MULE)
projector [24]. With a 60 Hz video input, the MULE projector can project binary
bit-planes at up to 60 × 24 = 1440 Hz. To implement the coding scheme given
in Figure 3a, we operated the projector at 240 Hz, thus achieving a frame-rate
of 240 Hz even though the frame rate of the camera is 15 Hz.

5.1 Real Experiments and Results

Fan rotating scene (Figure 7): The first sequence consists of a rotating fan
acquired with a camera running at 7.5 Hz. The frames have significant mo-
tion blur and temporal aliasing. In this case, the pixel neighborhood size was
2 × 4; thus, K = 8. The second and the third columns show 1 frame each from
two reconstructions done with the diffusion tensors T = diag (0.05, 0.05, 1) and
T = diag (1, 1, 0.05) respectively. We call these motion-independent reconstruc-
tions, as these reconstructions do not use any motion information. The high TR
reconstruction has a temporal resolution of 7.5× 8 = 60 Hz. The fourth column
shows optical flow magnitudes between two successive frames of the high TR re-
construction. The optical flow information is used for computing a motion-aware
reconstruction (last column), as discussed in Section 4.

Multiple Balls Bouncing (Figure 8): This sequence consists of multiple balls
colliding with each other at high velocities. The camera is running at 15 Hz. We
used a pixel neighborhood of 4×4; thus, K = 16. The second and third columns
show one frame each from reconstructions with tensors T = diag (0.05, 0.05, 1)
and T = diag (1, 1, 0.05) respectively. The last column shows motion-aware re-
construction. Notice that one of the balls is almost invisible in the captured
frame of third row due to large motion blur. In the motion aware reconstruction,
it can be easily localized.
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Captured Low TR High TR Optical Flow Motion-aware
Frames High SR Low SR| {z }

Motion independent reconstructions

Magnitudes Reconstruction

Fig. 7. Motion-aware video of rotating fan: (First column) Raw frames from the
captured sequence. (Second and the third columns) One frame each from two recon-
structions done with different diffusion tensors. (Fourth column) Optical flow mag-
nitudes between two successive frames of the high TR reconstruction. (Last column)
Motion aware reconstruction. Notice the much reduced motion blur on the fan and
high-spatial resolution on the static background. Zoom in for details.

6 Discussion and Limitations

The goal of this work was to build video cameras whose spatial and temporal
resolutions can be changed post-capture depending on the scene. We have pre-
sented the first example of an imaging system which allows multiple space-time
resolutions at each image location independently - using programmable, fast
per-pixel shutters and a content-aware post-processing scheme.

A limitation of our sampling scheme is that the pixels collect light over only
a fraction of the integration time leading to low signal-to-noise ratio (SNR).
The trade-off between temporal resolution and SNR is well known for video
cameras. High-speed cameras suffer from significant image noise in low-light
conditions. This trade-off can be countered by incorporating multiplexing into
our sampling scheme. With multiplexed codes, as shown in Figure 9a, each pixel
gathers more light as compared to identity codes (Figure 2a). This is similar in
spirit to capturing images using multiplexed illumination for achieving higher
SNR [25]. Post-capture reshaping of voxels can be achieved by de-multiplexing.

Our implementation of per-pixel shutter using a projector-camera system is
limited to scenes with low global and ambient illumination. Passive implemen-
tations using either a DMD array [9, 23] or variable integration on sensor chip
can effectively address these limitations.
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Captured Low TR High TR Optical Flow Motion-aware
Frame High SR Low SR| {z }

Motion independent reconstructions

Magnitudes Reconstruction

Fig. 8. Motion-aware video of multiple bouncing balls: (First column) Raw
frames from the captured sequence. (Second-third columns) One frame each from two
reconstructions done with different diffusion tensors. (Fourth column) Optical flow
magnitudes between two successive frames of the highest TR reconstruction. (Last
column) Motion aware reconstruction.

(a) (b)
Fig. 9. Multiplexed sampling: By using multiplexed codes (a), each pixel gathers
more light resulting in higher SNR (white indicates on, black indicates off). Post-
capture reshaping of voxels (b) can be achieved by de-multiplexing the captured data.
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