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Abstract

We consider the class of projector-camera systems that

adaptively image and illuminate a dynamic environment.

Examples include adaptive front lighting in vehicles, dy-

namic stage performance lighting, adaptive dynamic range

imaging and volumetric displays. A simulator is developed

to explore the design space of such Reactive Visual Systems.

Simulations are conducted to characterize system perfor-

mance by analyzing the effects of end-to-end latency, jitter,

and prediction algorithm complexity. Key operating points

are identified where systems with simple prediction algo-

rithms can outperform systems with more complex predic-

tion algorithms. Based on the lessons learned from simula-

tions, a low latency and low jitter, tight closed-loop reactive

visual system is built. For the first time, we measure end-to-

end latency, perform jitter analysis, investigate various pre-

diction algorithms and their effect on system performance,

compare our system’s performance to previous work, and

demonstrate dis-illumination of falling snow-like particles

and photography of fast moving scenes.

1. Introduction

A Reactive Visual System consists of three primary com-

ponents: an imaging component to sense a fast changing en-

vironment or scene, a processing component to analyze the

captured imagery, and an actuation component to manip-

ulate a light source (e.g., projector or display). This type

of projector-camera system has numerous applications in

computational photography (e.g., adaptive dynamic range

imaging [10, 7]), lighting (e.g., adaptive automotive indus-

trys [3, 14] or glare free presentation projectors [15]), the-

ater/stage performance lighting, re-lighting a scene [11]),

and displays (e.g., 3D displays on dynamic volumes [1] or

moving mirrors [6], view and lighting reactive displays [9],

anywhere-projection [5]). In all of these examples, one or

more cameras and light sources are reactively and iteratively

controlled to adapt to a changing environment.

The analysis of reactive visual systems is challenging

for many reasons. The input and output signals consist

of dense 2D or 3D arrays of pixels and are high dimen-
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Figure 1. A binary reactive visual system illuminates or dis-

illuminates objects detected from images captured by a camera.

sional. Algorithms to understand scenes from images are

complex and inherently ambiguous, making it difficult to

predict their performance in real-world situations with the

dynamics from a physical environment. Like other tight

closed-loop control systems [3, 14, 17], these factors are

amplified by timing jitter resulting in few works that have

systematically analyzed their behavior.

In this work, we analyze reactive visual systems and

characterize their real-time performance in terms of latency

for given algorithms that have an inherent tradeoff between

execution time and accuracy. Covering the factors affect-

ing all reactive visual systems is too broad in scope, so we

will limit our discussion to Binary Reactive Visual Systems.

Here, the captured images (say, 8-bits per pixel) are bina-

rized (to 1-bit per pixel) and processed to control a binary

spatially varying illumination source, such as a DLP pro-

jector [2, 4]. We will assume that the scene (physical envi-

ronment) consists of multiple objects that are moving inde-

pendently at differing speeds and directions. The goal of a

Binary Reactive Visual System would be to sense (image)

the scene, detect objects and predict their future locations,

and illuminate or dis-illuminate the objects (Fig. 1). Many

of the applications mentioned above belong to this class of

reactive visual systems.
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Figure 2. Block diagram of main architectural components of a

Binary Reactive Visual System.

We present the design and evaluation of a low-latency,

high-speed Binary Reactive Visual System under vari-

ous application workloads. We characterize the sys-

tem’s Quality-of-Service (QoS) in terms of error and light

throughput as a function of the system’s response time. QoS

in time-sensitive systems has been well studied by the real-

time community [8, 12, 13], but this work focuses specif-

ically on Binary Reactive Visual Systems. As a first step,

we have developed a simulator that allows us to explore the

design space of such a system, including various strategies

for predicting object movement. We identify key operat-

ing points where decreasing the system latency with a less

complex algorithm can outperform higher complexity algo-

rithms that take more time to run to achieve the same goal.

We see a similar performance trade-off where jitter (not just

delay) in the control loop decreases performance.

The lessons learned from design exploration were used

to guide the development of a low-latency Binary Reactive

Visual System. The platform includes a high-speed cam-

era and frame capture interface, and a time sensitive Linux-

based processing pipeline connected to a custom hardware

front-end that controls a DMD projector module. Our sys-

tem has a much faster reaction time and less jitter than other

work with reactive visual systems [3, 14]. For the first time,

we measure and analyze end-to-end latency starting from

camera exposure to scene illumination, perform jitter analy-

sis, investigate various prediction algorithms and study their

effects on system performance, compare the performance of

our system with other systems, and demonstrate two adap-

tive lighting applications: dis-illumination of falling snow-

like particles and photography of fast moving scenes.

2. Binary Reactive Visual Systems

The configuration of a Binary Reactive Visual System

is shown in Fig. 2. The camera captures an image of a

scene containing a set of objects with unknown locations

and arbitrary motion. The processor then identifies the ob-

jects and records their current locations. This process is

termed binarization, where, image pixels corresponding to

the object locations are ‘on’ and are ‘off’ otherwise. The

binary image, and perhaps a history of previous binary im-

ages, is then used to predict the object locations at the end

of the system’s response time. The predicted image is then

warped to the coordinate frame of the projector, which in

turn illuminates or dis-illuminates (depending on the ap-

plication) the detected objects by turning pixels on or off,

respectively. Note that while we focus on binary systems,

pulse-width modulation coding can be used to project arbi-

trary grayscale values.

In order to compute the mapping between light rays from

the objects observed by the camera and the correspond-

ing light rays exiting the projector towards the objects, the

three-dimensional positions of the objects must be com-

puted. Such a mapping is commonly achieved by using

multiple cameras in a stereoscopic configuration. Instead,

for the purposes of this work, the camera and projector are

optically co-located using a beamsplitter, which avoids par-

allax between the camera image and the projector image

[14]. Co-location removes the need to compute the dis-

tances of objects in three dimensions and allows for all com-

putations to be performed in the image space.

The latency (response time) of a Binary Reactive Visual

System is defined as the time elapsed from the start of ex-

posure by the camera and the completed illumination by the

projector. In addition to measuring latency, we also mea-

sure the jitter or uncertainty in the end-to-end latency. In

this work, systems (simulated and hardware prototype) with

varying parameters are evaluated based on the following

performance measures as a function of the system’s latency

and jitter. Error quantifies the incorrect illumination or dis-

illumination of the scene and light throughput quantifies the

total amount of light that illuminates the scene.

We apply this evaluation to two types of applications.

The objective of the first application is to dynamically illu-

minate objects while the objective of the second application

is to dis-illuminate objects. For the illumination application,

we use rigid objects moving in a linear or projectile mo-

tion (ping pong balls moving and colliding). System error

for this application is computed as the percentage of pixels

that do not illuminate the objects and illuminate the back-

ground. For the dis-illumination application, we consider a

large number of small objects moving chaotically, such as

snowflakes during a storm. This application evaluates how

well the system can act to avoid illuminating snowflakes

to reduce their visibility to observers or a camera. In this

case, error is computed as the percentage of pixels that in-

correctly illuminate the objects. The error caused when in-

correctly dis-illuminating the scene (road environment) is

calculated separately as light throughput to assess the trade-

off between reducing snowflake visibility and illuminating

the road for the observer.



Figure 3. Images (a)-(c) are renderings of rigid objects (e.g., ping

pong balls) quickly accelerating from rest (exploding) at different

times. A long exposure (1 s) image of the event is shown in (d).

3. Design Exploration

Our simulator models multiple types of objects and their

motions in the scene to characterize the performance of gen-

eralized reactive visual systems with different latencies per-

forming different algorithms. The scene is rendered using

OpenGL and the rendered image is an input to the simu-

lated reactive visual system, which analyzes the image and

generates a corresponding illumination pattern. For the re-

mainder of this section, we explore, for the first time, the

performance of reactive visual systems for an illumination

and a dis-illumination application.

3.1. Dynamic Lighting

Dynamic illumination of moving objects could be used,

for example, to spotlight dancers on a stage or to study the

trajectory of fast moving objects in a dynamic scene (an ex-

ample of dynamic lighting can be observed in Figure 12).

The actual system illuminates the scene with infrared light

sources and observes the environment with a near-infrared,

monochrome camera ensuring that the system’s output (vis-

ible light) is not captured by the camera. The input image

is thresholded to produce a binary image, which can then

be displayed for immediate system response. We refer to

this as the no prediction algorithm. Alternatively, predic-

tion strategies can be employed to compensate for object

motion - most likely adding to the system’s latency though.

A simple algorithm for motion compensation assumes

objects have an equal probability of moving in any direc-

tion. This algorithm is implemented by performing dilation

with a kernel of fixed size on the binary image. A more

intelligent approach would predict the future location of in-

dividual objects and produce the illumination pattern based

on this information. In our implementation, blobs are de-

tected from binary images and stored for the two most re-

Figure 4. Total error while illuminating rigid objects as they ex-

plode for different system latencies. The black curve shows errors

achieved with the no prediction algorithm. The other curves show

error with linear prediction and latency uncertainty. Latency is

plotted on a logarithmic scale.

cent images. A metric based on blob size and position is

used to find correspondences between newly detected blobs

and previously detected blobs. The image velocity and po-

sition of objects in the two images are used to linearly ex-

trapolate the position of objects at the time of illumination

to produce an illumination pattern.

Through simulation, system performance was evaluated

for these different prediction strategies. For performance

evaluation, the fast motion of multiple rigid objects (per-

haps, ping pong balls) being struck with a larger object (per-

haps, a tennis ball) was simulated (Fig. 3). After receiving

an image of the event, the simulated reactive visual system

generates a binary illumination pattern. Based on the sys-

tem’s latency, an image of the scene is generated the instant

that it is dynamically illuminated.

For quantitative evaluation, the image of the scene at the

time of illumination and the illumination pattern are com-

pared. There are two types of error; Positive Error and

Negative Error. Positive Error is caused when a foreground

object is not correctly illuminated and can be calculated as

Positive Error = Object pixels not illuminated

Total object pixels
. Negative Error is

caused when the background is incorrectly illuminated and

is defined as Negative Error = Background pixels illuminated

Total object pixels
. The

Performance of the system for this application is therefore

measurable by Total Error = Positive Error + Negative Error

2
.

As shown in Fig. 4, the no prediction algorithm has an

error approaching 100% for latencies of typical video frame

rate (30 Hz). Error can be reduced dramatically to around

10% by decreasing the system latency to 2 ms or less. At

this latency, the no prediction algorithm is comparable to



Figure 5. Increasing dilation kernel size improves proper illumina-

tion of the objects (positive error decreases) while increasing in-

correct illumination of the background (negative error increases).

the linear prediction algorithm, making the no prediction

algorithm a viable strategy for fast reacting systems. For

slower systems, the linear prediction algorithm results in

much better performance. The downside of the linear pre-

diction algorithm are sources of error that arise from incor-

rect correspondences, especially when the objects are near

each other or overlap. Even at low latencies, this type of er-

ror is difficult to remove. At high image capture rates (e.g.,

1 kHz exposure time), it is better to avoid linear prediction

since typical objects will not move much in such short time

periods. The contrary may be true for objects that move

extremely fast. Since the prediction algorithm uses system

latency to predict the position of objects at the time of il-

lumination, it is imperative to study the effect of jitter. In

the simulator, jitter is modeled as Gaussian noise in the la-

tency. In Fig. 4, we also compare systems with different

amounts of jitter (standard deviation in Gaussian distribu-

tion) and, although, jitter is an important consideration at

higher latencies, its effect is minor at lower latencies.

The effect of using dilation with kernels of varying size

to compensate for object motion is shown in Fig. 5. By

increasing the size of the kernel, objects are better illumi-

nated (decreasing positive error), but with the tradeoff that

more of the background is incorrectly illuminated (increas-

ing negative error). Compared to the no prediction and lin-

ear prediction algorithms, dilation results in more total error

even with the smallest kernel size. Our simulations show

that, for dynamic lighting of relatively fast moving objects,

there is no advantage to using a prediction algorithm for low

latency systems such as the one implemented in Section 4,

which has a latency of 1 ms. Whereas, higher latency sys-

tems greatly benefit with linear prediction.

Figure 6. Images rendered by the simulator for snowflakes falling

at (a) 0.5 mm/hr (b) 3mm/hr (c) 10 mm/hr. (d) is a long exposure

(60 ms) capture of snow falling at 0.5 mm/hr.

3.2. Improved Visibility in Snow

Retro-reflection from falling snowflakes distracts drivers

from observing the road and makes driving during a snow-

storm dangerous and stressful. Using a binary reactive vi-

sual system, snowflakes can be dis-illuminated for a very

short period to improve visibility. We simulate snow falling

at 3 mm/hr [3] and study the performance of different sys-

tems (Fig. 6). Note that the objects (snowflakes) in this ap-

plication are small in size but large in number. The objective

with this application is opposite of the dynamic lighting ap-

plication, i.e., objects are dis-illuminated instead of illumi-

nated. The two performance metrics to characterize system

behavior for this application are Error = Snow pixels illuminated

Total snow pixels

and Light Throughput = 1− Pixels dis-illuminated
Total pixels

.

The average light throughput with each algorithm was

95.7% for no prediction, 84.9% for linear prediction, and

87.6% for dilation with a 1×5 kernel. As shown in Fig. 8,

the system performs well with the no prediction algorithm

at lower latencies. Performance degrades for systems with

0.2 ms latency as compared to both the dilation and linear

prediction algorithms. For systems with a latency below

2 ms, dilation with a vertical kernel of size 1×5 performs

much better than linear prediction while maintaining higher

light throughput. Linear prediction performs best for sys-

tems with a latency greater than 2 ms.

Although, it is clear that dilation reduces error, the effect

of dilation on light throughput is investigated. Simulations

were performed to measure light throughput for achieving

0% error. Results show that systems with latency below

1.6 ms have more than 90% light throughput, but systems

with longer latency have less than 85% light throughput.

Additionally, the amount of dilation is also dependent on
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Figure 7. Diagram of our hardware implementation of a binary reactive visual system. Systems for other applications such as high dynamic

range imaging and reconstruction will have similar implementations, but the same main components of sensing, processing, and projection.

the speed of the snowflakes. For example, if we wish to dis-

illuminate snowflakes in a strong wind or on a fast moving

vehicle, dilation would become inappropriate with even low

latency systems.

We performed simulations to understand the effect of

snowfall rate for our implemented binary reactive visual

system described in Section 4. Latencies measured from

our system were used to compare system error with differ-

ent algorithms. Changes in snowfall rate do not change the

latency of the systems with the no prediction or dilation al-

gorithm. Thus, their error rates do not change either with

the no prediction algorithm resulting in 70% error and the

dilation algorithm resulting in 2% error. On the other hand,

the linear prediction algorithm depends on the number of

objects in the image, and therefore, causes an increase in

computation time resulting in more error for higher snow-

fall rates. Error is approximately 15% for a light snowfall

(0.3 mm/hr) and increases to 35% for blizzard-like snowfall

rates (10 mm/hr).

4. System Implementation

A Binary Reactive Visual System was built using a cam-

era for sensing, a computer for processing, and a custom-

built high-speed projector for illumination. A diagram of

our hardware implementation is shown in Fig. 7. Our sys-

tem is similar to that of [14] except with significant im-

provements to reduce system latency by at least 40% with

minimized jitter.

4.1. Imaging

A computer with an Intel Core i7 3.6 GHz CPU inter-

faces between the camera and projector and processes the

images. A monochrome, near-infrared camera (Basler) with

a global shutter is used to capture images. The camera is

capable of low latency and high data throughput because of

Figure 8. The effect of latency on system performance with vari-

ous algorithms. On average, the no prediction algorithm achieves

95.7% light throughput, while linear prediction and dilation (1×5

kernel) achieve 84.9% and 87.6% light throughput, respectively.

Latency is plotted on a logarithmic scale.

its pipelined pixel architecture and extended CameraLink

interface. The camera and projector are co-located follow-

ing the procedure described in [14]. Camera exposure was

synchronized to the projector to quantize system jitter in a

deterministic manner. Synchronization also permits mea-

suring system latency as explained in Section 5.1. A PCI

express 2.0 frame grabber (Bitflow) is used to transfer data,

without buffering, into DDR3 memory.

Software Architecture: The system’s functionality is

performed with multi-threaded software. The acquisition

thread retrieves images from memory and copies them into

an image buffer shared with a processing thread, where the

image is processed (e.g., binarization, prediction, transfor-

mation, etc). After an illumination pattern is computed, it

is stored in an image buffer shared with a display thread,



which uses OpenGL to transfer the illumination pattern to

the projector via the custom board described in Section 4.2.

Linux Kernel 3.8 with RT Patch (3.8.14.15.rt+) was used

to ensure deterministic scheduling performance and hyper-

threading was disabled to eliminate cache-coherence issues

resulting in minimized jitter.

Image Processing: The processing component consists

of image binarization, object location prediction, image

warping, and bit-packing. Quantitative evaluation of sys-

tem performance is discussed in Section 5.2.

Binarization: Objects are segmented as follows:

B(x, y) =

{

1 if |I(x, y)− Ibg(x, y)| > α

0 otherwise,

where α is an intensity threshold and Ibg(x, y) is a pre-

computed background image. The 8-bit image is subtracted

from the background image and then the resulting image is

thresholded. Since both of these are per-pixel operations,

they were combined and written in AVX2 optimized SIMD

vectorized code to increase computational efficiency.

Prediction: As discussed in Section 3.1, two approaches

for estimating future locations of objects were investigated.

Image Warping: Image distortion caused by the camera

lens and the transformation between the camera and projec-

tor planes are stored in a look-up table. The look-up table

maps pixels from the projector’s coordinate system to the

camera’s coordinate system to guarantee that every pixel

has a correspondence. Access of the look-up table was writ-

ten in AVX2 to increase the speed of memory operations.

The result of the transformation is a binary image contain-

ing the illumination pattern sized to the projector resolution.

4.2. Projection

A high-speed projector (4,000 Hz) was built to achieve

high-speed illumination. The projector consists of a DMD

development board (WinTech W4100) [16] and a 4,800 Lu-

men light source. One of the bottlenecks identified in [14]

was the time to transfer the illumination pattern to the pro-

jector over USB 2.0 (0.6−0.7ms). To avoid this bottleneck,

we designed a custom module to interface the PC using

HDMI directly to the EXP bus interface on the DMD board.

The HDMI board uses an integrated circuit (TI TFP401a) to

parallelize the HDMI signals to a 28-bit video signal with a

pixel clock rate of 177 MHz.

The binary illumination pattern is transferred over

HDMI as a 24-bit image. Since the illumination pattern is

binary, it is packed into a low-resolution, 24-bit image. The

bit-packed image is transferred to the projector at a regu-

lar interval of 250 µs. The FPGA of the DMD board was

programmed to expand the bit-packed image to the full res-

olution of the projector (1024×768). The board can transfer

a full resolution image in 250 µs allowing a display rate of

4,000 Hz, which is 3 times faster than [14].

System Our system [14] [3]

Resolution 960×340 960×170 1000×340 244×120

Exposure 100µs 100µs 100µs 5000µs

Image Transfer 925µs 520µs 925µs 4200µs

Acquisition 20µs 10µs

≥ 300µs‡ 4100µs‡
Binarization 20µs 12µs

Warping 160µs 80µs

Bit-Packing† 20µs 10µs

Display 250µs 250µs 760µs 4200µs

Total 1495µs 992µs ≥ 2085µs 17500µs

† Bit-packing not performed in [14] and [3]
‡ Processing time increases as the number of detected objects increases

Table 1. Latency of our system with two different image resolu-

tions compared to other reported systems. The latency of our sys-

tem is independent of the number of objects detected and can be

used to emulate other systems by means of a software delay.

5. System Response Time

5.1. Measuring End­to­End Latency

To measure the reaction time of the system, the FPGA

of the DMD board was programmed to output a trigger

pulse when a new illumination pattern was received. La-

tency was measured with a logic analyzer (Saleae Logic 8)

as the time between successive trigger pulses. Because the

HDMI clock transfers data asynchronously at 4,000 Hz, jit-

ter is quantized at 250 µs intervals. For example, if there is

a delay in the system, (e.g., because of image analysis), the

image will have to be displayed after a delay of 250 µs.

In addition to measuring round-trip latency of our sys-

tem, we also measured the time to execute various pro-

cesses. The latency of the system depends on various fac-

tors including image size (transfer and processing), algo-

rithm complexity, and system uncertainty. Latency of our

system for two resolutions (only binarization, warping, and

bit-packing performed) are detailed in Table 1. The latency

of similar systems [3, 14] are shown in the same table.

5.2. Effect of Prediction Algorithms on Latency

To compare system performance with different predic-

tion algorithms, images generated from the simulator (Sec-

tion 3) were used to guarantee data variability and repeata-

bility for different trials. Latency was measured using the

same method in Section 5.1. Data were collected for a

minute for each trial and summary statistics were computed.

The image resolution for which the camera field of view

covers the projector’s field of view is 960×680. To decrease

the system’s reaction time, camera images were vertically

decimated by a factor of both 2 and 4 yielding image res-

olutions of 960×340 and 960×170, respectively. Kernel

sizes are reported as their effective size at full image resolu-

tion. For example, a kernel of radius 9 in the full resolution

image has a radius of 5 for decimation by a factor of 2 and

a radius of 3 for decimation by a factor of 4.
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Figure 9. Increasing the size of the dilation kernel increases the
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at a full image resolution of 960×680. Circles indicate average
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Figure 10. The latency of a system with linear prediction steadily

increases with snowfall rate because our algorithm requires more

computations to process additional detected snowflakes. Recall,

that our system has 250 µs jitter, which is demonstrated by the

average latency as indicated by circles.

For objects moving in an arbitrary direction (like the ex-

ploding ping pong balls), dilation with an isotropic kernel

is sufficient. However, for particles moving in a generally

known direction (falling snow), it is a better strategy to di-

late in the known direction. As shown in Fig. 9, increas-

ing the kernel size significantly increases latency. Latency

is reported as an average, minimum, and maximum value.

Latency measured for different snowfall rates ranging from
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Figure 11. A ping pong ball with projectile motion was illumi-

nated by the system while capturing a long exposure image. Bright

streaks (hit) show correct illumination of the ball while dark sil-

houettes (miss) in the background show the error caused by a slow

reaction of the system. Results from our system are in the top

row. Results using latencies from [14] and [3] with our system are

shown in the third and fourth rows, respectively.

a light flurry to a blizzard are shown in Fig. 10. Latency

increases because the algorithm depends on the number of

objects detected, which increases with the snowfall rate.

6. Visual Evaluation

The effect of latency, prediction, and dilation on sys-

tem accuracy was qualitatively evaluated by visual obser-

vation. First, system accuracy was evaluated for different

latencies with and without performing prediction. In this

evaluation, the system illuminated a rigid object (ping pong

ball) with projectile motion traveling 15 mph across the sys-

tem’s field of view at a distance of 15 feet in a dark room.

The balls were sensed in the dark by using infrared LEDs

to illuminate the scene. Long exposure (1 second) images

were taken with a DSLR camera to capture the balls be-

ing illuminated by the system, which appear as a streak in

the image foreground. High brightness and smoothness of

the streak indicates high accuracy of the system. A second

streak in the background captures the system’s error, i.e.,

the system’s reaction time is too slow to illuminate the ball

and instead illuminates the backdrop. Our system was com-

pared to previous systems [3, 14] with and without predic-

tion by adding their latency to our system with a software

delay. From Fig. 11, it is clear that prediction is unnec-

essary for a system with a response time of 1.5 ms and is

beneficial in systems with a slower response time.



Figure 12. Visual evaluation of system performance for rigid objects with projectile motion. A tennis ball is thrown into a bowl of ping

pong balls. The first image shows constant illumination. In subsequent images, ping pong balls are adaptively illuminated.

(a) (b)

) (d)

Figure 13. Visual evaluation of system performance for small objects moving chaotically. Artificial snowflakes are dropped. Still frames

from a video captured at 30 fps are shown. In (a), snowflakes are constantly illuminated. In (b)-(d), snowflakes are adaptively dis-

illuminated while increasing the size of the dilation kernel resulting in higher system accuracy and lower snowflake visibility.



We evaluated the accuracy of systems for multiple ob-

jects quickly accelerating from rest. A tennis ball was

thrown into a bowl of ping pong balls while capturing a

long exposure (1 second) image with a DSLR camera. Re-

sults are shown in Fig. 12. In the first image, the entire

scene is illuminated washing out the event. As evident by

the smoothness of motion trails, the second image shows

that a slow system with linear prediction performs worse

than faster systems without any prediction (third and fourth

images).

The effect of increasing the size of the dilation kernel is

shown in Fig. 13. Artificial snowflakes (styrofoam beads)

were dropped while being dis-illuminated by the system. As

the kernel size is increased, accuracy increases, and conse-

quently, visibility of the snowflakes decreases. Larger ker-

nel sizes decrease the visibility of snowflakes while increas-

ing false positive error - evident by larger dark streaks vis-

ible on the road. The requirements of this trade-off space

will vary between applications. Results of these visual eval-

uation experiments confirm those of the simulations.

7. Conclusions

We present a first attempt at analyzing systems that adap-

tively image and illuminate a dynamic environment using

factors that guide the design of general reactive visual sys-

tems. The design space includes factors such as system re-

sponse time and jitter and choice of algorithm and its com-

plexity for adaptation. Our analysis provides simple rules

for performance-driven implementation in multiple applica-

tions and answers design questions like: when does predic-

tion help? what should be the latencies in a particular appli-

cation? how are the latencies and prediction algorithm com-

plexity coupled? what are the bottlenecks in the system?

Our current hardware implementation is flexible enough to

adapt to the performance requirements of two very differ-

ent applications - dynamic lighting and dis-illumination of

falling snowflake-like particles. While we have focused

our efforts on binary reactive visual systems containing one

camera and one projector, future work will include analysis

of general imaging and illumination configurations neces-

sary for several applications in this space.
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