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Abstract

3D sensing with portable imaging systems is becoming more and more popular

in computer vision applications such as autonomous driving, virtual reality, robotics

manipulation and surveillance, due to the decreasing expense and size of RGB cam-

eras. Despite the compactness and portability of the small baseline vision systems, it

is well-known that the uncertainty in range finding using multiple views and the sen-

sor baselines are inversely related. On the other hand, besides compactness, the small

baseline vision system has its unique advantages such as easier correspondence and

large overlapping regions across views.

The goal of this thesis is to develop computational methods and small baseline

imaging systems for 3D sensing of complex scenes in real world conditions. Our

design principle is to physically model the scene complexities and specifically infer

the uncertainties for the images captured with small baseline setups.

With this design principle, we make four contributions. In the first contribution, we

propose a two-stage near-light photometric stereo method using a small (6 cm diam-

eter) LED ring. The imaging system is compact compared to traditional photometric

stereo systems. In the second contribution, we develop an algorithm to simultaneously

estimate the occlusion pattern and depth for thin structures from a focal image stack,

which is obtained either by varying the focus/aperture of the lens or computed from

a one-shot light field image. As the third contribution, we propose a learning-based

method to estimate per-pixel depth and its uncertainty continuously from a monocular

video stream, with small camera baselines across adjacent frames. These depth prob-

ability volumes are accumulated over time as more incoming frames are processed

sequentially, which effectively reduces depth uncertainty and improves accuracy, ro-

bustness, and temporal stability. Finally, using a pair of high resolution camera and

laser projector, we develop a high spatial resolution Diffuse Optical Tomography sys-

tem that can detect accurate boundaries and relative depth of heterogeneous structures

up to a depth of 8mm below a highly scattering medium such as whole milk.

We showcase the application of a small baseline vision system for in-vivo micro-

scale 3D reconstruction of capillary veins and develop a system for real-time analysis

of microvascular blood flow for critical care. We believe that the computational meth-

ods developed in this thesis would find more applications of compact 3D sensing under

challenging conditions.
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Chapter 1

Introduction

Portable camera sensor systems are becoming more and more popular in computer vision appli-

cations such as autonomous driving, virtual reality, robotics manipulation and surveillance, due to

the decreasing expense and size of a RGB camera. We want such systems to be smaller so they

can be deployed broadly in many applications. For example, the stereo cameras on the back of

cellphone camera are about∼1 centimeter apart; in the active illumination systems such as Kinect,

the camera-to-projector distance is within ∼ 10 centimeters; in the light field cameras for VR,

the micro-lens array is distributed within the diameter of a regular DSLR camera lens. The small

baseline sensor structure is also common in the biological world. For example, the compound eye

of Trilobite consists of multiple lenses with diameter up to 50 µm that are distributed on a 10

mm × 4 mm region, and only a small number of such lenses could detect the potential predators

[160]. For the aforementioned systems, the sensor baselines are usually within several centimeters

or even millimeters, while the target working range is usually in meters.

Despite the compactness and portability of the small baseline vision systems, there are several

limitations for such systems. First, it is well-known that the uncertainty in range finding using

multiple views and the sensor baselines are inversely related. For small baseline vision systems,

this means high depth uncertainties even for close range objects. Second, the cross-entropy be-

tween the images taken from different views is large. This makes the multiple measurements from

a small baseline system redundant. This redundancy also reduces the robustness to the occlusion:

if one region is occluded in one view, then it is very possible that the same region is also occluded

in the other views. In other words, it is difficult to make inference, such as estimating the depth,

for the occluded regions in one view.

On the other hand, besides compactness, a small baseline vision system has several advantages.

First, compared to the regular baseline multi-view stereo system, it is easier to make correspon-

dence due to the smaller search space and thus less ambiguities during finding the cross-view

correspondence. This leads to simple and robust depth estimation with small baseline cameras,

where it is sufficient to use the image intensities as the matched features for finding the per-pixel

correspondences. Second, for multiple images captured across different views with small base-

lines, it is possible to use the cross-view differentiation based methods, such as optical flow, to

infer the scene geometry and property [24, 200]. For multiple light sources with small baselines,

it has been shown that we can estimate the material property, such as the Bidirectional Reflectance

5



(b) Scene complexity (c) Estimation uncertainty

(a) Setups for small baseline vision

Light field camera LED ring Video camera Braedius camera EpiVerge

thin structure, specular, textureless, scattering Input frame Estimated depth Confidence

Figure 1.1: Three aspects of small baseline visions: (a) The small baseline distance can be either

implemented as camera(s) with small baseline or light sources with short distances in between.

From left to right: light field with micro-lens array; LED ring with small diameter; monocular

video camera; Braedius camera [43]; EpiVerge [111] (b) Real world scenes are complicated due to

phenomena such as occlusions, fine-grained structure, specular/textureless surface, and light scat-

tering. We develop methods that take advantage of small baseline vision systems to handle those

challenges. (c) For depth estimation, the depth uncertainty and the baselines are inversely related.

As a result, in a small baseline setup, the depth estimation for far-away objects has very high un-

certainties. The uncertainty may also come from other sources such as occlusion and specular

reflection. We show that with small baseline camera setups, those uncertainties can be evaluated

and reduced by sequentially accumulating frames captured from a monocular video camera.

Distribution Function (BRDF), by utilizing the change of the image intensities while changing

the camera positions by a small amount [25]. Third, the methods using multi-view images, such

as structure from motion, may benefit from the large overlapping regions among camera views

with small baselines. For example, one can fuse the depth estimations from multiple images cap-

tured with small camera translations in order to improve the accuracy at the overlapping regions

[135, 220].

1.1 Motivation

Given the aforementioned challenges and opportunities originated from small baseline vision, we

ask: How to use those advantages for small baseline vision setup while avoiding the limitations as

much as possible? Answering the question is important because it can not only help to deal with

the aforementioned limitations for small baseline vision systems in order to broaden its applica-
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tions, but also make some tasks that are difficult for large baseline systems easier. In this thesis,

we approach this question in terms of three aspects as shown in Fig. 1.1:

Baseline distance in the setup The small baseline distance can be either implemented as

camera(s) with small baseline or light sources with short distances in between. In each setup,

we will take advantage of the benefits originated from the small distances between cameras/light

sources for tasks that are much more difficult for large baseline setups.

Scene complexity Real world scenes are complicated due to phenomena such as occlusions,

fine-grained structure, and light scattering. We explicitly formulate those effects in the forward

image formation model. Then given the images, we solve for the inverse problem to get the es-

timations for surface shape or object depth. We have designed new methods to solve the inverse

problems by taking advantage of small baseline setups.

Estimation uncertainty For depth estimation, the depth uncertainty and the baselines are in-

versely related. As a result, in a small baseline setup, the depth estimation for far-away objects

has very high uncertainties. In addition, the uncertainty may also come from other sources such as

occlusion and specular reflection. We show that with small baseline camera setups, those uncer-

tainties can be estimated and reduced by sequentially accumulating multiple measurements.

1.2 Imaging Setups for 3D sensing

Depth sensing is crucial for 3D reconstruction and scene understanding. The depth sensing ap-

proaches can be categorized into passive and active ones, based on whether there is additional light

source included in the imaging system and emits programmable light onto the scene. Here we take

a brief discussion of the popular imaging methodologies with baselines designed for 3D sensing.

We will consider single view depth estimation and imaging system without baseline such as Lidar

as types with baseline equal to zero.

1.2.1 Passive Methods

For passive 3D sensing methods, the imaging system consists of one or multiple image sensors and

optical components. Compared with active methods, the passive method is more energy efficient

and robust to global illuminations such as light scattering. In addition, the prevalent availability of

images and videos captured with passive imaging system enables learning-based depth estimation

methods, where the model can either be trained with ground truth depths captured along with

RGB images, or using photometric and geometric constraints when the ground truth depth is not

available. Here, based on the camera setup and imaging scheme, we classify the passive methods

into four categories: multi-view setup with known camera poses, multi-view setup with unknown

camera poses, singe-view static setup with finite aperture capturing a stack of images with different

focal settings, and singe camera capturing a single image.

Multi-view with camera poses When more than one images from different views of the

scene are available, we can get the 3D structure of the scene using geometrical constraints such as

triangulation. In the multi-view setup, the position and orientation of the cameras are known either

from calibration or through a separate pose estimation process. The completeness and granularity
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of the recovered 3D structure increases with the number of views[163]. For a two-view (i.e. the

stereo) setup, usually a depth map for one of the views is estimated [28]; for more than two view

setups, a dense volume or mesh reconstruction is available [214, 220], providing more geometric

structure information about the scene such as surface normal, which can be used for other tasks

such as appearance capture and scene relighting.

In addition to pre-defined 3D representation such as point cloud, Signed Distance Function

(SDF) and 3D volumes, recent methods [144, 171] use CNNs to learn the optimal representation

to encode the 3D structure. The encoded representations have shown to be more compact and able

to achieve higher resolution at the same time. Following this idea, it has been demonstrated that

the view synthesis can be performed efficiently with a learned volumetric radiance field [127].

Multi-view without camera poses Given the image sequence captured by a video camera

without pose measurements from motion sensors such as IMU, the 3D structure of the scene and

the camera poses can be recovered with the scale ambiguity. Due to the global bundle adjustment

where the pose and 3D structure are optimized simultaneously [53, 162], these methods are often

computationally expensive. To reduce the computational expense, the noisy measurements for

camera poses from inertial sensors such as CMU is incorporated into the SLAM system to provide

better initial pose estimation hence faster optimization convergence. Because the IMU sensors are

very compact and easily available at low price, the application of IMU is a practical way to improve

the system efficiency, making the large-scale real-time applications possible [117].

As the pose estimation is based on either sparse feature correspondences among images [53,

184] or dense photometric difference among images [135], the performance degrades in the pres-

ence of textureless regions, occlusions and specular surfaces. An alternative approach to recover

the camera pose from the image sequence is to formulate the pose estimation as a regression prob-

lem and learn the mapping from an RGB image to the 6D camera pose [18]. However, the gener-

alization ability of such methods still remains to be validated.

Defocus For a camera with finite aperture, one pixel at the image plane receives radiance

contributions from multiple rays from the 3D points within a double-sided cone determined by

the focal plane and aperture size. When the imaged object is close to the camera with a finite

aperture, the defocus effect comes into effect depending on the distance between the 3D points

and the focal plane. The Point Spread Functions (PSFs) for the 3D points close to the focal plane

approaches the delta function with diameters less than one pixel width, hence the image regions

for those points are clear and have sharp edges. For 3D points that are outside the depth of field,

their PSFs have non-zero support with an area larger than one pixel, hence the image regions are

blurred. The distance between the focal plane and the camera can be controlled by adjusting the

aperture size and focal length. By capturing a stack of images with different focal settings, and

assuming the scene is static during the process, we can estimate the scene depth by examining the

sharpness [202, 203] or degree of blur [77, 78] of the image region across different focal settings.

For dynamic scenes, the same depth estimation scheme can be applied by using cameras with high

speed sweeping focal planes [126].

Apart from using a conventional finite aperture lens, coded aperture has been used to generate

PSFs with non-zero support in high frequency domains in the Fourier space [104]. This leads

to better deblurring results since high frequency information (such as edges) are retained in the
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blurred images captured with the coded aperture. By taking one single blurred image with the

coded aperture, it is shown that we can simultaneously recover the deblurred sharp image and the

depth at the same time.

Single image With the large amount of RGBD images either collected by synthesizing [62, 76]

or using dedicated depth sensors [41, 64, 131, 168], it is possible to learn the mapping from an

RGB image to a dense depth map. In those methods, a black-box model (e.g.CNN) is trained

either supervised by RGBD images [60, 67, 221] or unsupervised using photometric consistency

constraint [221] and/or geometrical constraints [199].

1.2.2 Active Methods

For active depth sensing methods, the device consists of both light sources and sensors. Light is

emitted from source towards the observed scene and the sensor captures the reflected light from

the scene. Compared with the passive methods, the active methods perform much better on surface

lack of textures by projecting coded illumination onto the scene. In addition, by configuring the

distribution of energy for the light source, the sensing range in active methods is much larger than

the passive ones. For example, by concentrating the power into one beam and using short-wave

infrared (SWIR) wavelength, the Lidar system can increase the sensing range to over 200 meters

[1]. On the other hand, due to the usage of light source, its performance degrades in the presence

of global illumination (e.g. inter-reflection and scattered light), light source interference, ambient

light and scene motion. Various approaches have been proposed to ameliorate those effects.

Based on the how light source is mounted and controlled, we classify the active methods into

three types: triangulation-based (projector-camera stereo pair such as Kinect v1, Realsense) where

the light source is fixed, angular-based (e.g. photometric stereo) with the light source position

varies during data capture, and methods based on light travel time (e.g. ToF and LiDAR sensors)

with high temporal resolution sensor measuring the travel time of the emitted light.

Triangulation The active triangulation methods use the same principle in the passive stereo

vision: after finding out the dense correspondences between two views with known relative pose,

the depth for each pixel on either of the two views can be estimated by triangulating the rays

from that pixel and its corresponding pixel in the other view. In active triangulation methods, the

two views are implemented as a projector-camera pair, where the projector projects a set of coded

patterns onto the scene. The camera captures the scene under coded illuminations. By decoding the

pattern on the camera side, we can make dense correspondence between the camera and projector

and perform triangulation to get the dense depth maps for both views.

With the ambient light such as sunlight, the coded illumination from the projector tends to be

overwhelmed and cannot be discerned from the camera view. In addition, due to global illumina-

tions such as inter-reflection of concave objects, light scatterings due to fog or smoke, the illumi-

nated patterns are severely blurred, which can also degrade the correspondence and triangulation

performance One way to do alleviate this issue is to separate the direct and global illumination

components [132] and then only the direct component for correspondence. Another more efficient

way is to rule out as much global component as possible during capturing the image. This can be

done by configuring the imaging scheme with a pair of synchronized rolling shutter camera and

raster scan laser projector [142]. During the synchronized scan for the projector and camera, the
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projector scans through its epipolar line on the projector plane, at the same time, the camera opens

its exposure for the corresponding epipolar line on the image plane. In this imaging scheme, only

light coming from the same epipolar plane determined by the scan is captured and all the global

illumination outside the plane is eliminated during capture. As a result, the system is robust to

global illumination and strong ambient light.

Angular The 3D shape of an object can be recovered using its shading appearance. The

photometric stereo methods recover the surface normal using images of the object captured with

light sources from different directions. If there is no ambient light, by illuminating the object with

distant light sources from different orientations and assuming that the object surface is Lambertian,

the intensities of the reflected light can be modeled by the dot product between the surface normal

and the light source direction. In this simplest case, the surface normals can be easily recovered

by solving a linear system if the light source directions are known. However in most cases, the

assumptions such as Lambertian surface and distant light sources does not hold true. For example,

for a point light source (e.g. LED) close to the object, the light intensity falls off in an inverse

squared manner. In addition, for non-Lambertian surfaces such as metal, the reflected light inten-

sity changes with both the incident light direction and viewing direction. The light source positions

may also be unknown. Various photometric stereo methods have been proposed to handle the non-

Lambertian surfaces [70], point light source [151], and unknown light source [9]. The mapping

between the photometric images and surface normals can be learned from synthetic images and

applied on real images [155].

The Diffuse Optical Tomography (DOT) is a notable set of methods where the subsurface 3D

structure embedded within a highly scattering medium (such as human skin) is recovered. In

DOT, a grid of source-detector pairs are mounted on the tissue surface. Due to the embedded

objects such as blood veins and tumor, the absorption coefficients vary across the tissue volume.

In DOT, the 3D distribution of the absorption variation (hence the 3D structure of the embeddings)

is recovered from the source-detector pairs mounted at different positions on the surface [167,

169, 219], assuming the scattering coefficients of the embeddings are close to the surrounding

homogeneous tissues (e.g. human skin tissue).

Time-of-Flight Based on the method used for measuring the light travel time, the time-of-

flight sensors can be categorized into two types: the ones directly measure the light travel time and

the ones measure the phase shift of amplitude modulated signal.

To measure the light travel directly, an extremely short impulse (a few nanoseconds) is emitted

from the light source. The sensor measures the time when the emitted photons are reflected back.

As light travels at a speed of 3 × 108m/s, the temporal resolution of the sensor (hence the clock)

should be high enough to discriminate between extremely short light travel times in order to get

a decent resolution in depth sensing. In addition, the sensor should be highly sensitive in order to

detect the weak reflected light from far away objects. The above two requirements make the fabri-

cation of the sensors that directly measure the light travel time complex and expensive. As a result,

the ToF sensors of this kind (e.g.LiDAR) are usually with much lower resolution compared with

the time modulated based sensors. However, due to the high sensitivity of the sensor (e.g.SPAD),

the sensing range can be up to hundreds of meters.

Rather than using a short impulse of light, the continuous wave time-of-flight (CW-ToF) sys-

10



tems generate amplitude modulated light. The scene depth can be estimated from the phase shift

between the emitted light and reflected light. Since the measured phase shift is proportional to the

modulo between the scene depth and the wavelength of the modulation, directly calculating the

scene depth from the phase shifting results in depth ambiguity. This essentially wraps the distance

into the sensors non-ambiguity range. To disambiguate the depth, the phase unwrap process is

needed [47, 124]. As the fabrication of amplitude modulated source and phase sensors is easy,

the CW-ToF systems are much cheaper, and more compact (e.g.Kinect v2 and ToF cameras on

cellphones).

1.3 Challenges

The triangulation based and angular based 3D sensing system tends to be unreliable if the baselines

between the light sources or the cameras become very small compared with the sensing range. For

example, the distance of a video camera position between two adjacent frames is small if we want

to use those two frames to estimate the scene depth. The space between two LEDs mounted on

a small ring around the camera, as commonly seen in indoor surveillance cameras (e.g.Amazon

Cloud Cam), is only a few centimeters. While the objects in the indoor environment are usually

placed meters away. The scene complexities, such as occlusion, texture or specular surfaces, and

scattering medium, also add difficulties for both active and passive systems. We will briefly discuss

those challenges.

Small baseline For passive multi-view triangulation based methods, it is well known that the

3D estimation certainty is inversely related to the camera baselines. However, it is still to overcome

the lack of camera baselines by using the rich redundancy in multiple images for large overlapping

fields of views. For example, with the tiny accidental handshake during capturing a video, it has

been shown that the dense depth map can be recovered [217] by utilizing the depth correlation

among spatially close pixels with similar appearances. Global bundle adjustment has been applied

on a small baseline video clip in [87] to find the correspondences among multiple frames captured

with a rolling shutter camera. For 3D sensing of far away objects, a three-camera setup with small

FoVs is designed [93]. With a camera baseline up to 2 meters, the reliable sensing range of the

small FoV camera setup can be above 200 meters, surpassing the LiDAR sensors. An extreme case

is where the camera is static and the imaging setup degrades as a single image depth estimation

where the baseline is zero and the depths are estimated with other information such as ordering

[60], appearance correlation among pixels [115], semantic information [109], object boundaries

[83], and so on.

For active methods using multiple light sources such as photometric stereo, a small baseline

among the light sources leads to very subtle variation of image intensities across images, making

the photometric stereo more difficult. With zero baseline, the photometric stereo degrades into a

shape from shading problems where only one single image is available. However, for small light

direction variations, the derivative of image intensity w.r.t. the light position has been shown to

be useful enough for surface reconstruction [35]. In addition, under distant illumination assump-

tion, the differential image intensity is related to the surface geometry regardless of its isotropic

BRDF. The relation can be used to recover the surface normal and depth for objects with unknown,
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(a) Input frame (b) Estimated depth

Figure 1.2: Specular surface poses a challenge for passive depth estimation, especially for methods

using multi-view triangulation where the surfaces in the field of view are assumed to be Lamber-

tian. (a) One of the input frames from a monocular video camera. The laptop monitor is specular.

(b) The estimated depth map for the input frame. The depth values at the specular region is inac-

curate due the failure of Lambertain assumption in triangulation.

isotropic BRDF reflection properties [25].

Occlusions With the presence of occlusions, traditional triangulation based methods, such as

structure from motion and coded illumination, fail to work well on scenes due to lack of corre-

spondence or block of active illuminations. For an image where the background is blocked, the

occluders, such as rain drop or stain on the windows, can be removed using learning-based method

[51], where the model for mapping the corrupted image to the occlusion-free image is trained with

a set of pairs of images with and without occlusions. If multiple images of the occluded back-

ground image is available (e.g.captured with different focal settings or different camera positions),

one can remove the occlusions using the redundancy among images [73, 211]. With active light,

it has been shown that we can reconstruct the 3D structures of the occluders without correspon-

dence matching by taking advantage of the fact that the occlusion blocks the illumination and cast

shadows[212], or absorbs part of the illumination with absorption variation within the scattering

medium [38].

Textureless/Specular Surface In triangulation-based passive 3D sensing method, the perfor-

mance of correspondence matching depends on two major conditions: (1) the appearance feature

is informative and discriminative so the feature matching across frames is reliable; (2) the change

of appearance feature across frames is limited (e.g.view-independent Lambertian surface). How-

ever, for textureless surfaces such as a white wall, the appearance feature is usually not discrim-

inative due to lack of image intensity gradient; for specular surfaces, the appearance feature for

the same 3D location in the scene changes across frames. As a result, the depth values estimated

for the textureless or specular surfaces in the scene are error-prone, as shown in Figure 1.2. For

passive methods, one way to deal with a textureless surface is to use a larger receptive field, as

in the current state-of-art CNN-based methods, in the hope that it includes the adjacent textured

regions (e.g.textured floor below a white wall). Then fill the depth values in the textureless region
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(a) medium free (b) whole milk

Figure 1.3: Due to dense subsurface scattering, the heterogeneities underneath the whole milk

surface are hard to observe or invisible under daylight. (a) The medium free images where the

heterogeneities are positioned above the surface; (b) The heterogeneities are beneath the whole

milk and can be hardly discerned.

.

using spatial correlation using CRFs [31]. To handle the specularities, new feature correspon-

dence metrics, rather than photometric consistency, has been proposed for images captured with

densely angular-sampled views (e.g.using a light field camera), while taking into account the non-

Lambertian surface properties [180]. An alternative approach is to place a polarizer in front of the

sensor to remove the specularities during capturing the images [172].

Subsurface Light Scatterings For the scatter medium, part of the incident light reaches

into the surface, scatters randomly before leaving the medium and being captured by the image

sensor. During each scatter event, the light radiance changes due to absorption, scattered light

into/outwards the propagation direction. As a result, in addition to the surface reflectance proper-

ties, the intensity of the scattered light also depends on the scattering properties within the medium.

The light radiance in the scattering process can be modeled using the Radiative Transfer Equation

(RTE) [27]. However, the RTE is recursive and there is no analytical solution for the light radi-

ance term. For physically accurate modeling of light radiance in scattering, the computationally

expensive Monte Carlo method is implemented to solve the full RTE. In graphics, solving the RTE

efficiently for fast rendering of scattering medium requires certain simplification for the scatter

medium, such as layer representation for human skin [45], isotropic scattering phase function for

material and point light source for illumination [90], or directional ray [59]. In this case, the RTE

is approximated with models where the solution is analytically available and efficient to compute.

In the inverse problems where we want to extract the scene information ,additional simplifica-

tion has been made. For example, for fog and smoke, it is assumed that the single scattering event

dominates. In this case, the attenuation of light radiance due to scattering can be analytically for-

mulated and the optical distance and scene depth can be estimated from images captured in foggy

environments [130]. For image dehazing application [80], even more simplification is made such

that only light attenuation due to scattering is considered.

For dense medium where the single scatter model fails, the isotropic scattering phase function

simplification has also been made in order to solve RTE analytically in DOT systems [223]. Re-

cently, it is shown that the RTE can be fully taken into consideration by differentiable Monte Carlo

rendering [218]. The position of the inhomogeneous embeddings within a highly scatter medium

13



(c) Input image (d) [151] (e) Our method(a) Object

~400 mm

30 mm

(b) Light sources

Figure 1.4: Near-Light Photometric Stereo using LED light sources placed in a planar circular

ring centered around the camera lens (a) The profile for the reconstructed object; (b) Our imaging

setup with a 30 mm radius ring of 24 LEDs; (c) One of the 24 input images; (d) Due to non-

convexity of the near-light photometric stereo problem, reconstruction using [151] fails for depth

initialization far away from the true values. (d) Reconstruction using our two-stage method that

directly optimizes a 3D mesh.

(e.g.tumor underneath skin) can be estimated given the input image, by differentiating the unknown

position w.r.t.the modeling error. However, due to the high computational load and non-convexity

involved in solving the full RTE, the data dimension of the unknowns is limited. In this thesis we

propose an imaging system that captures high resolution subsurface images, as shown in Figure

1.3, and an efficient tomography method to recover the 3D structures embedded in dense medium.

Our method is computationally efficient and convex. So it can be used as the initial bootstrap for

methods where the full RTE is considered [218].

1.4 Goals and Contributions

In this thesis, we aim to design computational hardwares and algorithms where the small baseline

setup is utilized to deal with the scene complexities in order to apply 3D sensing in challenging

environments in the real world, as listed in Tab. 1.1. Towards this goal, we make the following

contributions:

Small Baseline Photometric Stereo [114]: In Chapter 2, we utilize the small light source

baselines. We propose a two-stage near-light photometric stereo method using circularly placed

point light sources (commonly seen in recent consumer imaging devices like NESTcam, Amazon

Cloudcam, etc), as shown in Fig. 1.4. In the first stage, we optimize the vertex positions using

the differential images induced by small changes in light source position. This procedure yields a

strong initial guess for the second stage that refines the estimations using the raw captured images.

We also propose an accurate calibration approach to estimate the positions of the sources.

Multilayer Thin Structure Reconstruction [113]: In Chapter 3, we take advantage of the

small camera baselines that makes the correspondence easier. We present a method for matting

and depth recovery of 3D thin structures with self-occlusions using a single-view camera with

finite aperture lens. To this end, we propose an image formation model that explicitly describes
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Range to Baseline 
Ratio

Passive/Active

Opaque Occlusion

Specular

Textureless

Medium Scatter

Setup

Scene Complexity

Uncertainty

Small Baseline
Photometric Stereo

Multilayer
Thin Structure
Reconstruction

EpiVerge

A P P A

✓

✘

✘

−

~100 ~10 ~50 ~500

✘

✘

✓

✓

✘

−

−

−

✘

✓

✓

−

✓

− ✓ −

Monocular Depth 
Estimation with 
Uncertainties

Table 1.1: Comparison of methods presented in this thesis based on the imaging setup, scene

complexities handling, and whether the uncertainty estimation is available. The ratio numbers are

roughly calculated based on the typical camera/light source baselines and the sensing range. For

EpiVerge, the minimal line separation is around 0.03 mm, while the volume we are reconstructing

spans around 15 mm in the depth axis. The notations - ✓ : The scene complexity is handled either

by specifically modeled or using hardware design that is robust to it. For uncertainty estimation, it

denotes it is directly available. − : The scene complexity is partially handled or does not impact

negatively on the performance, and uncertainty can be reflected in the output, although not directly

available. ✗ : The method is not robust to the scene complexity, and the output does not include

any information about the estimation uncertainty.

the spatially varying optical blur and mutual occlusions for structures located at different depths.

Based on the model, we derive an efficient MCMC inference algorithm that enables direct and

analytical computations of the iterative update for the model/images without re-rendering images

in the sampling process.

Monocular Depth Estimation with Uncertainties [110]: In Chapter 4, we focus on videos

captured by a monocular RGB camera in motion, in which case the camera baselines for adjacent

frames are small. More specifically, we propose a deep learning (DL) method to estimate per-

pixel depth and its uncertainty continuously from a monocular video stream, with the goal of

effectively turning an RGB camera into an RGB-D camera. Unlike prior DL-based methods, we

estimate a depth probability distribution for each pixel rather than a single depth value, leading

to an estimate of a 3D depth probability volume for each input frame. These depth probability

volumes are accumulated over time under a Bayesian filtering framework as more incoming frames

are processed sequentially, which effectively reduces depth uncertainty and improves accuracy,
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(a) Skin under daylight (b) Short-range indirect image

Figure 1.5: (a) Due to dense subsurface scattering, the blood veins underneath the skin is hard to

observe or invisible under daylight. (b) The find grained structure of the subsurface blood veins are

clearly visible under the short-range indirect image captured by EpiVerge [111]. The subsurface

skin image is useful for medical application such as skin disease diagnosis, biopsy targeting, and

needle injection.

.

robustness, and temporal stability.

EpiVerge [112]: In Chapter 5, we focus on reconstructing the 3D structure of the heteroge-

neous inclusion within highly scatter medium such as whole milk and human skin. The imaging

system consists of a high-resolution camera and a laser projector. This proposed imaging system

enables us to see through densely scattering medium and observe fine-grained structures such as

veins underneath the surface, as shown in Fig. 1.5. On top of the system, we present an effi-

cient algorithm for high resolution diffuse optical tomography with a scanning line imaging and

illumination pair setup.

Real-Time Capillary Vein Blood Flow Analysis [29]: In Chapter 6, we showcase the appli-

cation of small baseline vision system for real-time analysis microvascular blood flow for critical

care. In this application the Sidestream Dark Field (SDF) imaging device has been used to visualize

and support interpretation of the microvascular blood flow.
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Chapter 2

Near Light Photometric Stereo with Small

Baseline LEDs

2.1 Introduction

Recovering surface shape is important for a wide range of applications such as robot manipula-

tion, cultural heritage digitization and skin surface analysis etc. Photometric stereo methods use

shading cues from images captured with varying illumination to recover surface shape. Traditional

photometric stereo methods assume that light sources are distant, thus the lighting directions for

all scene points are parallel. This is true for light sources such as the sun or for indoor lights placed

far away from small objects. Under the distant light assumption, we are able to linearly solve the

surface normal given the image intensities with calibrated or uncalibrated light source directions.

However, the distant light source assumption fails when the object-to-light distance becomes

small. In the near-light setting, the image intensity depends non-linearly on the 3D location and

normal of the scene point as well as the 3D light source position. Furthermore, for objects close

to a perspective camera, the widely assumed orthographic projection model also fails. In this case,

the relation between the surface normal and the depth of a scene point, which are often defined

in image coordinates (at each pixel), becomes more complex when back-projected to 3D. Thus,

solving for the 3D shape of an object that is illuminated by near light sources and that is captured

by a projective camera is a highly non-linear and non-convex problem. As a result, photometric

reconstruction often fails without strong initial guesses. , as shown in Fig.1.4 (d).

In this chapter, we present a near-light photometric stereo algorithm with circularly-placed

point light sources and a perspective camera. This algorithm includes three novel contributions.

First, we model the scene as a 3D triangulated mesh whose vertices correspond to the observed

pixels, and directly optimize the positions of the vertices. The key advantage of this representation

is that the vertex normals can be simply computed using adjacent triangular faces of the 3D mesh.

The alternative of representing surface normals as numerical derivatives of depths in image coordi-

nates (e.g. N = (zx, zy, 1)) results in unnecessary complexity when back-projected to 3D. Second,

we split the algorithm into a two-stage process. In the first stage, we solve photometric stereo using

the differential images captured by changing the light source position in a small amount along a
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circular path. We show that the analytical form of how the vertex position is related to measured

differential intensity is less complex and results in reliable estimates in most parts of the object.

In the second stage, these vertex positions are refined using the original image formation model

applied to the raw captured images.

The above algorithm is still sensitive to errors in calibration. The light source positions in

3D are often obtained using multiple specular spheres of known radii and locations[106, 148].

But the 3D positions of these specular spheres are hard to measure accurately, resulting in poor

localization of the sources for the proposed algorithm. Thus, as a third contribution, we present a

simple calibration approach that uses a flat panel display to estimate the source positions. The flat

panel display specularly reflects light, and unlike spheres, can be calibrated precisely for position

and orientation using camera calibration methods [92].

Together, the three contributions lead to effective performance on both synthetic and real scenes

with complex shapes placed at various distances from the source/camera. Our method outperforms

previous state-of-the-art in near-lighting photometric stereo, where the optimization suffers from

poor initial guess. Our approach also outperforms distant-light photometric stereo methods, even

when the distance of the object is several times (5X-10X) than the radius of the LED ring. As a side

effect of using differential images, our method tends to perform better in the presence of diffuse

inter-reflections (but we make no claim on eliminating these effects). Our system is portable and

can be implemented using a small off-the-shelf LED ring. Thus, we believe this work is timely

enabling photometric 3D reconstruction on consumer imaging devices like Cloud-cam, Nest-cam

that increasingly use small LED rings for imaging nearby indoor and outdoor scenes.

2.2 Related Work

Photometric Stereo with Distant Light Sources: Since the first formulation of the Photometric

Stereo problem in [205] for shape reconstruction, there have been numerous works on improving

and generalizing the method by taking into account different aspects during image formation, cam-

era calibration and light source variations. In [133], the shape is recovered using inter-reflections

by modeling the inter-reflections with form factor. For translucent objects, subsurface scattering

has been taken into account in [44] and [88]. The volumetric scattering for the under-water imag-

ing scenario is modeled in [129]. A good survey and benchmark dataset can be found in [166].

Light intensity calibration error has been considered in [33]. The solution space for Photometric

Stereo and the ambiguity in the recovered shape have been discussed in [11, 12].

Photometric Stereo with Near-field Sources: The parallel illumination direction assumption

fails when the light source is close to the object. In this case, the light source is modeled as a

point light source (quadratic fall-off) and the illumination direction depends on the 3D location

of the scene point. In [151], a variational method is proposed to solve the inverse problem. In

[143] and [107], the near-light photometric stereo is solved without calibrating the light source.

In [201], a thorough analysis for reconstruction error in the near-light setup is performed. All

these approaches are highly sensitive to initial guesses and do not use differential lighting based

approach proposed in this work. In [206] and [187], the near-light photometric constraint is added

to the multi-view scene reconstruction pipeline from images captured with different camera views.
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In contrast, our work is based on a single perspective view.

Photometric Stereo using Differential Lighting: In [65, 72, 91, 118], gradient illumination

implemented either with a light dome or a ring of LEDs is used for surface reconstruction of human

faces. In [222], the ring LED setup is used as an additional constraint during reconstruction. In

[26], the differential motion of light source in the 1D circular trajectory is used for reconstructing

surface with unknown BRDF. But in all these works, the sources are assumed to be distant. Most

closely related is the work of [35] where the scene depth is solved directly using images captured

with small near-field point light source motion. However, in order to solve for the scene depth, 3

motion directions are needed for each light source position. In contrast, the trajectory of the point

light sources in our case is just a 1D curve, i.e. a planar circular ring, with 2 degrees of freedom

less for the light source motion compared to [35].

Our method is closely related to Xie et al. [208], where the near-light photometric stereo

problem is formulated in terms of mesh deformations. Our method is different from [208] in three

aspects: (1) We model the scene with 3D triangular meshes and optimize the depths of the vertices

directly. The surface normals are determined directly from the 3D positions of the vertices. So

there is only one variable for each pixel. Xie et al. [208] represent the scene as a rectangular mesh

with both the surface normals and depths as variables (similar to many other previous works). So

there are three variables for each pixel, making it harder to optimize. This is redundant since for

a mesh representation, normals are completely determined by vertice positions; (2) The method in

[208] assumes orthographic camera model. Thanks to the scene representation, our method works

for perspective cameras; (3) Because we determine the surface normal from the vertice depths, our

method does not rely on mesh deformation to get the depths from surface normals, as in [208].

This leads to robustness to depth discontinuities for our method.

2.3 Near-Light Photometric Stereo on a 3D Mesh

In this section, we describe the image formation model for near-light photometric stereo of a Lam-

bertian object illuminated by point light sources and captured by a perspective camera. Without

loss of generality, we set the origin for the world coordinate frame to be the center of the camera,

as shown in Fig. 2.1. The albedo and the surface normal for a scene point are denoted by ρ and n.

The point source is at location s. Then radiance R of a scene point at x is:

R = ρse
nT (s− x)

|s− x|3 = ρ̃
nT (s− x)

|s− x|3 , (2.1)

where se is the light source intensity; ρ̃ = ρse is the scaled albedo. The cubic in the denomina-

tor accounts for the normalization for the incident light vector and the quadratic fall-off of light

intensity in the point light source model.

The scene point is imaged by a camera with intrinsic matrix K. We define the homogeneous

image coordinate for the point x projected on the image plane to be p. For a scene point with depth

z, the image coordinate p and the world coordinate x are related by back-projection:

x = K−1pz (2.2)
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Figure 2.1: Image formation with near-field light source and a projective camera. For each pixel

p, there is only one variable depth z(p). Given K, the position of the point in 3D is x = K−1pz.

Its surface normal n(p) is determined by z(p) and the depths of its surrounding points as describe

in Sec.2.3.

Combining Eq.2.1 and Eq.2.2, the image intensity I(p; z,n) for the scene point x can be written

as:

I(p; z,n) = ρ̃
max{nT (s−K−1pz), 0}

|s−K−1pz|3 , (2.3)

where, attached shadow is modeled using the max operator.

It is hard to optimize for surface normals and depths as separate unknowns. Thus, we need

to exploit their relationship. However, representing surface normals as numerical derivatives of

depths in image coordinates (e.g. N = (zx, zy, 1)) results in unnecessary complexity when back-

projected to 3D. Instead, we represent the scene as a 3D mesh with triangular faces F whose

vertices V are defined for all image pixels. We then use the vertex normal for calculating the

image intensity in Eq. 2.3. This process is illustrated in Fig. 2.2(a). The 3D location of the vertex

vi is xi and its 2D imaged location is p(vi). Given the depth z(vi) for vertex vi, x(vi) is given by

x(vi) = K−1p(vi)z(vi). An adjacent face f consists of vi and two other vertices vj and vk. The

edges connecting vi to vj and vk are eij = xj − xi and eik = xk − xi respectively. Then, the

unnormalized vertex normal for vi is defined as:

n̂(vi) =

∑

f∈Nf (i)

a(f)n(f)

∑

f∈Nf (i)

a(f)
=

∑

f∈Nf (i)

[eij]× eik

∑

f∈Nf (i)

a(f)
(2.4)

where Nf (i) are the neighboring faces that include vertex vi; n(f) and a(f) are the normal and

area for face f . The vertex normal n(vi) is obtained by normalizing n̂(vi):

n(vi) = n̂(vi)/|n̂(vi)| (2.5)
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Figure 2.2: Local geometry around vertex vi. (a) The surface normal at vertex vi, colored in red,

depends on the depths of its ring-1 neighborhoods, colored in green; (b) We define the surface

normals to be the vertex normal n(vi), which depends on the face normals of meshes sharing vi
(c) The original vertex normal definition leads to ambiguity in the depth estimation for vi. We deal

with this ambiguity using the method presented in Sec.2.3.

We solve for the depths of the vertices by combining image formation model in Eq.2.3, Eq.2.4

and Eq.2.5. However, there remains a depth ambiguity for vertex vi if we use the normal definition

in Eq.2.4. Consider the cases shown in Fig. 2.2(b) and (c). The faces around vertex vi are related

by rotations around the vertex normal nv. Because the face areas are the same, the horizontal

components of the surface normals of the neighboring faces are canceled out in the weighted sum

in Eq.2.4. So the vertex normals in two cases both point perpendicularly upwards, even though the

locations for vertex vi and the face normals are different.

We solve this ambiguity by changing the order of shading in Eq.2.3 and computing the weighted

averaged in Eq.2.4: we first compute the image intensities for each face around vertex vi, then com-

pute weighted average of intensities to get the intensity for vertex vi. More formally, the image

intensity I(vi; z(vi)) for vertex vi is re-written as:

I(vi; z(vi)) = ρ̃

∑

f∈Nf (i)
a(f)S

(

s, K̂, z(vi), f
)

|s− K̂(vi)z(vi)|3
∑

f∈Nf (i)
a(f)

, (2.6)

with K̂ = K−1p(vi) and the shading operator defined as:

S
(

s, K̂, z(vi), f
)

= max{nT (f)(s− K̂z(vi)), 0}
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100 mm 400 mm250 mm

(a) Two of 24 input images (b) Object profile

(c) Surface reconstructions with different depth initilizations

Figure 2.3: Sensitivity of the optimization of depths of vertices to initial guesses with planes

in different depths. The light sources are a 30 mm radius ring of 24 LEDs centered around the

camera. The object is placed 200 mm away from the camera. (a) Two out of 24 input images, with

the LED positions at the lower left corner. (b) The profile of the reconstructed area for reference.

(d) The profiles of the surfaces reconstructed with different initial depths.

2.3.1 Objective Function

We estimate the depth values for all vertices by minimizing the difference between the modeled

intensities I in Eq.2.6 and the measured image intensities Ĩ:

min.
z

∑

vi∈V

(

Ĩ(vi)− I (vi; z(vi))
)2

+ λIEs(z(vi))

with Es (z(vi)) =
∑

vj∈Nv(i)

(z(vi)− z(vj))
2

(2.7)

where Nv(i) is the set of vertices in the Ring-1 neighborhood of vi. The albedo ρ̃ is solved analyt-

ically using Eq.2.6.

The energy function for the optimization problem defined in Eq.2.7 has a numerous local min-

ima due to the cubic term in the denominator in I(vi; z(vi)) defined in Eq.2.6. So, good initial-

izations of the depth values at vertices is crucial, as validated using experiment shown in Fig.2.3.

The face of a toy is reconstructed using the L-BFGS minimizer for Eq. 2.7 with different initial

depth values. We use a ring of 24 LEDs centered around the camera. The radius of the LED ring

is 30 mm and the object is placed around 200 mm away from the camera. More details about the
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implementation are included in Sec.2.6. As shown in Fig.2.3, if the initialization of depths is far

away from the true values, we get either over-flattened or stretched results due to the local minima.

2.4 Near-Light Photometric Stereo with Differential Circular

Source Motion

In order to get a good initial guess for the optimization problem in Eq.2.7, we put forward to use

the differential images induced by small change of light source position. The illumination and

imaging geometry is shown in Fig. 2.4. For notation simplicity, for LED at position s and with

index t, we denote the differential source motion as st and the corresponding differential image

intensity as It, which means the differential values w.r.t to the LED index. By differentiating the

image formation model in Eq.2.1, we get the analytical form for the differential image intensity It:

It =
∂I

∂s
st

= ρ̃
nT st

|s− x|3 − 3nT (s− x)
ρ̃(s− x)T st
|s− x|5

= ρ̃
nT st

|s− x|3 − 3I
(s− x)T st
|s− x|2 (2.8)

which can be simplified by writing the first term as a function of the image intensity I:

It = I
nT st

nT (s− x)
− 3I

(s− x)T st
|s− x|2 (2.9)

Intuitively, the first term is the contribution of the change of source direction; the second term

is due to the change of distance between the light source and the scene point.

For light sources mounted on a plane parallel to the image plane, there are two special cases

where the second term including the inverse squared distance in Eq.2.9 becomes small and can be

ignored.

The first case occurs when the angle between the light direction s − x and the light source

motion vector st is large such that (s − x)T st ≈ 0. This happens when the object is placed far

away from the light source such that s − x is perpendicular to the light source plane spanned by

st. However, for large distance between the light source and scene point, both the captured image

intensity I and the differential image intensity It would be too small with low SNR.

The second case where we can ignore the second term in Eq.2.9 is when the source motion

trajectory is circular. Here, the source motion direction st and position s are perpendicular, thus

sT st = 0. So, the differential image intensity It in Eq.2.9 becomes:

It = I
nT st

nT (s− x)
+ 3I

xT st

|s− x|2 (2.10)

For a camera with a traditional field of view, the angle between the direction of line of sight

and the normal of image plane is small. Since the plane spanned by st is parallel to the image
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Figure 2.4: The geometry of differential change of light source positions. The light sources are

densely mounted on a planar circle centered around the camera.

plane, xT st in the second term in Eq.2.10 becomes small. The term xT st is further attenuated by

the squared distance between the point and the light source |s − x|2. So we can assume that the

second term in Eq.2.10 for small light source motions can be ignored, at least for the purposes of

estimating our initial guess.

Thus, the differential image intensity and the measured image intensity are related by:

InT st − Itn
T (s− x) = 0 (2.11)

This is similar to the differential image term in [26] for the Lambertian case. The difference is that

we can solve for the depths using Eq.2.11 alone rather than obtaining a constraint for the surface

normal as in [26].

More specifically, given the measured image Ĩ and differential image Ĩt, the depths can be

estimated by:

min.
z

∑

vi∈V

EIt(vi; z(vi)) + λItEs(z(vi)) (2.12)

with

EIt(vi; z(vi)) =
(

n̂(vi)
T
(

Ĩ(vi)st − Ĩt(vi)(s− x(vi))
))2

x(vi) = K−1p(vi)z(vi)

Note that the energy function in Eq.2.12 is independent from the inverse squared distance.

Thus the energy function is less non-linear than the one in Eq.2.7. In addition, since the function

is independent from the albedo, given the measured image intensities Ĩ and differential image Ĩt,
we can estimate the depths without knowing the surface albedo.
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2.5 Complete Algorithm and Calibration

We use the optimized depth in Eq.2.12 as the initial values in Eq.2.7 where we estimate the depth

values with raw image intensity I . To initialize the optimization problem in Eq.2.12, we use a

line search for the depth of each vertex. Given the candidate depth value zc(vi), we can solve

for the corresponding candidate surface normal nc using Eq.2.1. Then we validate the candidate

depth value zc(vi) and nc using the differential image It with Eq.2.9. For each vertex, we choose

the candidate depth value that minimizes the difference between the measured and modeled It,
to be the initial depth. The complete near-light photometric stereo with circular placed LEDs is

summarized in Algorithm.1.

Algorithm 1 Near-light Photometric Stereo with Circular Placed LEDs

1: Given images I , differential images It, Camera Intrinsic Matrix K, Light Source Positions S
and Light Source motion vectors St;

2: Initialize the depths with line search for each vertex.

3: Estimate the depths zIt using Eq. 2.12 ;

4: Initialize the albedo ρ̃It given zIt ;

5: Initialize: z
(0)
I = zIt , ρ̃(0) = ρ̃It , k = 0

6: for k ∈ {1, · · · ,MaxIter} do

7: Get z
(k)
I using Eq.2.7, with z

(k−1)
I , ρ̃(k−1) as the initials

8: Given z
(k)
I , solve for ρ̃(k) using Eq.2.6

9: end for

10: return zopt = z
(k)
I , ρ̃opt = ρ̃(k)

2.5.1 Localizing Light Sources

It is important to calibrate the 3D light source positions accurately since we use the first-order

derivative of the source positions. The calibration error introduced by traditional calibration meth-

ods using one or multiple chrome spheres will fail our algorithm, since the precise 3D location

and projected radius of the sphere in the image plane required by these methods are difficult to

measure or calibrate automatically. Instead, we propose a light source position calibration method

using a flat specular display: First, we display the checkerboard pattern on a planar glossy display

such as the monitor of a Macbook and capture one image for each setup of the plane, as shown in

Fig.2.5(a). For each plane orientation, we turn off the display and turn on the LEDs sequentially

and capture one image for each LED.

For each plane setup, we can get the plane parameters (plane orientation and distance from

the origin) from the well-established camera calibration process [92]. Given the camera intrinsic

matrix and plane parameters , for each light source reflection, we then estimate the light position

by ray-tracing and triangulating for the centers of highlights in the light source reflection images

shown in Fig.2.5(b).

We evaluate the performance of our calibration procedure and compare it with the method using

chrome spheres [148]. To demonstrate the sensitivity of the calculated light source locations w.r.t.
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(a) Displayed Checkerboard

(b) Reflected Light Sources

Figure 2.5: We calibrate the camera and the point light source positions using a planar glossy

display (Macbook monitor). (a)Images captured with the display turned on and light source turned

off, from which we estimate the camera intrinsic matrix and plane parameters. (b)Superposition of

the images captured when the display is turned off and the light sources are turned on.
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Figure 2.6: The xyz profiles of the locations for all point light sources. Cyan - sphere chrome

based method; The ellipse parameters are estimated using [145]; Green - sphere chrome based

method; The ground truth location of the sphere center is given. Blue - Our method; Red - Ground

truth.

the sphere center estimation, we evaluate the performance with/without using the ground truth 3D

position of the sphere center. In the case where the ground truth 3D position is unknown, we use the

ellipse detector in [145] to get the ellipse parameters. Then we approximate the ellipse to be round

circle with center same as the ellipse center and radius as the mean of axes lengths of the ellipse.

Given the physical dimension of the sphere and the camera focal length, we can get the depth and

the location of the sphere center as in [148]. The comparison results in simulation are shown in

Fig.2.6. As shown by the cyan curve in Fig.2.6, inaccurate estimations for the 3D locations of

sphere centers lead to large errors, especially in the z direction. By contrast, our method is much

more accurate.
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Figure 2.7: Ablation study for using the differential image It in Eq.2.12 with different LED ring

radii. The mean depth for the object is 900 mm. For radius = 100 mm, we compare our method

with photometric stereo with distant light assumption, and the method in [151]. (a) Our method

without and with the depth estimation using Eq.2.12 to initialize the depths for the optimization in

Eq.2.7. Initialization using the differential images in Eq.2.12 helps to improve the reconstruction,

especially for smaller light source baselines. For both setups, the error decreases with larger LED

baselines. In our real experiment setup, we use an LED ring with a radius of 30 mm. (b) Error

maps using distant light assumption (first row) and method in [151] (second row). Both methods

result in large errors even for the largest LED baseline.

2.6 Experiments

2.6.1 Implementation Details

We implement the differential motion of the light source with an LED ring with 24 LEDs and 30

mm in radius. The reconstructed objects are placed 300 - 400 mm away from the camera and

light sources. We use the Prosilica GT1930c camera manufactured by Allied Vision to capture

the images. Each image is captured with .1 second exposure time with one LED turned on. The

algorithm is implemented in Python and C++, with the Ceres-Solver [5] for optimization. For the

energy functions defined in Eq.2.7 and Eq.2.12, we set the weights for the smoothness term Es to

be λI = .1 and λIt = .01 respectively. For faster convergence, we perform the optimizations in

multiple scales where the results from lower resolution are used as the initializations for the higher

resolution. The running time for 968×608 image resolution is about 5 min using on a desktop with

Intel Core-i7 5940 CPU and 64 GB RAM memory size. We will release the implementation upon

publishing.

2.6.2 Simulations Results

We test our algorithm with different imaging setups with synthesized images. To validate the

effectiveness of the initialization using differential images, we place the reconstructed surface at
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Figure 2.8: The input images with the light sources on the LED ring turned on sequentially. The

radius of the LED ring is 30 mm and the object is placed around 400 mm away. The image pair

shown in the same column corresponds to LED pairs on the opposite sides of the ring. As shown,

even for the largest LED baselines (the image pair shown in one column), the difference between

images is still small.

(b)Distant light 
with zinit = 200mm

(c)[22] with zinit = 200 mm (d)Distant light 
with initialized zIt

(e) [22] with initialized zIt (f) Our method(a) Reconstructed Object 

Figure 2.9: We show the effectiveness of the first-stage of results by showing the reconstruction for

the atlas statue using different methods with/without initialization using zIt . The performance for

both compared methods increases by using zIt . (a)Object profile; (b)Reconstruction with distant

light source assumption; (c)Reconstruction using method in [151]; (d)(c)Reconstruction with the

comparison methods, with zIt as the initialization; (f) Our method.

a plane with 900 mm depth, facing towards the camera. We reconstruct the surface with and

without the first stage of the proposed method. For the compared method with no initializations,

we set initial depth to be 200 mm. We run this comparison for multiple image settings where

the LED ring radius ranges from 20 mm to 100 mm. Then we measure the angles between the

estimated and ground truth surface normals to quantify the performance. As shown in Fig.2.7,

the initialization using the differential images helps to improve the reconstruction, especially for

smaller light source baselines. For larger LED ring radius, the performance of the method proposed

in Sec.2.3 without initialization is comparable to the method in Sec.2.5 with depth initialization.

This might be because there are less local minima for the energy function in Eq.2.7 for larger

light source baselines. With the same 200 mm depth initialization, both photometric stereo using

distance light source assumption and the method in [151] induce large errors even for the largest

light source baseline.

We evaluate our method for 6, 10, 14 and 18 LEDs with the same scene setup and LED ring

dimension. The mean surface normal error is 10.42, 3.15, 2.63 and 2.56 degrees respectively. Note
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that the error sharply drops as we increase the LEDs from 6 to 10. This shows that the small light

source baseline makes the approximation in Sec.2.4 valid even for fewer LEDs.

2.6.3 Real World Results

We apply our algorithm on images captured with LEDs on a ring with 30 mm in diameter. One

sequence of capture images is shown in Fig.2.8 for a bust statue placed around 400 mm away from

the camera. Due to the small ratio between the LED ring radius and the object-to-camera distance,

the difference between images is very small even for the pair of LEDs with the largest baselines.

Despite the small difference, our method still performs well as shown in Fig.2.10 where both the

large depth variation between the left and right shoulders, and the fine grained structures in the

frontal clothes are reconstructed. Note that for small baseline near-light photometric stereo, the

optimization for depths is more easily trapped in the local minima due to the fact that the changes

in the intensities are small. Thus using just the image intensity I is likely to generate degraded

reconstructions if the initialization is not good, as shown both in Fig.2.3 with our image formation

in Eq.2.1 , and in Fig.1.4(d). One extreme case would be that the baseline for the light source

is zero. In this case the problem becomes the highly ill-posed shape from shading problem and

can be solved only with prior-knowledge about the shape geometries [7, 209]. In our case, for

near-light photometric stereo with small light source baselines, the initializations using It helps

the optimization in Eq.2.7 process to avoid poor initializations and keep it from getting trapped in

the surrounding local minima in the first stage.

To further validate the effectiveness of the first-stage of our method, we apply both traditional

photometric stereo under distant lighting assumption and the method in [151] with the estimation

results zIt as the initial depth values. For distant-light photometric stereo, we use those initialized

depth values to get the lighting directions for all points; for the method in [151], we use zIt as its

initial depth guess for optimization. As shown in Fig.2.9, by using zIt, the performance for both

compared methods increases. Note in Fig.2.9(e), the reconstructed for the right leg of atlas is in

accurate by bending forward, even though we have initialized the depth estimation process with

IIt for this case.

We apply our method on other objects with different scene geometries. Results are shown in

Fig.2.10. The first two columns of Fig.2.10 are two input images taken with lights on the opposite

sides of the LED ring turned on. Although the image difference is small, our method is able to

recover both the overall shape with enough depth variations, such as the shape of face, and fine-

grained details, such as the logo on the tennis shoe.

For small light source position changes, we assume that the global component does not change

much. As a result, we cancel out the global illumination component by subtracting two images

captured with close light sources during estimating It. Based on this observation, we can further

refine the reconstruction results by adding another step where the analytical form of It in Eq.2.9

is used for optimizing depths, with zopt in Algorithm 1 as the initial values. We test this idea for

reconstructing the object surface with large concavity such as the bowl shown in Fig.2.12. As

shown, we get more robustness against the global illumination component by using the differential

images It.
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Figure 2.10: Inputs and reconstruction results using the proposed method. From left to right: Two

of 24 input images taken with lights on the opposite sides of the LED ring turned on. Reconstructed

meshes viewed from different views.

2.7 Limitations

The Lambertian assumption in our method fails when the surface includes specular reflection com-

ponent, as can be seen in the human face reconstruction example in the last row of Fig.2.10. This

leads to high-frequency artifacts such as the spike on the reconstructed nose. Another limitation

of our method is that even though using the differential images leads to more robustness to the

global light component as shown in Fig.2.12, the global component is not fully modeled and re-

moved during reconstruction. So the reconstruction error in the presence of global component is

still observable. One future direction is to include both the BRDF model and global illumination

term into our problem formation.
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(a) Two of 24 input images (b) Albedo map (c) Surface reconstruction

Figure 2.11: Inputs and reconstruction results for the proposed method. (a) Two of 24 input

images taken with lights on the opposite sides of the LED ring turned on; For each column, the

LED positions are the same; (b) The estimated albedo map; (c) Reconstructed surfaces viewed

from different angles.

2.8 Conclusion

In this chapter, we put forward a two-stage near-light photometric stereo algorithm with circularly

placed point light sources and a pinhole camera. In the first-stage, we optimize the scene depth

using the differential images captured by moving the light source slightly. We show in the chapter

that the surface reconstruction becomes less non-linear by using the differential images. In the

second stage, we refine the estimations using the raw captured images. We validate that our method

is able to get good reconstruction results even with small baseline point light sources such as a

low-cost LED ring. One future direction is to consider cases with general BRDFs and global

illumination.
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Figure 2.12: We reconstruct the inner surface of a concave bowl. We get more robustness against

the inter-reflection during reconstruction with the differential images It. From left to right: (a) one

of the input images; (b) estimated depth map using the raw images I only; (c) estimated depth map

using both I and differential images It; (d) reference depth map estimated using structured light

with global-direct light separation; (e) 1D depth profiles for different methods (red: using I only;

blue: using I and It; black: reference).



Chapter 3

Thin Structures Reconstruction using

Single View Focal Stack

3.1 Introduction

Thin structures such as meshes, grass or tree branches are common in photography. Similarly,

in medical and microscopic imaging, thin curvilinear structures such as vessels and neurons ap-

pear very often. Recovering the 3D information for such structures with non-invasive imaging

modalities is useful for study of plants [54, 189], blood vessels [138, 175], and neurons [40, 84].

Segmenting thin structures from the background and recovering their depths is a challenging

task for multiple reasons. First, thin structures located in close range might occlude more distant

objects. So the ray corresponding to a pixel may encounter multiple occluders at different depths

due to the partial occlusion. Second, the 3D structures of curvilinear objects in nature such as

vessels and grass are often complex and non-planar, thus the methods based on planarity assump-

tion [56, 73, 211] fail in those cases. Third, because of the small widths of the thin structures, the

high spatial frequency depth discontinuities are likely to be recovered coarsely using patch-based

depth-from-focus/defocus methods [49, 77, 78, 178].

In this work, we present a method for matting and depth recovery of 3D thin structures with

self-occlusions using single-view focal stack images. To this end, we first propose a general image

formation model that explicitly describes the spatially varying blur and multiple partial occlusions

along a line of sight. Jointly optimizing the occlusion mattes and depths in the model is compu-

tationally intractable. We derive a Markov Chain Monte Carlo (MCMC) inference algorithm for

the thin structure matting where the image/model update is directly and analytically computed.

The analytic computation enables efficient updates of the model without re-rendering new images

during the MCMC process, which makes the algorithm practical. The depths of thin structures are

then recovered using gradient descent with the differential terms calculated from the model.

We evaluate the performance of the proposed method using images of scenes at both macro

and micro scales. For macro-scale, we evaluate our method on scenes with complex 3D thin

structures such as meshes, tree branches and grass. For micro-scale, we apply our method to in-

vivo microscopic images of micro-vessels with diameters less than 50 µm. We reconstruct the 3D

33



Figure 3.1: Example scenes with thin structures: mesh, grass, tree branches, and micro-vessels.

Such structures are often non-planar, located at multiple depths, and occluding one another. The

goal of this chapter is to matte and recover depths of these thin structures from a single-view focal

image stack.

structure of the micro-vessels despite spatially varying blur and occlusions. To our knowledge, this

is the first method to reconstruct the 3D structures of micro-vessels from a non-invasive in-vivo

imaging system.

3.2 Related Work

Occlusion estimation and removal: Learning-based and physics-based methods have been

used to remove occluders or recover the depths and patterns of the occlusions. In [51], a neural

network was trained to detect and remove the dirt of rain drops. In [116] the translational symme-

try pattern of the foreground has been exploited. Other methods estimate and remove the occlusion

by using an image formation model that takes into account occlusions. [55, 73, 122]. In [55], an

inverse projection model is used to recover the geometry and radiance of the scene following a

variational framework. Gu et.al [73] model the captured radiance as a superposition of the fore-

ground then recover the occlusion pattern and the occluded background from images captured with

different focus settings by assuming that the foreground is fronto-parallel and dark. In [194], the

occlusions are removed using large synthetic aperture images captured with an array of cameras.

Scene matting with obstructions: Xue et.al [211] exploit the difference between the edge

flows of the obstruction surface and the background in a video to separate and recover the fore-

ground and background radiances. In [56], light field matting is used to recover both the foreground

and background layers. In [77, 78], the simplified multilayer scene model, where the radiance is
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assumed to come from an all-in focus scene layer, is solved in order to perform post-capture image

refocus. The radiance for all layers are approximated by a single all-in-focus radiance map. For

thin structure occlusions in [56], the multilayer model is simplified to consist of a single pair of

fronto-parallel foreground and background layers. Rather than first simplify the multilayer model

and then solve the more constrained problem like in [77] and [56], we will directly solve the full

multilayer model with multiple non-fronto-parallel occlusion layers.

Reconstruction and depth estimation with occlusions: Due to lack of correspondences, tra-

ditional 3D reconstruction methods such depth from defocus and stereo matching fail to work well

on scenes with occlusions. Yamazaki et.al in [212] use shadows cast from a point light source to

reconstruct intricate objects that are difficult for traditional shape-from-silhouettes methods.

In [201], the occlusions have been modeled in the 4D light field and the occlusions are explicitly

handled to get better depth estimation near depth disparities. Photo-consistency is extended to

points at the depth disparity edges to handle occlusions more explicitly. The partial occlusion is

modeled in the angular space of the input 4D light field. In our method, the occlusions are modeled

using the multilayer matting function based on 2D spatially varying defocus kernels. In addition,

we also demonstrate our approach in cases where occluders block each other.

In [73], a single fronto-parallel layer of occlusions is removed using two or three images cap-

tured with different aperture sizes. The occlusions are assumed to be dark without contributing any

radiance. In [56], the occlusion is also assumed to be in single fronto-parallel layer. In contrast,

we address occlusions that are located in different depths and may occlude one another.

3.3 Image Formation Model

For a camera with finite aperture, one pixel at the image plane receives radiance contributions

from multiple rays from the points within a double-sided cone determined by the focal plane and

aperture size, as shown in Figure 3.2. With the image coordinate denoted as v, we represent the

occluder with occlusion matte M(v) ∈ {0, 1} and radiance L(v) ∈ R+. If there is only one

opaque occluder in the scene, the image intensity at v in the m-th image Rm in the focal stack is

Rm(v) =

∫

u

L(u)M(u)Bm (v − u; d(v)) du

where Bm (v − u; d(v)) is the spatially varying blur kernel dependent on the scene point depth

d(v).
For scenes with opaque occluders located at multiple depths, the image intensity for one pixel

is contributed by multiple points at different depths, with possible attenuations due to occlusions

as shown in Figure 3.2. We denote the occlusion index k ∈ {1, 2, · · · , N} to be the order in

which the double-sided cone from the camera encounters the scene points. The image Rm is the

superposition of contributions from scene points across all occlusion indexes:

Rm(v) =
N
∑

k=1

αm
k (v)

∫

u

Lk(u)Mk(u)B
m
k (v − u; dk(v)) du (3.1)
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Near field of occluder k Far field of occluder k

Figure 3.2: Viewing geometry of a single pixel in a camera with finite aperture. The camera is

focused between occluder k and occluder N − 1. The pixel receives radiance contributions from

rays within the double-sided cone determined by the focal plane and aperture size. The occluders

are represented with the occlusion map M and radiance map L. Occluder k is partially occluded

by the occluders in its near field and occludes the occluders/background in its far field.

with Bm
k (v−u; dk(v)) denoting the spatially varying blur kernel for the scene point with occlusion

index k. The attenuation term αm
k (v) describes the attenuation of the radiance from occluder k due

to occlusions. As shown in Figure 3.2, the occluder with occlusion index k > 1 is only obstructed

by points in the near field with occlusion index smaller than k, thus the attenuation term can be

written as:

αm
k (v) =















1, if k = 1

k−1
∏

j=1

1−
∫

u

Mj(u)B
m
j (v − u; dj(u)), otherwise

(3.2)

Eq. 3.1 and Eq. 3.2 describes the general case shown in Figure 3.2 where the defocus blur is

spatially-variant and the occluders in the scene may partially occlude one another.

Because the blur kernels in Eq. 3.1 and Eq. 3.2 are compact in space, the range of u in the

integral is within a local patch N (v). So we can write the discretized image formation model as:

Rm(v) =
N
∑

k=1

αm
k (v)

∑

u∈N (v)

Lk(u)Mk(u)B
m
k (dk(v)) (3.3)

with the discretized attenuation term:

αm
k (v) =















1, if k = 1

k−1
∏

j=1

1−
∑

u∈N (v)

Mj(u)B
m
j (dj(u)), otherwise

(3.4)
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with B(d(u)) = B(v − u; d(u)) for notation simplicity.

The image formation model in Eq. 3.3 and Eq. 3.4 generalizes the models used in previous

works. When occluders are fronto-parallel, the blur kernel for each occluder is spatially-invariant.

In this case the integrals in Eq. 3.3 and Eq. 3.4 become convolutions with blur kernels Bm
j (v − u).

For N = 1, and the image formation model becomes:

Rm(v) = L1M1 ∗B1(v)

which is the scene model used in [77, 78] for depth recovery and post-capture re-focusing. For N =
2, there is only one occlusion in front of the background, the image formation model becomes:

Rm(v) = L1M1 ∗B1(v) + (1−M1 ∗B1(v))(L2 ∗B2(v))

which is the image formation model used in previous works on image matting [105, 123] and

occlusion reasoning [73].

3.4 Efficient MCMC for Occlusion Matting

In this work, the goal is to estimate the occlusion matte Mk(v), depth dk(v) and scene radiance

Lk(v) for occlusion index k ∈ {1, 2, · · · , N}, given the measured focal stack images and cali-

brated defocus blur kernels Bm
k . In the following, we will first describe our method to estimate the

occlusion mattes from a focal stack, followed by the depth recovery for the occluders explained in

Section 3.5.

Given the measured focal stack images {Im(v)} captured with different focal plane distances,

the estimated occlusion mattes M(v) are determined by minimizing the energy function:

E(M(v)) = Edata(M(v)) + λEsmooth(M(v))

with

Edata =
∑

m,v

(Im(v)−Rm(v))2

Esmooth =
∑

(u,v)∈N8

1− δ(M(u)−M(v))

where the smoothness term Esmooth enforces the local spatial consistency for occlusion matting.

Rm(v) is the forward rendered image using the image formation model in Eq. 3.3 and Eq. 3.4.

We can see from Eq. 3.4 that changing the occlusion matte value Mj(v) will effect the attenuation

terms αk for all k > j. The range of the influence is the size of the blur kernel, which could be

large when the occluder is highly defocused. This influence is propagated to the other occlusion

mattings Mk through Eq. 3.3. Therefore, there are high-order relationships among the occlusion

mattings values. So the data term Edata is of high-order w.r.t. Mk(v) for k ∈ {1, 2, · · · , N}.
Because of these high-order relationships, traditional graph-based methods dealing with rela-

tively low-order potentials will not apply. Methods that include high-order potentials [57, 89, 99,
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181] either require the graph to be in specific structure [181] or the relationship can be analyti-

cally modeled [57, 89, 99]. Instead, we derive an efficient MCMC inference method where the

image/model updates are directly and analytically computed based on the image formation model

without re-rendering the images. This makes an otherwise intractable problem practical to solve.

We will assume: 1) the radiances of the thin structures are different from the radiance of back-

ground; 2) the maximal number of occlusions along a line of sight is known or pre-set. The first

assumption enables us to detect and separate the occluders from background using the focal stack;

the second assumption simplifies the derivation.

MCMC inference:

Consider a point x on the k-th occluder on the line of sight, as shown in Figure 3.2. During

the MCMC inference process, the occlusion matte value Mk(x) ∈ {0, 1} is sampled from the

probability distribution:

p (Mk(x) = 1) =
e−E(Mk(x)=1)/T

e−E(Mk(x)=1)/T + e−E(−Mk(x)=0)/T

=
e−∆E(x)/T

1 + e−∆E(x)/T

(3.5)

where E(Mk(x) = b) for b = {0, 1} are the energy functions for the binary assignments for Mk(x);
∆E(x) = E(Mk(x) = 1)− E(Mk(x) = 0) = ∆Edata + λ∆Esmooth represents the increase of the

energy function when the sampling in the MCMC process changes the occlusion matte value at x

Mk(x) from 0 to 1. T is the temperature parameter controlling the acceptance rate for an update

and the convergence of the MCMC process.

Estimating ∆Edata for MCMC Inference:

By denoting Rm(v; b) to be the forward rendered image when Mk(v) = b for b = {0, 1}, the

data term of ∆E can be written as:

∆Edata =
∑

m,v

(Im(v)−Rm(v; 1))2 − (Im(v)−Rm(v; 0))2

=
∑

m,v

∆Rm(v) (∆Rm(v) + 2 (Rm(v; 0)− Im(v)))
(3.6)

where ∆Rm(v) = Rm(v; 1) − Rm(v; 0) is the change of the rendered image by changing Mk(v)
from 0 to 1. Similarly, we can write the change of the data term for switching Mk(v) from 1 to 0
as:

∆Edata =
∑

m,v

∆Rm(v) (−∆Rm(v) + 2 (Rm(v; 1)− Ii(v))) (3.7)

Analytically Computing ∆Rm(v) for ∆Edata:

The naive approach is to render images Rm(v; 0) and Rm(v; 1) directly and estimate ∆Rm(v)
for all pixels and occlusion indexes. In addition, we need several iterations since the results from

the burn-in period of the MCMC process is not reliable. So the computational complexity for the

naive approach is too high for any real world application.
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Rather than perform the full forward render process for each pixel, we propose to directly and

analytically compute the ∆Rm(v) and its corresponding energy difference ∆Edata by using the

image formation model in Eq. 3.3 and Eq. 3.4. The image intensity change ∆Rm(v) induced by

switching Mk(x) from 0 to 1 is contributed by radiance change from occluder k and occluders with

occlusion index i > k on the line of sight:

∆Rm(v) = αk(v)B
m
k (dk(x))Lk(x) +

N
∑

i=k+1

∆αi(v)L̃i(v) (3.8)

with the defocused image

L̃i(v) =
∑

u∈N (v)

Li(u)Mi(u)B
m
i (di(u)), (3.9)

where Bk(dk(x)) and Bi(di(u)) are spatially varying blur kernels; ∆αi(v) is the change of at-

tenuation by switching the occlusion matte value Mk(x) from 0 to 1. The first term in Eq. 3.8 is

the radiance change contribution from the k-th occluder. The second term is the radiance change

contributions from the occluders/background in the far field of occluder k.

Analytically Computing ∆αi(v) for ∆Rm(v):

For notation simplicity, we denote the blurred occlusion matte in Eq. 3.4 with:

M̃j(v) =
∑

u∈N (v)

Mj(u)B
m
j (dj(u)) (3.10)

From Eq.3.4, the attenuation change ∆αi(v) can be written as:

∆αi(v) =
(

1− M̃k(v; 1)
)

i−1
∏

j=1;j 6=k

(

1− M̃j(v)
)

−
(

1− M̃k(v; 0)
)

i−1
∏

j=1;j 6=k

(

1− M̃j(v)
)

= −Bk(dk(x))
i−1
∏

j=1;j 6=k

(1− M̃j(v))

(3.11)

By combining Eq. 3.8 and Eq. 3.11, we see that the image intensity change ∆Rm(v) induced

by switching Mk(x) from 0 to 1 is independent from Mk(v) ∀ v. Before the MCMC process

for points at occluders with occlusion index k, we can pre-compute L̃i in Eq. 3.9 and blurred

occlusion mattes M̃j in Eq. 3.10. Then during the MCMC process, the image update ∆Rm(v)
can be directly and analytically estimated from Eq. 3.8 and Eq. 3.11. If the occlusion matte at

pixel x changes after sampling from Eq. 3.5, the updated image can be easily computed with

Rm(v)← Rm(v) +∆Rm(v) without re-rendering the images. In addition, due to the limited size

of the blur kernel, the spatial range of ∆R(v) is limited within a small patchN (x) rather than over

39



the whole image. In our implementation, we choose the size of the patch N (x) to be 31-by-31.

Therefore, the high-order data term change ∆Edata can be computed efficiently.

Estimating ∆Esmooth:

For the smoothness term change ∆Esmooth, since it does not include the forward rendering, it

can be simply computed as:

∆Esmooth =
∑

u∈N8(x)

δ(M(u))− δ(M(u)− 1) (3.12)

when M(x) changes from 0 to 1 and

∆Esmooth =
∑

u∈N8(x)

δ(M(u)− 1)− δ(M(u)) (3.13)

for M(x) changes from 1 to 0. N8(x) is the 8-connectivity neighborhood of x. As we can see

from Eq. 3.12 and Eq. 3.13 the change of the smoothness term is simply the difference of numbers

of occupant and empty pixels around x.

Initialization:

A good initialization of the variables is important given the huge search space for the occlusion

matte. To initialize the occlusion matte, for each pixel v in the measured image Im(v), we first

compute the variance of Laplacian in the Lab color space of a local 9-by-9 patch around v. For

the occlusion matting Mk with occlusion index k < N , we set Mk(v) = 1 if the maximal local

variance happens in a focal depth is smaller than a pre-defined threshold and 0 otherwise. The

matting MN(v) = 1 for all pixels for the background since any line of sight will intersect with

the background. For depth initialization, the initial depth for the thin structures at one pixel is

estimated as the depth index in the focal stack with the largest variance of Laplacian of a local

patch around that pixel. The radiance for the points on the thin structures is the measured image

intensity in the corresponding image in the focal stack. During the optimization, the radiance

values are updated based on the current depth estimation, which is explained in the next section.

Given the initialization, the steps for the MCMC inference for Mk(v) are described in Alg. 2.

3.5 Estimating Depths of Thin Structures

In order to compute the depth, we assume that the objects are locally planar within a small area.

Given the matting estimation, we first over-segment the matted thin structures into super-pixels

using SLIC [4] implemented in [196]. To get small and thin super-pixels, we set the area of the

super-pixel to be 10 and the regularization factor to be 0.1. Each super-pixel will be treated as one

tiny planar segment in space. The depth of the occluder is recovered by optimizing the parameters

of all the foreground planar segments such that the synthetic images given the depth are as close

as possible to the measured focal stack.

Given a planar segment i with plane parameters si, the depth of the point on the segment

with pixel coordinate (x, y) is d = sTi (x, y, 1). By concatenating all the plane parameters for Ns
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Algorithm 2 Efficient MCMC inference for occlusion matte Mk(v)

Given initialization of M
(0)
k , dk and Lk render R(0)

for each iteration t do

for each occlusion index k ∈ {1, 2, · · · , N − 1} do

compute αk(v) and R using Eq.3.3 and Eq.3.4

update M̃ and L̃ using Eq.3.10 and Eq.3.9

for each pixel x with occlusion indx k do

compute ∆R using Eq. 3.8 and Eq. 3.11

compute ∆Edata using Eq. 3.6 or Eq. 3.7;

compute ∆Esmooth using Eq. 3.12 or Eq. 3.13;

sample Mk(x) using Eq. 3.5;

R← R +∆R if Mk(x) changes.

end for

end for

end for

segments into a 3Ns-dimensional vector s, the optimal parameters for segment planes are found

by:

min.
s

∑

n,m,v

(Imn (v)−Rm
n (v; s))

2 + λdEs(s), (3.14)

where Imn (v) is the measured image intensity of segment n at pixel v. The first term of the energy

is the data term measuring the difference between the synthesized images and the measured focal

stack. The second term Es(s) is the smoothness term enforcing the depth smoothness for adjacent

segments in 3D space. For two adjacent segments representing by their plan parameters si and

sj, the depth smoothness energy is defined as the depth difference for the pixels on their shared

boundary:

E(i,j)
s = (di − dj)

T (di − dj)

= (si − sj)P
T
b Pb(si − sj)

= (si − sj)A
(i,j)(si − sj),

where the three-column matrix Pb consists of the homogeneous coordinates of the pixels on the

boundary of segment i and segment j; A(i,j) = P T
b Pb. The smoothness energy for all pairs of

adjacent segments can be written in a way such that it is quadratic in terms of the concatenated

plan parameters s:

Es(s) = sTΛs = sT
∑

(i,j)∈N

Λ(i,j) s, (3.15)

where Λ(i,j) is a 3N -by-3N sparse matrix for the neighborhood segments si and sj with non-zero

block entries Λ
(i,j)
i,i = Λ

(i,j)
j,j = A(i,j) and Λ

(i,j)
i,j = Λ

(i,j)
j,i = −A(i,j).

To optimize the objective function defined in Eq. 3.14 using gradient-based method, we also

need to calculate the gradient of the data term with respect to the plane parameters s, for which we
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need to estimate:
∂R

∂s
=

∂R

∂d

∂d

∂s
=

∂R

∂d
P (3.16)

with P the N -by-3 location matrix with each row as the homogeneous coordinate (x, y, 1) for one

pixel.

For a point corresponding to pixel v on the k-th occluder, the gradient of the rendered image

w.r.t. its depth can be written as :

∂R

∂dk
(v) = αk(v)Lk(v)

∂Bk

∂dk
+

N
∑

i=k+1

∂αi

∂di
(v)L̃i(v) (3.17)

with

∂αi

∂di
(v) = −∂Bi

∂di

i−1
∏

j=1
j 6=k

1−
∑

u∈N (v)

Mj(u)B
m
j (dj(u)) (3.18)

The derivation is similar as in Section 3.4. The differential blur kernel ∂B
∂d

is pre-computed during

the calibration process. The gradient of Eq.3.14 can be evaluated by combing Eq.3.15, Eq.3.16

and Eq.3.17. We use the conjugate-gradient method for optimizing the plane parameters s. Given

the the optimal s, the depth of the segments is calculated as d = P s.

3.6 Experiments

3.6.1 Implementation Details

For all experiments, we choose the size of the local patch for MCMC update to be 31-by-31. We

set the maximal occlusion index N = 3. The temperature parameter T in Eq. 3.5 is set to 5
and the smoothness parameter λ in Eq. 3.5 is set to 0.8. For depth estimation, we set the depth

smoothness factor λd in Eq. 3.14 to be 0.5 and the step size of the gradient descent to be 0.1.

The MCMC process converges within 10 iterations and the gradient descent for depth recovery

converges within 50 iterations. The running time on a 620x480 focal stack with 26 focal planes is

about 20 min using MATLAB implementation on a desktop with Intel Core-i7 5940 CPU and 64

GB RAM memory size.

3.6.2 Calibrating Blur Kernels

For macro-scale scenes, we use a Lytro ILLUM light field camera to generate the focal stack

with 26 focal planes. Using a light field camera avoids the magnification variation due to focal

changes and the need for post-processing to compensate the magnification. The refocused images

are estimated from the 4D light field images by shearing the light field and projecting it into 2D

slices as described in [136].

We calibrate the blur kernels for a set of 21 reference depths from 200 mm to 1000 mm equally

spaced with 40 mm. In the calibration process, we use a planar reference plane with checkerboard
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Figure 3.3: The calibrated blur kernels of refocused image for a plane placed 520 mm from the

light field camera. The shapes of the blur kernels are not circularly symmetrical since the blur

kernel for a refocused image from light field camera is related to both the main lens shape and the

spatial arrangement of the secondary lenslets.

textures and place the plane parallel to the image plane. The optical blur kernel is assumed to be

a separable filter kernel such that it can be written as a convolution of two 1D functions. Then the

1D functions are optimized.

Examples of the calibrated blur kernels for the focal stack images generated using the light

field are shown in Figure 3.3. Note that the shape of the blur kernel is not circularly symmetrical

since the blur kernel for a refocused image from light field camera is related to both the main lens

shape and the arrangement of the secondary lenslets array. For the microscopic camera, we model

the blur kernels as Gaussian functions with σ related to the focal plane distance and scene depth.

3.6.3 Aperture Size vs. Depth vs. Occluder Size

We first analyze the performance of our method under varying camera and scene configurations

to evaluate the influence of aperture size, the depths and widths of the occluders. We synthesize

the focal stack images with different camera and scene settings. With larger aperture size, we are

able to collect rays from more angles coming from a point thus more rays can be imaged from

the occluded regions [194]. The benefit of having a finite aperture decreases as the foreground

occlusions are further from the camera. The synthetic scene includes two foreground occlusion

layers with parts of the second layer being occluded.

The performance is evaluated in terms of the averaged error ratio of the rendered focal stacks.

As shown in Figure 3.4, the reconstruction error decreases as the aperture size becomes larger

since for larger aperture size, more rays from the partially occluded regions are collected. On the

other hand, more reconstruction error of the background is introduced when the occlusion is closer

to the background as regions in the background are completely occluded. Similar results can be

observed for occlusions with different sizes.

3.6.4 Performance on Real Data

To quantitatively assess the performance of the proposed matting and depth recovery method, we

place slanted planar mesh at measured distances and evaluate the matting and depth estimations.

The selected set distances are listed in Table 3.1. We compare our method with the baseline depth-

from-focus (DFF) method used in [183]. The occlusion matte is estimated by thresholding the
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Figure 3.4: The reconstruction error varies with camera aperture size, the depth and size of oc-

cluder. The blue and red curves in (a) are errors with occlusion distance set to 5 and 6 respectively.

The blue and red curves in (b)(c) correspond to aperture size 5 and 11 respectively.

Table 3.1: RMSEs of the recovered depth for the slanted plane placed at different depths.

Distance from the camera (mm)

250 380 510 680

DFF [183] 94.22 61.50 129.1 161.2

Proposed 30.49 34.35 36.13 60.18

recovered depth map based on the fact that the mesh plane is located in the near field. Because the

degree of in-focus is measured from the image intensities within a local patch, the DFF method

tends to generate an over-smoothed depth map where the depth estimations near the occlusion

boundaries are inaccurate. In our method, since the defocus and occlusion are modeled explicitly

for each pixel, we are able to recover the high frequency depth discontinuities for thin structures.

Therefore, as shown in Table 3.1, the RMSEs of estimated depths for our method are lower than

the ones for the DFF approach.

We also compare with the approach [201] using light field inputs with the occlusion bound-

aries explicitly modeled. As shown in Figure 3.5, the DFF method in [183] fails to recover high

frequency depth changes in regions such as the edges of the grass where multiple depth disconti-

nuities are close. This is because the patch-based estimation of the degree of in-focus will include

the edges of the depth boundary even if the center of the patch is not aligned on the boundary. As

a result, the degree of in-focus is inaccurate near the depth boundary. The method in [201] is able

to estimate the depths at places where the occlusion boundaries are close because in this method

the occlusion boundaries are modeled and processed explicitly. However, the approach in [201] is

unreliable for textures regions in the background. In addition, some sharp intensity edges in the

background, such as the shadow boundaries, are estimated as occlusion boundaries and the recov-

ered depths around those edges are inaccurate. In comparison, our method estimate the occlusion

matting and depths pixelwisely , so it can handle sharp edges in the background and high spatial

frequency depth changes for thin structures like mesh, grass and bush branches.

We apply our method to in-vivo micro-scale images of capillaries with diameter less than 50
µm. We use the Braedius CytoCam Camera to capture focal stacks of micro-vessels on the tongue

of pigs. The focal planes distance range from 20 µm to 240 µm with step size of 20µm. As shown

in Figure 3.7, the occlusion matting and depths of micro-vessels are estimated in the presence of
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[201]

Figure 3.5: The depth recovery for the thin structures. Note that the depth estimations using

the DFF method for points close to the occlusion boundaries are inaccurate due to high frequency

depth discontinuity. The light field method in [201] does not perform well on the textureless

regions and sharp edges in the background. Our method recovers the sharp depth discontinuity on

the boundaries of the thin structures such as the grass and bush in the presence of spatially varying

defocus blur.



Foreground in focus Background in focus DFF    Wang et.al [201] Proposed Method

Figure 3.6: The depth recovery for the thin structures. Note that the depth estimations using

the DFF method for points close to the occlusion boundaries are inaccurate due to high frequency

depth discontinuity. The light field method in [201] does not perform well on the textureless

regions and sharp edges in the background. Our method recovers the sharp depth discontinuity on

the boundaries of the thin structures.

Focused at 40 μm Focused at 160 μm
0

220

Estimated Depth Map 3D reconstruction of micro-vessels

Figure 3.7: The depth map and 3D reconstruction of micro-vessels. From left to right: 2 of 12
images in the focal stack; the estimated depth map, and two views of the reconstructed 3D structure.

The 3D reconstruction is color coded to visualize the depth variations. To our knowledge, our

method is the first approach to reconstruct the 3D structures of micro-vessels using non-invasive

in-vivo image measurements.



(a) (c)(b)

Figure 3.8: Limitations of our method. (a)(b) In the box marked in green, the thin structures

in the near field have similar color as the background. In this case, the matting estimation fails

because switching the occlusion matte values for the points in those regions will not introduce

enough image intensity changes. (c) The depth of the background is close to the depth of the thin

occluder, thus the estimated occlusion matte includes edges in the background.

spatially varying defocus blur and occlusions. Then we reconstruct the 3D structure of the micro-

vessels based on the depth map. To our knowledge, our method is the first approach to reconstruct

the 3D structures of capillaries using non-invasive image measurements.

3.7 Limitation

Our methods have several limitations: First, if the thin structures in the near field have similar color

as the background. the occlusion matting estimation may fail because switching the occlusion

matte values for the points in those regions will not introduce enough image intensity changes, as

shown in Figure 3.8(a)(b); Second, when the depth of the background is close to the depth of the

thin occluder, the occlusion matte estimation tends to include the edges in the background as thin

structures/occlusion boundaries, as shown in Figure 3.8(c).

3.8 Conclusions

We presented a method for matting and depth recovery for thin structures from a focal stack. We

proposed a general image formation model with the spatially varying blur and mutual occlusions

explicitly accounted for. Based on the model, for matting, we design an efficient MCMC inference

method where the image/model update is computed analytically without explicitly rendering new

images. The depth of thin structures is then recovered using gradient descent with the differential

terms calculated from the image formation model. We evaluated the proposed method on images

of scenes at both macro and micro scales.

We assume that the sizes/widths of objects are small compared to the aperture. In addition,

if the foreground objects are far away from the camera, the camera model degrades to a pinhole

camera model and the image formation model in Section 3.3 is invalid. To handle larger/distant

occlusions, we can extend the method to include multiple cameras such that a large synthetic

aperture [194] can be obtained. Another future direction is to extend the approach to scenes with

transparent or semi-transparent occlusions, such as smoke, glass, and water droplets.
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Chapter 4

Depth and Uncertainty from a Video

Camera

4.1 Introduction

Depth sensing is crucial for 3D reconstruction [134, 137, 204] and scene understanding [74, 150,

173]. Active depth sensors (e.g., time of flight cameras [82, 153], LiDAR [34]) measure dense

metric depth, but often have limited operating range (e.g., indoor) and spatial resolution [23], con-

sume more power, and suffer from multi-path reflection and interference between sensors [120]. In

contrast, estimating depth directly from image(s) solves these issues, but faces other long-standing

challenges such as scale ambiguity and drift for monocular methods [158], as well as the corre-

spondence problem and high computational cost for stereo [186] and multi-view methods [164].

Inspired by recent success of deep learning in 3D vision [15, 28, 60, 67, 85, 182, 193, 199, 214,

220, 221], in this chapter, we propose a DL-based method to estimate depth and its uncertainty

continuously from a monocular video stream, with the goal of effectively turning an RGB camera

into an RGB-D camera. We have two key ideas:

1. Unlike prior work, for each pixel, we estimate a depth probability distribution rather than

a single depth value, leading to an estimate of a Depth Probability Volume (DPV) for each

input frame. The DPV provides both a Maximum-Likelihood-Estimate (MLE) of the depth

map, as well as the corresponding per-pixel uncertainty measure.

2. These DPVs across different frames are accumulated over time, as more incoming frames are

processed sequentially. The accumulation step, originated from the Bayesian filtering theory

and implemented as a learnable deep network, effectively reduces depth uncertainty and

improves accuracy, robustness, and temporal stability over time, as shown later in Sec. 4.4.

We argue that all DL-based depth estimation methods should predict not depth values but depth

distributions, and should integrate such statistical distributions over time (e.g., via Bayesian filter-

ing). This is because dense depth estimation from image(s) – especially for single-view methods

– inherently has a lot of uncertainty, due to factors such as lack of texture, specular/transparent

material, occlusion, and scale drift. While some recent work started focusing on uncertainty es-

timation [63, 86, 95, 96] for certain computer vision tasks, to our knowledge, we are the first to

predict a depth probability volume from images and integrate it over time in a statistical framework.
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Figure 4.1: We proposed a DL-based method to estimate depth and its uncertainty (or, confidence)

continuously for a monocular video stream, with the goal of turning an RGB camera into an RGB-

D camera. Its output can be directly fed into classical RGB-D based 3D scanning methods [134,

137] for 3D reconstruction.

We evaluate our method extensively on multiple datasets and compare with recent state-of-

the-art, DL-based, depth estimation methods [60, 67, 193]. We also perform the so-called “cross-

dataset” evaluation task, which tests models trained on a different dataset without fine-tuning.

We believe such cross-dataset tasks are essential to evaluate the robustness and generalization

ability [3]. Experimental results show that, with reasonably good camera pose estimation, our

method outperforms these prior methods on depth estimation with better accuracy, robustness, and

temporal stability. Moreover, the output of the proposed method can be directly fed into RGB-D

based 3D scanning methods [134, 137] for 3D scene reconstruction.

4.2 Related Work

Depth sensing from active sensors Active depth sensors, such as depth cameras [82, 153] or

LiDAR sensors [34] provide dense metric depth measurements as well as sensor-specific confi-

dence measure [154]. Despite of their wide usage [74, 134, 150, 204], they have several inherent

drawbacks[23, 120, 147, 191], such as limited operating range, low spatial resolution, sensor inter-

ference, and high power consumption. Our goal in this chapter is to mimic a RGB-D sensor with

a monocular RGB camera, which continuously predicts depth (and its uncertainty) from a video
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stream.

Depth estimation from images Depth estimation directly from images has been a core prob-

lem in computer vision [159, 164]. Classical single view methods [39, 158] often make strong

assumptions on scene structures. Stereo and multi-view methods [164] rely on triangulation and

suffer from finding correspondences for textureless regions, transparent/specular materials, and

occlusion. Moreover, due to global bundle adjustment, these methods are often computation-

ally expensive for real-time applications. For depth estimation from a monocular video, there

is also scale ambiguity and drifting [128]. Because of these challenges, many computer vision

systems [128, 161] use RGB images mainly for camera pose estimation but rarely for dense 3D

reconstruction [162]. Nevertheless, depth sensing from images has great potentials, since it ad-

dresses all the above drawbacks of active depth sensors. In this chapter, we take a step in this

direction using a learning-based method.

Learning-based depth estimation Recently researchers have shown encouraging results for

depth sensing directly from images(s), including single-view methods [60, 67, 221], video-based

methods [119, 199, 216], depth and motion from two views [28, 193], and multi-view stereo [85,

214, 220]. A few work also incorporated these DL-based depth sensing methods into visual SLAM

systems [15, 182]. Despite of the promising performance, however, these DL-based methods are

still far from real-world applications, since their robustness and generalization ability is yet to be

thoroughly tested [3]. In fact, as shown in Sec. 4.4, we found many state-of-the-art methods de-

grade significantly even for simple cross-dataset tasks. This gives rise to an increasing demand for

a systematic study of uncertainty and Bayesian deep learning for depth sensing, as performed in

this chapter.

Uncertainty and Bayesian deep learning Uncertainty and Bayesian modeling have been long

studied in last few decades, with various definitions ranging from the variance of posterior distribu-

tions for low-level vision [179] and motion analysis [97] to variability of sensor input models [94].

Recently, uncertainty [63, 95] for Bayesian deep learning were introduced for a variety of com-

puter vision tasks [36, 86, 96]. In our work, the uncertainty is defined as the posterior probability

of depth, i.e., the DPV estimated from a local window of several consecutive frames. Thus, our

network estimates the “measurement uncertainty” [95] rather than the “model uncertainty”. We

also learn an additional network module to integrate this depth probability distribution over time in

a Bayesian filtering manner, in order to improve the accuracy and robustness for depth estimation

from a video stream.

4.3 Our Approach

Figure 4.2 shows an overview of our proposed method for depth sensing from an input video

stream, which consists of three parts. The first part (Sec. 4.3.1) is the D-Net, which estimates the

Depth Probability Volume (DPV) for each input frame. The second part (Sec. 4.3.2) is the K-Net,
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Figure 4.2: Overview of the proposed network for depth estimation with uncertainty from a video.

Our method takes the frames in a local time window in the video as input and outputs a Depth

Probability Volume (DPV) that is updated over time. The update procedure is in a Bayesian filter

fashion: we first take the difference between the local DPV estimated using the D-Net (Sec. 4.3.1)

and the predicted DPV from previous frames to get the residual; then the residual is modified by the

K-Net (Sec. 4.3.2) and added back to the predicted DPV; at last the DPV is refined and upsampled

by the R-Net (Sec. 4.3.3), which can be used to compute the depth map and its confidence measure.

which helps to integrate the DPVs over time. The third part (Sec. 4.3.3) is the refinement R-Net,

which improves the spatial resolution of DPVs with the guidance from input images.

Specifically, we denote the depth probability volume (DPV) as p(d; u, v), which represents the

probability of pixel (u, v) having a depth value d, where d ∈ [dmin, dmax]. Due to perspective pro-

jection, the DPV is defined on the 3D view frustum attached to the camera, as shown in Fig. 4.3(a).

dmin and dmax are the near and far planes of the 3D frustum, which is discretized into N = 64
planes uniformly over the inverse of depth (i.e., disparity). The DPV contains the complete sta-

tistical distribution of depth for a given scene. In this chapter, we directly use the non-parametric

volume to represent DPV. Parametric models, such as Gaussian Mixture Model [14], can be also

be used. Given the DPV, we can compute the Maximum-Likelihood Estimates (MLE) for depth

and its confidence:

Depth : d̂(u, v) =
d=dmax
∑

d=dmin

p(d; (u, v)) · d, (4.1)

Confidence : Ĉ(u, v) = p(d̂, (u, v)). (4.2)

To make notations more concise, we will omit (u, v) and use p(d) for DPVs in the rest of the

chapter.

When processing a video stream, the DPV can be treated as a hidden state of the system. As the

camera moves, as shown in Fig. 4.3(b), the DPV p(d) is being updated as new observations arrive,

especially for the overlapping volumes. Meanwhile, if camera motion is known, we can easily

predict the next state p(d) from the current state. This predict-update iteration naturally implies a

Bayesian filtering scheme to update the DPV over time for better accuracy.
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Figure 4.3: Representation and update for DPV. (a) The DPV is defined over a 3D frustrum defined

by the pinhole camera model. (b) The DPV gets updated over time as the camera moves.

4.3.1 D-Net: Estimating DPV

For each frame It, we use a CNN, named D-Net, to estimate the conditional DPV, p(dt|It), using

It and its temporally neighboring frames. In this chapter, we consider a local time window of

five frames Nt = [t − 2∆t, t − ∆t, t, t + ∆t, t + 2∆t], and we set ∆t = 5 for all our testing

videos (25fps/30fps). For a given depth candidate d, we can compute a cost map by warping all

the neighboring frames into the current frame It and computing their differences. Thus, for all

depth candidates, we can compute a cost volume, which produces the DPV after a softmax layer:

L(dt|It) =
∑

k∈Nt,k 6=t

||f(It)− warp(f(Ik); dt, δTkt)||,

p(dt|It) = softmax(L(dt|It)), (4.3)

where f(·) is a feature extractor, δTkt is the relative camera pose from frame Ik to frame It, warp(·)
is an operator that warps the image features from frame Ik to the reference frame It, which is

implemented as 2D grid sampling. In this chapter, without loss of generality, we use the feature

extractor f(·) from PSM-Net [28], which outputs a feature map of 1/4 size of the input image.

Later in Sec. 4.3.3, we learn a refinement R-Net to upsample the DPV back to the original size of

the input image.

Figure 4.4 shows an example of a depth map d̂(u, v) and its confidence map Ĉ(u, v) (blue

means low confidence) derived from a Depth Probability Volume (DPV) from the input image.

The bottom plot shows the depth probability distributions p(d; u, v) for the three selected points,

respectively. The red and green points have sharp peaks, which indicates high confidence in their

depth values. The blue point is in the highlight region, and thus it has a flat depth probability

distribution and a low confidence for its depth.

4.3.2 K-Net: Integrating DPV over Time

When processing a video stream, our goal is to integrate the local estimation of DPVs over time

to reduce uncertainty. As mentioned earlier, this integration can be naturally implemented as
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Figure 4.4: An example of a depth map d̂(u, v) and its confidence map Ĉ(u, v) (blue means low

confidence) derived from a Depth Probability Volume (DPV). The bottom plot shows the depth

probability distributions p(d; u, v) for the three selected points, respectively. The red and green

points have sharp peaks, which indicates high confidence in their depth values. The blue point is

in the highlight region, which results in a flat depth probability distribution and a low confidence

for its depth value.

Bayesian filtering. Let us define dt as the hidden state, which is the depth (in camera coordi-

nates) at frame It. The “belief” volume p(dt|I1:t) is the conditional distribution of the state giving

all the previous frames. A simple Bayesian filtering can be implemented in two iterative steps:

Predict : p(dt|I1:t)→ p(dt+1|I1:t),
Update : p(dt+1|I1:t)→ p(dt+1|I1:t+1), (4.4)

where the prediction step is to warp the current DPV from the camera coordinate at t to the camera

coordinate at t+ 1:

p(dt+1|I1:t) = warp(p(dt|I1:t), δTt,t+1), (4.5)

where δTt,t+1 is the relative camera pose from time t to time t + 1, and warp(·) here is a warp-

ing operator implemented as 3D grid sampling. At time t + 1, we can compute the local DPV

p(dt+1|It+1) from the new measurement It+1 using the D-Net. This local estimate is thus used to

update the hidden state, i.e., the “belief” volume,

p(dt+1|I1:t+1) = p(dt+1|I1:t) · p(dt+1|It+1). (4.6)

Note that we always normalize the DPV in the above equations and ensure
∫ dmax

dmin
p(d) = 1. Fig-

ure 4.5 shows an example. As shown in the second row, with the above Bayesian filtering (labeled

as ”no damping”), the estimated depth map is less noisy, especially in the regions of the back wall

and the floor.
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Figure 4.5: Comparison between different methods for integrating DPV over time. Part of the wall

is occluded by the chair at frame t and disoccluded in frame t+1. No filtering: not integrating the

DPV over time. No damping: integrating DPV directly with Bayesian filtering. Global damping:

down-weighting the predicted DPV for all voxels using Eq. 4.7 with λ = 0.8. Adaptive damping:

down-weighting the predicted DPV adaptively with the K-Net (Sec. 4.3.2). Using the K-net, we

get the best depth estimation for regions with/without disocclusion.



However, one problem with directly applying Bayesian filtering is it integrates both correct

and incorrect information in the prediction step. For example, when there are occlusions or dis-

occlusions, the depth values near the occlusion boundaries change abruptly. Applying Bayesian

filtering directly will propagate wrong information to the next frames for those regions, as high-

lighted in the red box in Fig. 4.5. One straightforward solution is to reduce the weight of the

prediction in order to prevent incorrect information being integrated over time. Specifically, by

defining E(d) = − log p(d), Eq. 4.6 can be re-written as

E(dt+1|I1:t+1) = E(dt+1|I1:t) + E(dt+1|It+1),

where the first term is the prediction and the second term is the measurement. To reduce the weight

of the prediction, we multiply a weight λ ∈ [0, 1] with the first term,

E(dt+1|I1:t+1) = λ · E(dt+1|I1:t) + E(dt+1|It+1). (4.7)

We call this scheme “global damping”. As shown in Fig. 4.5, global damping helps to reduce the

error in the disoccluded regions. However, global damping may also prevent some correct depth

information to be integrated to the next frames, since it reduces the weights equally for all voxels

in the DPV. Therefore, we propose an “adaptive damping” scheme to update the DPV:

E(dt+1|I1:t+1) = E(dt+1|I1:t) + g(∆Et+1, It+1), (4.8)

where ∆Et+1 is the difference between the measurement and the prediction,

∆Et+1 = E(dt+1|It+1)− E(dt+1|I1:t), (4.9)

and g(·) is a CNN, named K-Net, which learns to transform ∆Et+1 into a correction term to

the prediction. Intuitively, for regions with correct depth probability estimates, the values in the

overlapping volume of DPVs are consistent. Thus the residual in Eq. 4.9 is small and the DPV

will not be updated in Eq. 4.8. On the other hand, for regions with incorrect depth probability, the

residual would be large and the DPV will be corrected by g(∆E, It+1). This way, the weight for

prediction will be changed adaptively for different DPV voxels. As shown in Fig. 4.5, the adaptive

damping, i.e., K-Net, significantly improve the accuracy for depth estimation.

4.3.3 R-Net and Training Details

Finally, since the DPV p(dt|I1:t) is estimated with 1/4 spatial resolution (on both width and height)

of the input image, we employ a CNN, named R-Net, to upsample and refine the DPV back to the

original image resolution. The R-Net, h(·), is essentially an U-Net with skip connections, which

takes input the low-res DPV from the K-Net g(·) and the image features extracted from the feature

extractor f(·), and outputs a high-resolution DPV.

In summary, as shown in Fig. 4.2, the entire network has three modules, i.e., the D-Net,

f(·; Θ1), the K-Net, g(·; Θ2), and the R-Net, h(·; Θ3). Detailed network architectures are pro-

vided in Fig. 4.6, Fig. 4.7 and Fig. 4.8. The full network is trained end-to-end, with simply the

Negative Log-Likelihood (NLL) loss over the depth, Loss = NLL(p(d), dGT ). We also tried to
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add image warping as an additional loss term (i.e., minimizing the difference between It and the

warped neighboring frames), but we found that it does not improve the quality of depth prediction.

During training, we use ground truth camera poses. For all our experiments, we use the ADAM

optimizer [98] with a learning rate of 10−5, β1 = .9 and β2 = .999. The whole framework,

including D-Net, K-Net and R-Net, is trained together in an end-to-end fashion for 20 epochs.

4.3.4 Camera Poses during Inference

During inference, given an input video stream, our method requires relative camera poses δT be-

tween consecutive frames — at least for all the first five frames — to bootstrap the computation of

the DPV. In this chapter, we evaluated several options to solve this problem. In many applications,

such as autonomous driving and AR, initial camera poses may be provided by additional sensors

such as GPS, odometer, or IMU. Alternatively, we can also run state-of-the-art monocular visual

odometry methods, such as DSO [53], to obtain the initial camera poses. Since our method outputs

continuous dense depth maps and their uncertainty maps, we can in fact further optimize the initial

camera poses within a local time window, similar to local bundle adjustment [190].

Specifically, as shown in Fig. 4.9, given p(dt|I1:t), the DPV of the reference frame It in the

local time window Nt, we can warp p(dt|I1:t) to the reference camera view in Nt+1 to predict the

DPV p(dt+1|I1:t) using Eq. 4.5. Then we get the depth map d̂ and confidence map Ĉ for the new

reference frame using Eq. 4.2. The camera poses within the local time windowNt+1 are optimized

as:

min.
δTk,t+1

k∈Nt+1,k 6=t+1

∑

k

Ĉ|It+1 − warp(Ik; d̂; δTk,t+1)|1, (4.10)

where δTk,t+1 is the relative camera pose of frame k to frame t+1; Ik is the source image at frame

k; warp(·) is an operator that warps the image from the source view to the reference view.

4.4 Experimental Results

We evaluate our method on multiple indoor and outdoor datasets [62, 64, 168, 176], with an em-

phasis on accuracy and robustness. For accuracy evaluation, we argue the widely-used statistical

metrics [52, 193] are insufficient because they can only provide an overall estimate over the en-

tire depth map. Rather, we feed the estimated depth maps directly into classical RGB-D based

3D scanning systems [134, 137] for 3D reconstruction — this will show the metric accuracy, the

consistency, and the usefulness of the estimation. For robustness evaluation, we performed the

aforementioned cross-dataset evaluation tasks, i.e., testing on new datasets without fine-tuning.

The performance degradation over new datasets will show the generalization ability and robust-

ness for a given algorithm.

As no prior work operates in the exact setting as ours, it is difficult to choose methods to

compare with. We carefully select a few recent DL-based depth estimation methods and try our

best for a fair comparison. For single-view methods, we select DORN [60] which is the current

state-of-the-art [3]. For two-view methods, we compare with DeMoN [193], which shows high

quality depth prediction from a pair of images. We also compare with MonoDepth [67], which is
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Figure 4.6: D-Net structure. The structure is taken from [28]

Figure 4.7: K-Net structure.



Figure 4.8: R-Net structure.
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Figure 4.9: Camera pose optimization in a sliding local time window during inference. Given

the relative camera pose from the reference frame in Nt to the reference frame in Nt+1, we can

predict the depth map for the reference frame inNt+1. Then, we optimize the relative camera poses

between every source frame and the reference frame in Nt+1 using Eq.4.10.

a semi-supervised learning approach from stereo images. To improve the temporal consistency for

these per-frame estimations, we trained a post-processing network [102], but we observed it does

not improve the performance. Since there is always scale ambiguity for depth from a monocular

camera, for fair comparison, we normalize the scale for the outputs from all the above methods

before we compute statistical metrics [52].

The inference time for processing one frame in our method is ∼ 0.7 second per frame without

pose optimization and ∼ 1.5 second with pose estimation on a workstation with GTX 1080 GPU

and 64 GB RAM memory, with the framework implemented in Python. The pose estimation part
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ErrorEst. depthConfidenceInput frames

Figure 4.10: Exemplar results of our approach on ScanNet [41]. In addition to high quality depth

output, we also obtain reasonable confidence maps (as shown in the marked regions for occlusion

and specularity) which correlates with the depth error. Moreover, the confidence maps accumulate

correctly over time with more input frames.

Table 4.1: Comparison of depth estimation over the 7-Scenes dataset [168] with the metrics defined

in [52].

σ < 1.25 abs. rel rmse scale inv.

DeMoN [193] 31.88 0.3888 0.8549 0.4473

DORN [60] 60.05 0.2000 0.4591 0.2207

Ours 69.26 0.1758 0.4408 0.1899

can be implemented with C++ to improve efficiency.

Results for Indoor Scenarios We first evaluated our method for indoor scenarios, for which

RGB-D sensors were used to capture dense metric depth for ground truth. We trained our network

on ScanNet [41]. Figure 4.10 shows two exemplar results. As shown, in addition to depth maps, our

method also outputs reasonable confidence maps (e.g., low confidence in the occluded or specular

regions) which correlates with the depth errors. Moreover, with more input frames, the confidence

maps accumulate correctly over time: the confidence of the books (top row) increases and the

depth error decreases; the confidence of the glass region (bottom row) decreases and the depth

error increases.

For comparison, since the models provided by DORN and DeMoN were trained on different

datasets, we compare with these two methods on a separate indoor dataset 7Scenes [168]. For our

method, we assume that the relative camera rotation δR within a local time window is provided

(e.g. measured by IMU). As shown in Table 4.1, our method significantly outperforms both De-

MoN and DORN on this dataset based on the commonly used statistical metrics [52]. Without

using an IMU, our method can also achieve better performance, as shown in Table 4.4.

For qualitative comparison, as shown in Fig. 4.11, the depth maps from our method are less

noisy, more sharper, and temporally more consistent. More importantly, using an RGB-D 3D

scanning method [137], we can reconstruct a much higher quality 3D mesh with our estimated

depths compared to other methods. Even when compared with 3D reconstruction using a real

RGB-D sensor, our result has better coverage and accuracy in some regions (e.g., monitors / glossy
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Table 4.2: Comparison of depth estimation on KITTI [64].

σ < 1.25 abs. rel rmse scale inv.

Eigen [52] 67.80 0.1904 5.114 0.2628

Mono [67] 86.43 0.1238 2.8684 0.1635

DORN [60] 92.62 0.0874 3.1375 0.1233

Ours 93.15 0.0998 2.8294 0.1070

Table 4.3: Cross-dataset tests for depth estimation in the outdoors.

KITTI (train)→ virtual KITTI (test)

σ < 1.25 abs. rel rmse scale inv.

DORN [60] 69.61 0.2256 9.618 0.3986

Ours 73.38 0.2537 6.452 0.2548

Indoor (train)→ KITTI (test)

σ < 1.25 abs. rel rmse scale inv.

DORN [60] 25.44 0.6352 8.603 0.4448

Ours 72.96 0.2798 5.437 0.2139

surfaces) where active depth sensors cannot capture.

Results for Outdoor Scenarios We also evaluated our method on some outdoor datasets —

KITTI [64] and virtual KITTI [62]. The virtual KITTI dataset is used because it has dense, accurate

metric depth as ground truth, while KITTI only has sparse depth values from LiDAR as ground

truth. For our method, we use the camera poses measured by the IMU and GPS. Table 4.2 lists the

comparison results with DORN [60], Eigen [52], and MonoDepth [67] which are also trained on

KITTI [64]. Our method has similar performance with DORN [60], and is better than the other

two methods, based on the statistical metrics defined in [52].

Figure 4.12 shows qualitative comparison for depth maps in KITTI dataset. As shown, our

method generate sharper and less noisier depth maps. In addition, our method outputs depth con-

fidence maps (e.g., lower confidence on the car window). Our depth estimation is temporally

consistent, which leads to the possibility of fusing multiple depth maps with voxel hashing [137]

in the outdoors for a large-scale dense 3D reconstruction, as shown in Fig. 4.12.

In Table 4.3, we performed the cross-dataset task. The left shows the results with training from

KITTI [64] and testing on virtual KITTI [62]. The right shows the results with training from indoor

datasets (NYUv2 [131] for DORN [60] and ScanNet [41] for ours) and testing on KITTI [64]. As

shown, our method performs better, which shows its better robustness and generalization ability.

Ablation Study The performance of our method relies on accurate estimate of camera poses, so

we test our method with different camera pose estimation schemes: (1) Relative camera rotation
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Figure 4.11: Depth and 3D reconstruction results on indoor datasets (best viewed when zoomed

in). We compare our method with DORN [60] and DeMoN [193], in terms of both depth maps

and 3D reconstruction using Voxel Hashing [137] that accumulates the estimated depth maps for

multiple frames. To show the temporal consistency of the depths, we use different numbers of depth

maps for Voxel Hashing: 2 depth maps for the first sample and 30 depth maps for the other samples.

The depth maps from DORN contain block artifacts as marked in red boxes. This is manifested

as the rippled shapes in the 3D reconstruction. DeMoN generates sharp depth boundaries but

fails to recover the depth faithfully in the regions marked in the green box. Also, the depths

from DeMoN is not temporally consistent. This leads to the severe misalignment artifacts in the

3D reconstructions. In comparison, our method generates correct and temporally consistent depths

maps, especially at regions with high confidence, such as the monitor where even the Kinect sensor

fails to get the depth due to low reflectance.



Input frame MonoDepth DORN Ours depth Ours confidence

MonoDepth topview DORN topview Ours topview

Figure 4.12: Depth map and 3D reconstruction for KITTI, compared with DORN [60], Mon-

oDepth [193] (best viewed when zoomed in). First row: Our depth map is sharper and contains

less noise. For specular region (marked in the pink box), the confidence is lower. Second row, from

left to right: reconstructions using depth maps of the same 100 frames estimated from MonoDepth,

DORN and our method. All meshes are viewed from above. Within the 100 frames, the vehicle

was travelling in a straight line without turning.

Table 4.4: Performance on 7Scenes with different initial poses

σ < 1.25 abs. rel rmse scale inv.

VO pose 60.63 0.1999 0.4816 0.2158

1st win. 62.08 0.1923 0.4591 0.2001

GT R 69.26 0.1758 0.4408 0.1899

GT pose 70.54 0.1619 0.3932 0.1586

δR is read from an IMU sensor (denoted as “GT R”). (2) δR of all frames are initialized with

DSO [53] (denoted as “VO pose”) (3) δR of the first five frames are initialized with DSO [53]

(denoted as “1st win”). We observe that when only the camera poses in the first time window

are initialized using DSO, the performance in terms of depth estimation is better than that using

the DSO pose initialization for all frames. This may seem counter-intuitive, but it is because

monocular VO methods sometimes have large errors for textureless regions while optimization

with dense depths may overcome this problem.

Usefulness of the Confidence Map The estimated confidence maps can also be used to further

improve the depth maps. As shown in Fig. 4.13(a), given the depth map and the corresponding

confidence, we can correct the regions with lower confidence due to specular reflection. Also, for

3D reconstruction algorithm, given the depth confidence, we can mask out the regions with lower

confidence for better reconstruction, as shown in Fig. 4.13(b).
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Figure 4.13: Usefulness of depth confidence map. (a) Correct depth map using Fast Bilateral

Solver [8]. (b) Mask out pixels with low confidence before applying Voxel Hashing [137].



4.5 Limitations

There are several limitations that we plan to address in the future. First, camera poses from a

monocular video often suffer from scale drifting, which may affect the accuracy of our depth

estimation. Second, in this work we focus on depth sensing from a local time window, rather than

solving it in a global context using all the frames. In the future, we plan to integrate our method

into visual SLAM systems to correct drifting and further improve depth quality.

4.6 Conclusions

In this chapter, we present a DL-based method for continuous depth sensing from a monocular

video camera. Our method estimates a depth probability distribution volume from a local time

window, and integrates it over time under a Bayesian filtering framework. Experimental results

show our approach achieves high accuracy, temporal consistency, and robustness for depth sensing,

especially for the cross-dataset tasks. The estimated depth maps from our method can be fed

directly into RGB-D scanning systems for 3D reconstruction and achieve on-par or sometimes

more complete 3D meshes than using a real RGB-D sensor.
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Chapter 5

See below human skin with EpiVerge

5.1 Introduction

Imaging below the skin and through tissue is important for diagnosis of several dermatological

and cardiovascular conditions. MRI remains the best current approach to obtain a 3D dimensional

visualization below the skin. But MRI is expensive, requires visits to a hospital or imaging center,

and the patients are highly inconvenienced. Non-invasive imaging using visible or near-infra-red

light has the potential to make devices portable, safe, and convenient to use at home or at point-of-

care centers.

While light penetrates deep through tissue, it scatters continuously resulting in poor image

contrast. This makes it challenging to recover useful properties about the anatomical structures

below the skin. Further, the anatomical structures include a complex heterogeneous distribution of

tissue, vasculature, tumors (benign or malignant) that vary in optical properties (density, scattering,

absorption) and depths below the skin. This makes the modeling of light propagation below skin

challenging.

Fortunately, under the highly scattering regime, the photons can be assumed to be traveling

diffusely in the medium and can be described as a random walk. This has enabled accurate for-

ward models under diffuse photon propagation. In order to improve contrast, imaging detectors

and sources are placed at different locations on the skin. This arrangement captures only indirectly

scattered light while eliminating the dominant direct reflection and backscatter 1. The approaches

that attempt to invert the diffusion model with such indirect light imaging systems are commonly

classified as ”Diffuse Optical Tomography” (DOT). Due to their portability and ease of use, DOT is

becoming an attractive choice over traditional modalities like MRI for cerebral as well as hemody-

namic imaging [139, 197]. More recently, DOT has been shown to be a promising tool in detecting

strokes [22], breast cancer [68], and thyroid imaging [61].

But there are two important drawbacks to existing DOT approaches. First, the number of

source-detector pairs limits the form-factor of devices built so far. Even with multiple source-

detector pairs, applying traditional inverse methods for DOT results in poor resolution, as shown

1Analogously, in vision and graphics, works measure the Bi-directional Sub-surface Scattering Reflectance Distri-

bution Function (BSSRDF) [45, 46, 59, 90, 188]
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Figure 5.1: Diffuse Optical Tomography (DOT) with line-scanned camera and line scanning

MEMS projector (left) compared with traditional DOT [2] with 25 source-detector pairs (right).

Both arrangements capture short range indirect subsurface scattered light but our approach is more

efficient and recovers the medium (bottom row) at much higher resolution.



in the second column of Figure 5.1. Second, as the number of source-detector pairs increases,

the computational complexity of the algorithms that recover the volumetric medium increases pro-

hibitively [20]. In this chapter, we present an imaging and algorithmic approach to resolve these

fundamental drawbacks in DOT systems. Instead of separate detector-source pairs, we use a high

resolution 2D camera and a MEMS projector to obtain a large number of effective source-detector

pairs, as is commonly done in vision and graphics. This makes the DOT system much more com-

pact and programmable. Second, to increase the speed of acquisition, we illuminate a line on the

skin and capture a different line in the sensor, as described in [101]. This arrangement captures

short-range indirect light transport much faster than point-to-point illumination and sensing. But

[101] uses a rectified configuration where the projector and camera planes are parallel [141], lead-

ing to a low spatial resolution over a large overlapping stereo volume. We develop a new design

with a verged configuration that enables high spatial resolution imaging within a small region on

the skin (approximately 8 cm x 8 cm).

Using this verged design, we develop an efficient algorithm that is based on the convolution

approximation to the forward model for light propagation in a heterogeneous subsurface medium.

We show that the convolution kernel is independent of the heterogeneous structure and only de-

pends on the imaging configuration and the scattering properties of the homogeneous scattering

medium. This allows us to recover the heterogeneous structures at much higher spatial resolution

compared with the traditional DOT, as shown in the last row of Figure 5.1.

We evaluate our imaging and algorithmic approaches on simulated data by borrowing opti-

cal parameters of skin, tissue, blood and vasculature from bio-optical literature [108]. We then

demonstrate our approach with an imaging setup that consists of a high resolution 2D camera and

a custom-built MEMS based laser projector that are verged to capture near-microscopic spatial

resolution beneath a small area of the surface. This imaging system is used to recover heteroge-

neous structures immersed within a highly scattering medium, such as milk. We show that with the

proposed hardware and algorithm, we can detect reasonably accurate boundaries of structures up

to a depth of 8mm below the surface of milk. We believe this work represents strong progress in

achieving high-spatial resolution diffuse optical tomography for the first time at subsurface depths

of several millimeters in highly scattering media.

5.2 Related Works

Over the past few years, there have been developments mainly on two aspects of DOT - improving

the instrument system design [167, 169, 219], and secondly, on theoretical aspects that involves ac-

curate forward modeling and rendering [6, 13]. The traditional DOT setup consists of illumination

sources and detectors which are placed on the tissue or skin surface. To improve the reconstruction

of optical parameters of the tissue volume, multiple configurations of DOT have been explored.

In general, it is not possible to obtain depth information from a single source-detector system and

therefore multiple source-detector configurations are needed [165].

More recent systems utilize the time-domain (TD) information of photon propagation. TD-

DOT systems consist of a source emitting a pulse of light and fast-gated detectors that capture the

time-profile of photon arrival. The detectors and the sources are located on a probe with fixed
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strategic distances between them, so that the photons have traversed a certain depth and rejecting

early arriving photons [149]. The most important drawback in these systems is that the limited

number of detectors constrains the spatial resolution of the reconstructed optical parameters. More

recent DOT systems use structured illumination, which involves projection of patterns instead of

discrete sources [10, 66, 100, 152]. The light after interaction with the tissue is captured by either a

single-pixel detector or a 2D CCD camera. The use of structured illumination addresses the issues

of low speed and sparse spatial sampling, which are associated with traditional DOT systems [152].

The reconstruction of optical parameters involves fitting a forward model to the acquired mea-

surements. The forward model can be obtained either from mesh-based Monte-Carlo simulations

[50, 215] or from a diffusion approximation [16, 17, 48] derived from radiative-transfer equations

(RTE). While the Monte-Carlo based forward model is more accurate, it requires hours of comput-

ing time. Under Born or Rytov approximations, the forward model relates the optical parameters

and the measurements by a linear set of equations [140]. Generally, the number of optical pa-

rameters to be reconstructed per voxel is very large compared to the number of measurements,

and therefore the inverse problem is severely ill-posed. Tikhonov regularizer or sparsity-inducing

regularizers are commonly applied for solving the inverse problem [30, 75]. However, with dense

sampling the computational load increases as the reconstruction process involves inversion of a

large-scale Jacobian matrix [213].

A notable alternative approach [218] is to use the Monte Carlo estimator to differentiate the

RTE with respect to any arbitrary differentiable changes of a scene, such as volumetric scatter-

ing property, anisotropic phase function or location of heterogeneity. This approach shares the

same generality as RTE. However, the performance of the differentiation-based method is highly

dependent on the initial estimation of the variables and tend to be trapped in local minimal. Our

conventional formulation simplifies the RTE such that the inverse problem is convex. As a result,

the result of our method can be used as a good initial guess for the full RTE method [218].

5.3 Forward model

In this section, we will review the derivation of the basic theory in DOT for dense scattering tissues.

First, we will derive the Diffusion Equation for the surrounding homogeneous medium from the

Radiative Transfer Equation [21, 81], assuming that the homogeneous scattering medium surround-

ing the heterogeneities is dense enough such that the light propagation in the medium is dominated

by the high-order light scattering events and the angular distribution of light propagation direction

is isotropic. Then we will derive the Diffusion Equation for the heterogeneities, assuming that the

light absorption coefficient discrepancy dominates the scattering property difference between the

heterogeneous embedding and the surrounding medium. Although the assumptions do not always

hold perfectly, we find that our proposed method is robust to the cases where the assumptions fail

through evaluations in Section 5.6.1.

The Radiative Transfer Equation (RTE) describes the light radiance, which models light prop-

agation, at a particular position in the scattering medium at a specific time instant. It is generally

difficult to solve the RTE in closed form. When the medium is highly scattering, as in the case of

biological tissue, the diffusion approximation is commonly applied to obtain the diffusion equa-
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Figure 5.2: Source-detector configuration in typical DOT system. The fluence rate at the detector

is given by superposition of the real diffuse source located z0 below the surface, and a negative

image source around the zero flux line denoted by EBC.

tion [48, 90]. The photon diffusion equation models the fluence rate Φ, that is defined as the

total light radiance integrated over all directions, at a position ~r in the scattering medium for a

continuous intensity light source S, given as,

(−D(~r)∇2 + µa(~r))Φ(~r) = S(~r), (5.1)

where µa(~r), µ
′
s(~r) are the absorption coefficient and the reduced scattering coefficient of the

medium respectively, and D(~r) = 1/(3(µ′
s(~r)+µa(~r))) is known as the diffusion coefficient of the

scattering medium. The tissue is commonly modeled as a semi-infinite scattering homogeneous

medium, with the source and the detector positioned at the air-medium interface. When the light

source is treated as a constant pencil beam source, i.e. S(~r) = Sδ(~rs), the solution for fluence rate

in (5.1) for the configuration in Figure 5.2 can be written in a analytical form using extrapolated

zero boundary conditions (EBC):

Φ0(~rd, ~rs) =
S

4πD0

[

e−βr1

r1
− e−βr2

r2

]

, (5.2)

where, Φ0(~rd, ~rs) is the fluence rate at detector kept at a position ~rd with a constant source at ~rs
[17]. The diffusion coefficient of the homogeneous medium is denoted by D0 and the term β =√
3µ′

sµa depend on the optical properties of the homogeneous scattering medium. The extrapolated

boundary condition (EBC) accounts for the refractive index mismatch of air and the medium.

Solving for the boundary condition defines a zero fluence rate line located zb above the air-medium

interface. This boundary line is imposed by placing a negative image of the source around the

zero-crossing line [17]. The terms r1 and r2 are the distances from the detector to the real and the
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negative image source respectively, and they are defined as:

r1 = |~rs + z0 − ~rd|,
r2 = |~rs − z0 − 2zb − ~rd|,

(5.3)

where, z0 = 3D is the location of diffused source in the medium. The term zb is the distance of

the zero fluence rate boundary from the air-medium interface.

Often, we are interested in reconstructing objects like veins or tumors embedded within human

tissue. Typically these objects have different optical parameters than the background medium. In

the presence of heterogeneity, the change in absorption coefficient of the medium can be defined

as,

µa(~r) = µa0 + δµa(~r) (5.4)

where δµa(~r) is the difference in absorption coefficient of the heterogeneous object over the back-

ground medium. We assume that the change in the reduced scattering coefficient µ′
s(~r) is negligible

and can be ignored. The resultant fluence rate at the detector position ~rd for a source at ~rs is writ-

ten as a linear addition of fluence rate from homogeneous component Φ0(~rd, ~rs) and the change in

fluence rate ∆Φ(~rd, ~rs) due to the heterogeneous object,

Φ(~rd, ~rs) = Φ0(~rd, ~rs) + ∆Φ(~rd, ~rs). (5.5)

The change in fluence rate is due to the absorption coefficient change across the volume around

the point of interest [17]:

∆Φ(~rd, ~rs) = −
∫

Φ0(~rs, ~rj)
δµa(~rj)

D0

G0(~rj, ~rd)d~rj, (5.6)

where G0 represents the Green’s function for a homogeneous slab and is related to Φ0 in (5.2) as

G0 = D0Φ0/S.

We acquire images using a CCD camera, which records the radiant exitance at the surface.

The radiant exitance is proportional to the diffuse reflectance R, which is the projection of current

density along the surface normal of the detector for a unit-power source,

R(~rd, ~rs) = D0

[

δΦ

δzd

]

zd=0

, (5.7)

where zd is the z component of the detector location ~rd.

Applying a derivative to (5.5) with respect to zd and multiplying by D0, we obtain,

R(~rd, ~rs) = R0(~rd, ~rs) + ∆R(~rd, ~rs), (5.8)

where R0 = D0 [δΦ0/δzd]zd=0 is the diffuse reflectance due to the homogeneous background

medium and is obtained by taking a derivative of Φ0 in (5.2) with respect to zd, given by [90],

R0=
1

4π

[

z0(1 + βr1)e
−βr1

r31
+
(z0 + 2zb)(1 + βr2)e

−βr2

r32

]

(5.9)

72



Similarly, ∆R represents the change in diffuse reflectance for the heterogeneous object. The

expression for ∆R is obtained by taking a derivative of (5.6) with respect to zd and multiplying by

D0, resulting in the following expression,

∆R(~rd, ~rs) = −
∫

Φ0(~rs, ~rj)δµa(~rj)

[

δG0(~rj, ~rd)

δzd

]

zd=0

d~rj,

= −
∫

Φ0(~rs, ~rj)δµa(~rj)R0(~rj, ~rd)d~rj.

(5.10)

We discretize the integral above by dividing the medium into N voxels, and the optical prop-

erties are defined for each voxel. If the medium is discretized into N voxels with volume of each

voxel as h3, then (5.10) can be written in the discrete summation form given by

∆R(~rd, ~rs) = −
N
∑

j=1

P (~rs, ~rj, ~rd)δµa(~rj), (5.11)

with

P (~rd, ~rj, ~rs) = Φ0(~rs, ~rj)R0(~rj, ~rd)h
3. (5.12)

The term P (~rs, ~rj, ~rd) is commonly known as the phase function defined at each voxel position

~rj in the medium. The values of the phase function depend on the optical properties of the back-

ground homogeneous medium as well as the location of the source ~rs and the detector ~rd. Note

that the phase function is independent from the structure of the heterogeneous object.

5.4 Convolution approximation of heterogeneous model

In this section, we describe how the diffuse forward model can be adapted to our experimental

setup. We project a line illumination on the scene using a laser projector as in [101]. So the

light source is now considered as a slit source instead of a point source. By using a slit source

we reduce the acquisition time since line scanning is significantly faster than point scanning. We

incorporate a slit source in the forward model by using the linear superposition principle. The

quantities described in the previous section which are functions of the source location ~rs are now

obtained by adding up the contributions corresponding to all the point sources on the illumination

line.

On the detector side, we use a rolling shutter camera synchronised with the laser projector. The

advantage of using a camera is that each pixel in the camera sensor can now be considered as an

individual detector, and hence we have a detector array with millions of detectors. Secondly, since

the camera sensor can be considered as a grid array of detectors, we can derive a convolution form

of the forward model, significantly speeding up the computation time. We acquire several images

by varying the pixel to illumination line distance shown in Figure 5.3. These images are referred

to as short-range indirect images. The boundaries of the heterogeneous structures become more

blurry in the short range indirect image as the pixel to illumination line distance ∆y increases. The

blurring effect is related to ∆y and the depth of the structures. This is similar to the depth from
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Figure 5.3: Generation of short range indirect images for a small (a) and a large (b) pixel to

illumination distance ∆y. The simulated scene consists of three cylinders embedded in a scattering

medium. The offset ∆y is kept constant while scanning the entire scene to obtain an image. For a

shorter ∆y as in (a), the rods are distinctly visible, whereas for longer ∆y, the blurring increases

with reduction of signal-to-noise ratio.

(de)focus methods, where the blurring effect is related to the focal setting of the camera and the

scene depth.

The values of phase function at each voxel for the short-range indirect images can be interpreted

as the number of photons that have traversed through the corresponding voxel for a given pixel

to illumination line distance. Typically, the most probable path between a pixel and the source

illumination line follows a well-known ”banana shape” [37] and is shown for different pixel to

illumination line distances in the Figure 5.4.

We note two important properties of the phase function P . Firstly, in case of simple geometry

like the semi-infinite homogeneous background medium under consideration, the expression for

the Green’s function G0 as well as Φ0 can be written in terms of relative voxel location rather than

the absolute location, i.e,

P (~rd, ~rj, ~rs) = Φ0(~rs − ~rj)R0(~rj − ~rd),

= P (~rj − ~rd, ~rs − ~rd).
(5.13)

Secondly, we note that the values of the phase function decays fast spatially as the distance

between a voxel and source or detector position increases. Hence, we can neglect the contribution

of voxels that are far away from both the illumination line and the pixel. Since we are using
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Figure 5.4: Visualization of phase function for different pixel to illumination line distance in y-z

plane (top row), and x-y plane (bottom row). S and D represents the illumination line and pixel

location respectively. As the pixel to illumination line distance increases, the photons tend to

travel deeper into the scattering medium but leads to reduced number of photons reaching the

pixel, thereby reducing the signal-to-noise ratio.

a projected line illumination as our light source, we approximate the phase function in (5.13)

by the summation of truncated phase function for each source point along the illumination line.

Additionally, as evident from the figure, the contribution of light from the illumination line to a

center pixel is dominant only near the center of the illumination line, and hence we can use a

spatially-invariant phase kernel κ. We define the pixel to illumination line distance ∆y = ys − yd,

where ys and yd are the y component of illumination row ~rs and the pixel location ~rd respectively.

The phase kernel for a line illumination can then be written as,

κ(~rj − ~rd; ∆y) =
∑

~rs

P (~rj − ~rd, ~rs − ~rd), (5.14)

where the summation over ~rs is for all the point sources lying on the illumination line. In the

following, we will denote the phase kernel as κ(∆y) for denotation simplicity unless the spatial

dependency needs to be emphasized.

Similarly, the diffuse reflectance R(~rd, ~rs), the change in diffuse reflectance ∆R(~rd, ~rs) and the

homogeneous diffuse reflectance R0(~rd, ~rs) in (5.8) are modified for line illumination as the sum

of contribution from all point sources lying on the illumination line, and are defined as R(~rd; ∆y),
∆R(~rd; ∆y) and R0(~rd; ∆y) respectively. We denote (xd, yd) as the surface coordinates of the

pixel location ~rd as shown in Figure 5.3. If the change in absorption coefficient δµa(~rj) in (5.11)

is represented by a 3D volume Q, then the change in diffuse reflectance ∆R in (5.11) can now be
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expressed in a convolution notation as

∆R(xd, yd; ∆y) = −
∑

~rs

N
∑

j=1

P (~rj − ~rd, ~rs − ~rd)δµa(~rj)

= −
N
∑

j=1

κ(~rj − ~rd; ∆y)δµa(~rj)

(5.15)

where ∆R ∈ R
M×N is defined over a sensor array of dimension M × N and corresponds to

each pixel to illumination line distance ∆y as shown in Figure 5.3. By representing the change of

absorption coefficient δµa by a 3D volume Q, we can rewrite (5.15) as the sum of a 3D convolution

results:

∆R(xd, yd; ∆y) = −
∑

z

κ(∆y) ∗Q(xd, yd, z) (5.16)

The change in absorption coefficient in the 3D volume is denoted by Q ∈ R
M×N×D, where D is

the depth resolution. The 3D truncated kernel κ ∈ R
m×n×D is the defined for each ∆y, and has

the same depth resolution as that of the 3D volume Q. Using (5.8), the resultant diffuse reflectance

R acquired at each pixel to illumination line distance ∆y can be written as a linear summation

of the contribution from homogeneous background medium R0 and the perturbation term due to

presence of heterogeneity ∆R,

R(xd, yd; ∆y) = R0(xd, yd; ∆y)−
∑

z

κ(∆y) ∗Q(xd, yd, z)

where R ∈ R
M×N is the diffuse reflectance on an M ×N grid.

5.4.1 Reconstruction of heterogeneous structure

For the set of captured images which correspond to different pixel to illumination line ∆y, we

capture a set of short range indirect images I(∆y). For the given set of images, we reconstruct the

volume Q of unknown optical parameters by solving the following optimization problem,

min
Q

.

Tdmax
∑

∆y=Tdmin

||I(∆y)− l(R0(∆y)− κ(∆y) ∗Q)||2F + λ||Q||1, (5.17)

where ||.||F denotes the Frobenius norm, and l is an unknown scaling factor which depends on

the intensity and width of the laser profile and the sensitivity of the camera. The procedure for

determining this factor l is highlighted in more detail in Section 5.6.2. We also assume the recon-

structed volume to be sparse, which essentially implies that the heterogeneous object only occupies

a fraction of the total reconstructed volume.

The optimization is done over a range of ∆y values. For smaller ∆y values, the diffusion

approximation breaks down, as the photon propagation is largely governed by single or very few

scattering events. For very large ∆y, not enough photons reach the camera pixels, and therefore the
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measurement images have a poor signal-to-noise ratio. Therefore, the range of ∆y values needs to

be chosen appropriately.

If we know the exact optical parameters µ′
s and µa of the homogeneous background medium,

then we can construct the kernel κ(∆y) as in (5.14). However in some cases, the background

optical parameters of the material are not known. In those cases, we select a homogeneous patch

inside the field of view, and fit the pixel intensity measurements with lR0 with respect to the

unknown optical coefficients as in (5.9). We then use the estimated values of the coefficients to

construct the phase kernel κ(∆y) for solving the optimization in (5.17).

We use PyTorch for implementation given it is highly optimized for convolution operations.

The running time on a workstation with TianX GPU is around 5 minutes for 300 iterations for Q
with a depth resolution of 64. The λ value in (5.17) is heuristically chosen to be 0.0001. We start

the optimization with an initial value of all zeros for Q, and the reconstruction accuracy can be

further improved if a better initialization is provided based on prior knowledge of the scene.

5.5 Hardware

In this section, we describe our imaging setup for capturing short-range indirect images. In [101],

a rectified configuration where the projector and camera are parallel is used for capturing the short-

range images. That setup leads to a low spatial resolution over a large overlapping stereo volume.

To capture high resolution images for small area of interest, we need a high spatial resolution over

a smaller overlapping stereo volume. One way to achieve smaller overlapping stereo volume is

to verge the projector and camera. This motivates us to design a verged setup for capturing high

resolution short-range indirect images.

Our setup consists of a pair of synchronized rolling shutter camera and a laser projector imple-

mented with Micro-Electro-Mechanical-Systems (MEMS). Our imaging setup is shown in Figuer

5.1 and Figure 5.7 (a). We use IDS-3950CPv2 industrial camera and Mirrorcle MEMS develop-

ment kit. The central wavelength for the laser light is 680 nm. The MEMS mirror reflects the laser

beam from the laser diode and the orientation of the MEMS mirror can be controlled in terms of

two rotation axes (vertical and horizontal). The size of the imaged area on the sample is 8 cm by

8 cm. We model the laser diode and MEMS mirror pair as a pinhole projector whose center of

projection is the center of rotation of the MEMS.

During the imaging process, the projector is scanned through the epipolar planes of the projector-

camera pair. The camera is synchronized such that the pixels having a pre-defined offset from the

corresponding epipolar line on the camera image plane are exposed. Each offset corresponds to

one pixel to illumination line distance ∆y as discussed in Section 5.4. For the physically rectified

projector-camera pair as in [101], the epipolar lines on the projector and camera image are horizon-

tal. This simply corresponds to illuminating and exposing the corresponding rows of projector and

camera. In contrast, in our setup, the epipolar lines in the projector and camera are not horizontal

due to the verged setup. So we cannot capture the short range indirect images by illuminating and

exposing corresponding rows. Instead, on the projector side, we control the angle of the MEMS

mirror to scan the light laser beam across a pencil of epipolar lines with different 2D slopes in

the projector image plane. On the camera side, we interpolate over offset epipolar lines to get the
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Figure 5.5: Images of a paper sticker captured using different devices. The sticker page with

letters is occluded by several other pages so no letters can be seen under regular lighting. (a)

Image captured with cellphone camera under regular lighting. ; (b) Short-range indirect image

captured with the device in [101]; (c) Enlarged image for the sticker region in (b); (d) Short-range

indirect image captured with our device. Our device has smaller FOV due to non-zero vergence

angle. The images captured with our device has higher resolution, SNR and contrast as shown in

the insects in (c) and (d). The bright spot in the center and the lines in (d) is due to the reflection

and inter-reflections from the protective glass in front of the MEMS mirror.



short range indirect images. As a special case, for ∆y = 0, the interpolated line overlaps with the

epipolar. The resultant image is the direct light image.

Our image setup has smaller FOV than the rectified system in [101] due to the non-zero ver-

gence angle between the project and camera. As a result, we can place the sample closer to the

camera while the sample can still be illuminated by the projector. This enables higher image reso-

lution for smaller area of interest so that more fine-grained (sub)surface details can be captured. In

Figure 5.5, we show the images of a paper sticker captured with different devices. The sticker page

with letters is occluded by several other pages so no letters can be seen under regular lighting. The

occluded letters are visible in the short range indirect images from both [101] and our setup. Our

device has smaller FOV and higher spatial resolution over the region of interest due to the verged

configuration. In addition, we have better contrast and higher SNR because the laser light source

used in our setup is of higher intensity compared to the pico-projector in [101]. The bright spot

in the center and the lines in (d) is due to the reflection and inter-reflections from the protective

glass in front of the MEMS. Due the higher image resolution enabled by the verged setup, more

structure details of the subsurface structure, such as blood veins underneath human skin can be

observed with our proposed setup, as show in Fig. 5.6.

5.5.1 Calibration

The device is mounted vertically above the liquid container as shown in Figure 5.7 (a), with no

cover above the scattering medium. We model the laser-MEMS as a pinhole projector whose

center of projection is the rotation center of the MEMS mirror. During the calibration process, we

estimate the relative pose between the MEMS mirror and the camera. For MEMS, we compensate

for the non-linear mapping between the input voltage for the MEMS and the mirror tilt angle, and

account for the mis-alignment of the MEMS mirror and the laser, as shown in Figure 5.7 (b).

More specifically, we illuminate planes with given poses relative to the camera with a set of dot

patterns. As shown in Figure 5.8, given the laser dot images for different plane positions, we can

fit the laser rays in 3D and triangulate the rays to get the origin of the rays, i.e. the rotation center

of the MEMS mirror. Due to the laser-MEMS misalignment and fitting error for the rays, the rays

will not intersect at one 3D point. We solve a least square problem for the intersection point where

the point to ray distances are minimized. The fitted rays are also used to account for the non-linear

relation between the MEMS input voltage and the rotation angle. In calibration, we build a lookup

table relating the input voltage for the MEMS and the rotation angle for the mirror to account for

their non-linear relation. During imaging, given the target laser ray direction, we can estimate the

required input voltage by interpolating over lookup table.

5.6 Experiment Results

5.6.1 Simulation

We test the proposed algorithm using Monte Carlo rendered images. For the homogeneous medium,

we use the scattering coefficients of human skin measured in [90]. The heterogeneous inclusions
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(a)

(b)

(c)

Figure 5.6: Subsurface imaging for human skin. (a)(b) The image and zoomed-in region of the

human skin, captured with the imaging system from [101]. (c) The image of the same body region

captured with our device. More vein details are visible, at the expense of smaller FOV.
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Figure 5.7: Experiment setup and calibration to compensate the laser-mirror misalignment and

non-linearity of MEMS. (a) The device is mounted vertically above the sample container, with no

cover above the scattering medium. (b) During MEMS calibration, we consider the misalignment

between the laser and mirror (above) and non-linearity of MEMS mechanics. Due to misalignment,

the incident laser beam onto the MEMS mirror will not be perpendicular to the mirror surface and

align with the MEMS rotation center; Due to non-linearity of MEMS mechanics, the input control

signal and degrees of rotation are not linearly related.

(a) (b) (c)

Figure 5.8: The MEMS-camera pose calibration. We illuminate a plane with known pose with 2D

array of beams as shown in (a) and (b). Given the plane orientations, we can get the 3D parameters

for the rays from multiple such images. Then we triangulate all the fitted rays to determine the

center of projection for the projector, in our case, the rotation center for the MEMS mirror.
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Figure 5.9: Simulated direct/global light image, the short range images with different ∆y settings,

and the DOT results. The homogeneous medium is skin in (a) and (c), skim milk in (b), with the

scattering coefficients measured in [90]. Photon and read-out noise are added to the input images.

The depths of inclusions in (a) and (b) are 4mm and 3mm respectively. In (c), the depth of the vein

structure is 5mm while the solid circle is 10mm deep, The inclusion boundaries in the global and

short-range indirect images are either blurred or shifted due to light scattering. The signal-to-noise

ration decreases as the pixel to illumination line distance increases since less photons are received

by the detectors. Our methods recovered the inclusion boundaries and their relative depths despite

the blurring and noises.
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Figure 5.10: (a) The average contrast of the short range indirect image varies with the inclusion

depth. The inclusion depth is the distance between the inclusion and the embedding medium

surface. (b) IoU vs. kernel sizes. For human skin, the performance saturates when the kernel size

approaches 20 mm in diameter For all simulations, the images are synthesized using Monte Carlo

method with scattering properties for human skin measured in [90].

are located up to 4 mm below the surface. For the imaging setup, the width of the laser illumina-

tion line is 1mm. The distance between the illumination line and the camera pixel ranges from 0
to 15 mm. To make the diffusion approximation valid for the algorithm, we only use the images

with the illumination to pixel distance ∆y larger than 2 mm.

The simulated direct and global light images are shown in the first two rows in Figure 5.9. The

global light image is the sum of the images captured with different ∆y’s except for ∆y = 0. The

inclusions can not be seen in the direct only image. For the global light image, because highly

scattering property of skin, the contrast is low for some of the deeper inclusions, such as the solid

circle in the right column. This makes the detection and localization for such objects (e.g. tumor

beneath the skin surface) difficult. For each short-range indirect image, the image intensity is

contributed in part by the indirect light that travels from the illumination line with a preset distance

to the imaged scene point. As a result, compared with the global light image, the contrast of the

inclusions are much higher for the short-range indirect images shown in the third and fourth rows

of Figure 5.9. On the other hand, for larger pixel to illumination line distance, the SNR is low

because there are less photons reaching the imaged scene point due to multiple scattering of light.

In addition, because the non-zero support of the diffuse scattering kernel increases with the pixel

to line illumination distance, the boundaries of the inclusions in the image becomes more blurry

for larger distance. Despite low SNR and blurring in the short-range indirect images, using the

proposed method, we are able to localize the 2D boundaries and estimate the relative depth for the

inclusions.

For the input short range indirect images, the contrast of the image decreases with the inclusion

depth, as shown in Figure 5.10 (a). This is because as the inclusions become deeper, most light

reaching the pixel is contributed by the scattered light from the homogeneous medium without

traveling through the inclusions. Another intuition is that the diffuse scattering phase function
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Figure 5.11: Performance with different (a) heterogeneity depth; (b) scattering coefficient µs0

of homogeneous background; (c) scattering coefficient of the heterogeneity µs1; (d) absorption

coefficient of the heterogeneity µa1 .

diminishes with the depth increase, as shown in Figure 5.4.

One key factor for the proposed method is the size of the diffuse scattering kernel. Smaller

kernel enables faster optimization process, but it will lead to more errors in the convolutional ap-

proximation, hence less accurate results; while larger kernel leads to better performance, it induces

more processing time. The choice for the size of diffuse scattering kernel is also related to the pixel

to illumination line distance. In addition, as shown in Figure 5.4, the non-zero support region for

the kernel varies with the pixel to illumination line distance. For large pixel to illumination line

distance, the magnitude of the kernel would be small due to multiple scatterings, so the perfor-

mance will saturate at certain distance. In Figure 5.10 (b), we show how the performance changes

with the kernel size when the medium is human skin. The performance is evaluated using the IoU

score of segmentation results for the inclusions. As we can see, for highly scattering medium like

human skin, the performance saturates when the kernel size approaches 20 mm in diameter.
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Figure 5.12: Real data images and results for single inclusion. The scattering medium is skim

milk with no or little water dilution. Rows from top to bottom: the direct and global light images,

the short-range indirect images with different ∆y settings, the medium free image and masked

depth map, two views of the 3D tomography results. (a) Solid circle plate inclusion. The inclusion

boundary in the global and short-range indirect images are either blurred or shifted due to light

scattering. The boundary is faithfully recovered from our method. (b) Solid triangle plate inclu-

sion. The inclusion is either blurry or barely visible in the global light and short-range indirect

images since the inclusion is relatively deep in the scattering medium. Our method is able to re-

construct the triangle structure despite highly scattering effects. (c) Curved thin black wire. The

3D wire structure is recovered in the 3D tomography results, even though it is not obvious at all in

the short range indirect images.

Performance for different scene settings

The derivation of the forward model in Section. 5.3 is based on two assumptions about the scat-

tering mediums: (1) the scattering coefficient of the surrounding homogeneous medium is large

such that the light propagation direction distribution is isotropic; (2) the absorption coefficient dis-

crepancy dominates the scattering property difference between the heterogeneous embedding and

the surrounding medium. We evaluate the robustness of our method against the failure of those
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assumptions.

To this end, we perform four simulation experiments and evaluate the performance with differ-

ent scattering property and scene settings. For all experiments, the measured images are rendered

using Monte Carlo simulations. The performance is evaluated in terms of the IoU scores. We use

the same denotation as in Section 5.3: µs0 , µa0 are the scattering and absorption coefficients for

the surrounding homogeneous medium; µs1 , µa1 are the scattering and absorption coefficients for

the embedded heterogeneous material. The performance is shown in Figure 3.4.

Performance vs. heterogeneity depth As seen, the performance of our method decreases

with the depth of the inclusion since the image contrast reduces with depth. For small depth,

although single-scattering events can dominate, the large image contrast of the heterogeneous

medium makes the reconstruction task easier for the proposed method.

Performance vs. scattering coefficients of the homogeneous background An interesting

observation is the parabolic-type performance curve. For lower scattering coefficient µs0 , the dif-

fusion approximation starts to become less valid, resulting in modeling error. If the scattering

coefficient µs0 is larger, multiple scattering events govern the photon propagation inside tissue, in-

creasing the accuracy of our forward model. However, it becomes progressively difficult to recover

the position of the heterogeneous object since now few photons actually sample the heterogeneity

embedded at a particular depth and get detected by the detector.

Performance vs. scattering coefficients of the heterogeneity This set of experiments ad-

dresses the robustness with different scattering properties of the heterogeneous medium µs1 . The

scattering coefficient of the homogeneous medium µs0 was kept constant. We noted that even

though we vary µs1 , the performance of our method does not change much. The invariance of the

performance is due to the sparse nature of the heterogeneous object inside the medium.

Performance vs. absorption coefficients of the heterogeneity For smaller µa1 values, the

performance is lower due to the fact that the contrast of the heterogeneous object compared to

the background medium is lower in the short-range indirect images. Though we assume that the

change in absorption coefficient of the object is small compared to the background medium, the

increase in contrast helps our algorithm to recover the location of the object.

Comparison with traditional DOT method

We compared our method with the traditional DOT method [17] quantitatively in terms of com-

putational time and performance through simulation. The scene setup is a homogeneous medium

with 3 rods embedded at certain depth with different absorption coefficient than the background

medium.

For traditional DOT, We considered a fixed number of source-detectors (80 sources and 80

detectors) to reconstruct a volume of 64 × 64 × 8 resolution. The reconstruction process took

15 minutes. The reconstructed volume was upsampled to the scene resolution and the IoU was

computed to be only 0.18. For our method, we reconstructed the same scene using our setup with

a resolution of 256 × 256 × 64. The IoU from our method was 0.71 and it took 4 minutes. The

results show that we are able to perform reconstruction of much higher resolution and accuracy

using our method compared to traditional DOT.
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5.6.2 Real Data

We test the proposed method on images captured using the calibrated imaging setup shown in

Figure 5.7 (a). We choose the embedding medium to be milk with little or no water dilution because

its scattering property is close to human skin and it can be well described using the diffusion

approximation. Because the small FOV and high camera resolution, the laser line illumination

spans multiple pixels in the image. We calibrate the laser light source for the its intensity and the

width of laser beam. More specifically, we use a ideal white diffuser with albedo close to one,

and illuminate the diffuser with the laser line illumination. Then we extract the 1D profile for the

laser line illumination, by averaging the intensity along the reflected illumination line. During the

optimization in Equation 5.17, the rendered image is convolved with the measured 1D laser profile

to account for the width of the line illumination.

During imaging, we use the short range indirect images with pixel to illumination distance ∆y
ranges from 20mm to 40mm, such that the light source to sensor distance is large enough for the

diffusion approximation. This configuration is different from simulation because the laser beam

spans more pixels in the real data. We capture the HDR images to include the large range of image

intensity under laser illumination. During optimization, for efficiency, we set the size of the diffuse

scattering kernel to be 30mm. The initialization of the reconstructed volume for all experiments is

set to zeros. The measured 1D laser profile is convolved with the rendered images to account for

the laser span of multiple pixels. For each scene, we manually select a homogeneous region and

fit the scattering properties using the dipole model in Equation 5.2. For all the results, we use 300
iterations and it takes around 5 minutes for optimization on a workstation with TitanV GPU.

We test on scenes with single and multiple inclusions within the scattering medium. In Figure

5.12, we show the captured images and reconstructions for single inclusion. Note that in Figure

5.12 (a) and (c), the inclusion boundaries in the global and short-range indirect images are blurred

due to multiple light scattering. Compared with the short range indirect images, the contrast of

the inclusions is lower in the global image. In addition, as shown in Figure 5.12 (b), the inclusion

is barely visible if it is deep below the surface. Our method is able to localize the boundary and

reconstruct the 3D structures (e.g. the wire structure) despite low visibility and lack of contrast

in the input images. Similarly, as shown in Figure 5.13, for multiple inclusions, the boundary of

the inclusions and their relative depths can be recovered although the contrast and visibility of

the inclusions in the input short-range indirect images are low due to highly light scattering. The

inclusions are up to 8 mm beneath the whole milk surface and no water dilution is added. The

dark dots in the images are mask of the light reflection from the protection glass surface for the

MEMS mirror, which cannot be controlled and can only be removed in the clean room to prevent

the mirror from being contaminated.

5.7 Limitations

In this work, we have assumed that the light scattering in the medium is dominated by the high-

order scattering events such that the radiance can be modeled using the diffusion equation. How-

ever, for less dense medium or heterogeneities that are close to the surface, the single scattering
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Figure 5.13: Real data images and results for multiple objects inclusions. The scattering medium

is skim milk with no or little water dilution. Real data results. Rows from top to bottom: the

direct and global light only images, the short-range indirect images with different ∆y settings, the

medium free image and masked depth map, two views of the 3D tomography results. (a) Thin wire

and black tape blob. The thin wire is barely visible in the input images due to its small width and

light scattering of the medium. However, the location and boundary can be recovered using our

method. In (b) and (c), the 3D structures are recovered even though the letters are blurred in the

input short range indirect images because of light scattering. In (c), the inclusions are up to 8 mm
beneath the whole milk surface and no water dilution is added.

events becomes more evident. As a result, our method cannot handle well the less dense medium

(e.g.severely diluted milk) or heterogeneities very close to the surface (≤ 1mm beneath human

skin through simulation). To handle theses cases, we need to include the single scattering compo-

nent into the forward model.

5.8 Conclusion and Future Work

Our work addresses two fundamental limitations of existing diffuse optical tomography methods:

low resolution reconstruction and high computational complexity. We overcome these limitations
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by (1) extending the design for short-range indirect subsurface imaging to a verged scanning pro-

jector and camera configuration and (2) a novel convolution based model and efficient computa-

tional algorithm for estimating the subsurface medium with heterogeneous structures. This allowed

us to recover detailed heterogeneous structures immersed up to 8mm deep in a highly scattering

medium, such as whole milk, for the first time. Avenues of future work include using other source

spectra (near-infra red) to recover structures deeper within tissue, and using resonant MEMS scan-

ning for capturing subsurface videos of dynamic structures, such as blood flow in microscopic

capillary veins.
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Chapter 6

Real-time Visual Analysis of Microvascular

Blood Flow

6.1 Introduction

Microcirculation takes place in part of the circulatory system embedded in tissue that involves the

smallest vessels and where diffusion of nutrients and oxygen into the cells and removal of CO2

and waste from the cells take place. Monitoring of microcirculation is useful for diagnosing of

vascular conditions and in monitoring patients for cardio-respiratory insufficiency.

Sidestream Dark Field (SDF) [69] video imaging was developed as a non-invasive imaging

approach for real-time visualization of superficial microvascular flow. However, analysis of these

videos is currently limited by manual or semi-manual operation and coarse sampling techniques,

which makes quantitative analysis of microcirculatory status and response to disease and treatment

difficult and subjective [71]. We aim to remedy that. One of the portable SDF imaging devices is

shown in Fig. 6.1(a). As depicted in Fig. 6.1(c), illumination is provided by the green light-emitting

diodes (LEDs) arranged in a ring formation. The wavelength (λ=530 nm) of the illumination is

chosen to maximize light absorption by the red blood cells (RBCs). The tissue embedding the

capillaries scatters and reflects the illumination back to the camera, making the capillaries imaged

as dark curvilinear structures against the brighter background. The LEDs and the lens system

are optically isolated to prevent the illumination generated by the LEDs from contaminating the

images.

Despite that the design is optimized for microcirculatory imaging, as shown in Fig. 6.1(b), it

is not easy to extract physiological features from SDF videos, such as the blood flow velocity, for

several reasons: (1) Subsurface scattering: scattering of light on the path from the capillaries to the

camera increase observed intensity of the vessels, reducing contrast of the images; (2) Defocus:

capillaries are embedded at varied depths within the tissue while the depth of field of the camera

is fixed to obtain desired magnification. So some capillaries in the field of view appear blurred,

making their features more difficult to estimate; (3) Sensor noise that further reduces quality of

images; (4) Limited texture: low diameter capillaries of interest comprise only a small part of the

image, most of it is occupied by tissue without substantial texture and in addition, plasma in the
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Figure 6.1: Sidestream Dark Field Imaging[69]. (a) Portable SDF imaging device used for micro-

circulatory monitoring. (b) One frame of the microcirculatory video. (c) The LEDs, arranged and

optically isolated around the lens system, emit light optimized for red blood cell absorption. Due

to defocus, subsurface scattering of light, sensor noise, sensor drifting and limited texture of the

tissue, it is not easy to extract physiological features from the SDF video.



capillaries is transparent, reducing texture in the frames even further, so traditional texture-based

image feature extraction methods will likely fail; (5) Sensor drift during video capture: field of

view changes due to the motions induced by heart beat and respiration of the subject and movement

of the device itself, relative to the observed tissue.

In this chapter, we present an end-to-end, automated framework for real-time analysis of micro-

circulation including vessel detection, heart rate, breathing rate, blood flow velocity estimation as

well as variations of flow distributions over time during bleeding and resuscitation stages. Our

work can enable new research in critical care, helping correlate heart rate and breathing cycle

with flow distributions and studying effects of interventions and protocols in real-time for bed-side

patient care. In comparison, most previous works either included significant manual interactions

and were not real-time, or are tailored to high quality 2D images or 3D volumes that do not work

for SDF videos.

The underlying principle of our approach is that diagnostically useful information must be

extracted quickly, enabling the user to make determinations about microcircluatory flow in real

time, rather than off line as is done currently, and ultimately enable making clinical decisions

instantly at the bedside. To this end, we present a framework consisting of multiple stages including

video stabilization, enhancement, micro-vessel extraction and automatic estimation of the micro

blood flow statistics from SDF videos.

Our method has been used in a critical care experiment conducted carefully to analyze the

microcirculatory blood flow of subjects in different health conditions. In the experiment, healthy

pigs have been anesthetized and subjected to induced slow bleeding (20 ml/min) for about 2 hours.

Then the subjects were fluid resuscitated to expand the plasma volume. Microcirculatory videos

were captured at different stages of the experiment to monitor changes in the micro blood flow. 96

videos of 18 pigs were collected using a SDF imaging device for each bleeding/resuscitation stage.

Our method was then applied to extract physiological information from the videos. As a result,

the extracted informative microcirculatory features form distributions that are consistent with the

intuition of expert clinicians.

6.2 Related work

Image based microcirculatory blood flow measurements have been studied using Laser speckles

[19, 32]. More recently, skin perfusion measurement based on laser speckle was proposed in [157].

Instead of images or videos of the microcirculatory blood flow, these methods leverage complex

speckle patterns. In Sidestream Dark Field imaging system [69], microcirculatory blood flow is

analyzed while the labeling of capillaries is done manually [43].

The vessels in the image are often detected as centreline structures [103, 125, 170, 174, 192]

either by using filters [103, 192], intensity profiles [125, 174], or trained regressors [170]. Then,

level-set methods are used to locate the centreline more precisely [79, 195].

In [177], various optical flow approaches are studied. It was shown that by using an objective

with a non-local term, the classical optical flow formulations can achieve competitive results. For

motions of deformable objects, the motion estimation problem is often formulated as optimization

solved by inverse compositional image alignment [121], supervised-learning of descent direction
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[185], and data-driven descent [185]. In our case, with high level of noise, highly deformable

blood flow patterns, and small dimensions of capillaries, it is very difficult to track the flow on a

frame-by-frame basis.

To get motions that are more obvious and easier to detect, video motion magnification method

has been proposed in [207]. Extensions have been put forward to either reduce the noise in the

motion magnified video [207] or achieve real-time running speed [198]. Because of the high level

noise in the SDF videos, applying any of those methods directly would likely amplify the noise as

well.

6.3 Micro-vessel Extraction from Video

The contrast of the SDF images is greatly reduced by the presence of the subsurface scattering and

sensor noise. This makes it difficult to detect the capillaries from any single frame in the video.

One option is to detect the capillaries from the minimal image, where the values of the pixels are

set to the minimal intensity across frames at that pixel location. However, the input videos are not

stable because of motions introduced by heart beat, respiration, and sensor position drift. So we

need to stabilize the video before extracting vessel skeletons.

6.3.1 Video Stabilization

After motion due to heartbeat, breathing and sensor position drift is eliminated, the stabilized

video will mainly consist of the blood flow in the capillaries. For efficiency considerations, we

base video stabilization on motions of the patches that are corresponded between frames using

template matching. Since the microcirculatory videos are captured carefully to avoid unnecessary

motion of sensor relative to subject, frame-to-frame changes are limited and smooth. Thus the

correspondence between patches in different frames can be estimate. In addition, patch-based

stabilization method enables including variations of the patch motions in a frame introduced by

deformable properties of the tissue.

Because the videos are effectively textureless in most parts of the frames, we need to select the

optimal patches for finding correspondence in the stabilization process. In our method, we select

the patches in which the variance of intensities is above a pre-set threshold such that the selected

patches include enough texture for matching.

6.3.2 Vessel skeleton extraction

After stabilization, we have registered frames from which the skeletons of vessels can be extracted.

However, as shown in the first column of Fig. 6.2, due to subsurface scattering and imaging noise,

the contrast in individual frames is too low for extracting vessel segments. Even worse, the trans-

parent plasma travelling through the capillaries may make vessels invisible in some segments of a

frame. So we first need to produce a vessel-enhanced image. Based on the fact that the capillaries

with red blood cells are usually darker in the frames, we can take the minimal value of each pixel

across all the frames to achieve that goal. This method works under assumption that for every pixel
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of the vessel there is at least one frame in which a red blood cell passes through it. This assumption

is true for most cases since the duration of the microcirculatory videos (20 seconds) is long enough

for the red blood cells to pass through all the active vessels in the frame.

Then the vessel enhanced image is denoised by applying anisotropic diffusion filtering. It not

only reduces the imaging noise while leaving the edges in the vessel enhanced image unharmed,

but it also smoothes the parts of the image along the structures between the edges. This results in

vessel segments with a smooth appearance so they can be detected more easily. The filtered vessel

enhanced images are shown in the second column of Fig. 6.2.

To detect the vessel skeletons, we first estimate the Hessian matrix for each pixel in the vessel

enhanced image. Then the profile for each pixel is extracted along the direction of the eigenvector

of Hessian corresponding to the largest absolute eigenvalue. The pixel will be selected as a vessel

skeleton pixel if the profile has a groove in the middle and increases towards both sides of the

groove. To find the vessel skeletons with such profile, we use the method proposed in [174] that

was designed to find the centreline of curvilinear structures.

Let n = (nx, ny) with unit length be the direction in the eigenvector of the Hessian Matrix H
corresponding the largest eigenvalue. The second-order Taylor expansion of pixel at x along n is

given by:

p(t) = r + rnt+
1

2
rnnt

2 (6.1)

where p(t) is the pixel intensity at the position x + tn; r, rn and rnn are the pixel intensity at x,

the first-order derivative of the intensity in the direction n and the second-order derivative of the

intensity in the direction n respectively. For a profile across the vessel, The center of the groove is

located at the zero crossing of the first derivative of the profile:

t = − rn
rnn

= −∇r
Tn

nTHn
(6.2)

where ∇r is the gradient of the image at x. In the image coordinate, the offset of the zero-cross

from x is (px, py) = (tnx, tny), with t estimated in Equation.6.2. The pixel x is on the vessel

skeleton if |px| ≤ 1
2

and |py| ≤ 1
2
. To eliminate the falsely detected vessels introduced by imaging

noise, we use the maximum eigenvalue of the Hessian matrix to select the detected vessel skeletons.

The example results of the skeleton extraction are shown in Fig. 6.2. By comparing with the

vessels manually labeled by human experts , we find that the vessel skeleton extraction method is

able to locate most of the vessels in the frame. Although there is a potential for a few missing and

false detections, the main objective of our work to extract informative statistics of the physiological

importance, and not the analysis of the individual vessels - should not suffer much. Hence, the

obtained skeletons can be used as reliable inputs to the subsequent processing steps.

6.3.3 Comparisons

We have compared the performance of our methods with other vessel extraction methods. For

vessel skeleton extraction, our method yields a recall:87.90 % and false alarm rate:0.65%. In

comparison, EF filters [58] on the minimal frame followed by adaptive thresholding on the filter
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Figure 6.2: The vessel skeletons are extracted from the minimal image across the frames. First

column: the first frames of the videos. Due to subsurface scattering and transparency of plasma,

it is hard to detect capillaries from a single frame. Second column: denoised minimal image

across all the N frames. In our case N = 200. Third column: extracted vessel skeletons. Fourth

column: manually painted vessels. The index and status of subjects in each row: Pig 44, before

resuscitation; Pig 50, before resuscitation; Pig 53, end of baseline; Pig 60, end of baseline.



response yields 51.86% and 0.36% in accuracy and false alarm rate. 2D OOF filters [103] on

the minimal frame followed by a adaptive thresholding on the filter response yields 70.79% and

1.29%. Filter learning plus tree regression [170] on the minimal frame yields 27.81% and 17.55%.

Finally, filter learning plus tree regression on the video yields 27.47% and 14.91%. Note that

these comparisons are much worse if applied to original videos without applying the sub-surface

scattering reduction method.

6.4 Physiological Measurement from Video

Heartbeat and respiration rates can be obtained as side products of the video stabilization process.

Those physiological measurements can be used along with the microcirculatory blood flow param-

eters, to further aid diagnosis and monitoring processes. As the observed motion introduced by the

heart beat and breathing also depends on the location where the microcirculatory videos are taken,

the measured motion can be used as a guidance for the clinician to determine the location of target

tissue considered for diagnosis. In addition, although in clinical practice the assessment of the

heart rate and the respiratory rate already exist via dedicated, specialized monitors, it is not known

whether and how their variations impact physiology of tissue blood flow. The measurements of

these signals thus provides an opportunity to study these interactions in a live subject concurrently

with flow information, and generate further knowledge in the field.

We decompose the observed cross-frame motion into heartbeat and respiration motions based

on their frequencies. More specifically, the respiratory is the motion component in the [.1 , .5] Hz

frequency range in the Fourier transform of the averaged observed motions of patches in the un-

stabilized video; and the heartbeat is the motion component in the [.5 , 5] Hz frequency range. In

the corresponding frequency ranges, the frequencies of the heartbeat and respiration motions are

determined as the frequencies where the local maxima of magnitude in the Fourier domain occur.

The magnitudes depend on the status of the subject and the location where the video is taken. For

Pig 42, as shown in Fig. 6.3(a), most of the observed motion is due to the heartbeats. For Pig 44

at the end of bleeding, both the respiration and heartbeat motions are more significant. For Pig 44

before bleeding, the sensor drifting dominates the observed motion, while the other two compo-

nents can still be reliably identified. This last observation has important practical implication, since

apparently the perfect stabilization of the sensor probe against the subject tissue is not necessary

for extracting reliable physiological information from SDF imaging videos.

After the videos are stabilized, we estimate local blood flow velocity using skeletons to identify

individual vessels. Even though we have now vessel-enhanced images with improved contrast, it is

still difficult to determine blood flow from video, because signal to noise ratios are still low with the

effects of subsurface scattering and high imaging noise. To make the blood flow more detectable,

we use the motion magnification method proposed in [207]. In general, motion magnification

is achieved by amplifying the frequency components within a given range for each voxel in the

video. This method is based on the intuition that for one point in the video with repeating motion,

the frequency of change in the intensity depends on the speed of motion that passes through that

point. Motion is then amplified by magnifying the frequency component corresponding to it. The

first frames in the original video and the motion magnified video are shown in Fig. 6.4. Note that
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(a) Pig 42, before bleeding

(b) Pig 44, end bleeding

(c) Pig 44, before bleeding

Figure 6.3: The averaged observed motions (blue) across the frame and their components. Motion

components due to heartbeat and breathing are colored in red and green respectively. (a) Pig 42 at

the end of baseline (before bleeding). Most of the observed motion is due to the heart beat. (b) Pig

44, end of bleeding. Both heartbeat induced motion and breathing motion are obvious. (c) Pig 44,

baseline. The sensor position drift (shown in brown) dominates the averaged observed motion, but

the physiologic components can still be clearly identified.



(a) Orginal video (b) Motion magnified video

Figure 6.4: The first frame in the original video and the motion-magnified video. Noise in the

original video is magnified along with the blood flow motion.

the contrast between the plasma and red blood cells is enhanced in the motion magnified video.

On the other hand, background noise has also been magnified since the frequency ranges of noise

and blood flow overlap.

Blood flow velocity is estimated from the motion magnified video and the vessel skeletons.

There is significant variation in flow velocity across vessels of different shapes and sizes, as well

as due to physiological variations. This makes the optical flow method hard to work well in our

case. One example is shown in Fig. 6.5. For a motion magnified video, the color coded optical

flows estimated using the method in [177] for two consecutive frames are shown in Fig. 6.5(c) and

Fig. 6.5(d). The corresponding vessel enhanced image for the video is shown in Fig. 6.5(a). Due

to the imaging noise and difficulty in tracking the flow, the estimated optical flows for the two

consecutive frames are very inconsistent, making the optical flow estimation unreliable.

Since the diameters of capillaries in the microcirculatory videos are small, the blood flow mo-

tion in the video can be reliably approximated by 1D motion along the vessel skeletons. With this

approximation, blood flow velocity is estimated from the Epipolar-Plane Image (EPI) along the

vessel skeleton length. More specifically, as the blood flow speed along a vessel is relatively con-

stant, its EPI image will have stripe patterns in it. The blood flow velocity for a vessel segment is

then estimated from the orientation of the EPI image stripe pattern. Based on the rotation property

of the Fourier transform, the rotation of a function by an angle in the image domain will yield a

rotation in the Fourier domain with the same angle. So the slope of the stripe pattern in the EPI

image corresponds to the dominant orientation in its Fourier transform. Thus we can estimate the

velocity of the blood flow by finding the dominant orientation in the Fourier domain of the EPI

image. This dominant orientation of the Fourier transform can be found by fitting the line passing

through the origin, such that the second-moment inertia is minimized. We can solve this via a

standard inertia minimization process.

The fitted line with the optimal angle indicating the dominant orientation in the Fourier domain

is plotted in Fig. 6.6(d) in green. According to the rotation property of the Fourier Transform, the

dominant orientation in the EPI image is the estimated orientation in the Fourier domain rotated

clockwise by 90 degrees, as shown in Fig. 6.6(b). Although there are various orientations of

patterns in the EPI image because of temporal and spatial fluctuations of blood flow velocity,
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(a) (b)

(c) (d)

Figure 6.5: The blood flow speed estimation using optical flow method in [177]. (a) The vessel

enhanced image. (b) The color wheel showing colors corresponding to directions and magnitudes

of optical flow. (c) The color coded optical flow for frame 8. (d) The color coded optical flow for

frame 9.
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Figure 6.6: Blood flow velocity estimation. (a) The extracted vessel skeletons. The vessel segment

for which the flow velocity is estimated is colored in blue. (b) The EPI image of the blue colored

vessel segment in (a). (c) The Fourier Transform of the EPI image. (d) The dominant orientation

of the Fourier Transform is plotted as the green line. The corresponding line showing the dominant

orientation in the EPI image is plotted in red in (b).



the proposed method is still able to extract the dominant orientation, and therefore estimate the

velocity.

In our experiments, the proposed method fits the task better than the optical flow approach

because it takes into account data from multiple consecutive frames, while the optical flow method

usually takes into account only two consecutive frames. Instead of measuring the blood flow

velocity in one specific frame, our method actually measures the average blood flow velocity from

multiple frames, which is more robust to the noise in the videos. By varying the extent of averaging,

we can control temporal resolution of blood flow velocity estimation. It must be however noted that

the frame-to-frame noise in our videos limits in practice the minimal time scales of this estimation.

6.5 Critical Care Case Studies

In this section we will relate the estimated blood flow velocity distribution across all vessel seg-

ments detected in the field of view, to the status of the test subjects in the bleed and resuscitation

phases of the experiments in order to evaluate consistency of our method with knowledge and

intuition of expert clinicians.

The critical care experiment procedure is shown in Fig. 6.7. All experiments were performed

in accordance with NIH guidelines under protocol approved by the Institutional Animal Care and

Use Committee of the University of Pittsburgh. Three Yorkshire Durock pigs (average weight of

30.6 kg) were fasted overnight prior to the study. Anesthesia and the surgical preparation have been

performed following procedures described in [71]. Briefly, following induction of general anesthe-

sia and endotracheal intubation, arterial and central venous catheters were inserted and the animals

allowed to stabilize for 30 minutes. During this time the SDF probe attached to a vise clamp was

positioned in the pigs mouth under the lounge to visualize the sublingual microcirculation. Care

was taken to obtain a long-term stable image with minimal pressure artifact and good visualization

of the microcirculation as defined by the optimal focal length and illumination to visualize the

largest number of capillaries within the viewing frame as previously recommended in [42]. At the

end of the baseline period the initial video was collected (Baseline). All videos were 20 seconds

in length at 10 frames per second. Then the pigs were bled form the arterial catheter at a fixed

rate of 20 ml/min until the mean arterial pressure decreased to 30 mmHg. Once at this pressure,

bleeding was stopped and a second video was captured (EndBleed). The subject was kept in this

hypotensive state for 90 minutes with video images captured at 60 minutes into the hypotensive

state (AfterBleed) and again at 90 minutes (BeforeResusc). Then the pigs were fluid resuscitated

with Hextend (equal volume to shed blood) at 60 ml/min. At the end of this fluid resuscitation

period another video was captured (EndHextend). Then the animal was further resuscitated in a

protocolized fashion as previously described with more fluid if the cardiac output was less than

baseline and norepinephrine if mean arterial pressure was less than baseline for an additional 120

minutes and a final video image was taken (AfterHextend). Since many animals became unstable

before 90 minutes of hypotension or did not survive 120 minutes after the start of resuscitation,

some animals did not have BeforeResusc and AfterHextend time point videos collected. So, a

20-0second microcirculation video clip was captured at each of the six stages described above: (1)

Baseline: right before the bleeding; (2) EndBleed: at the end of bleeding; (3) AfterBleed: 60 min-
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Figure 6.7: Setup of the experimental procedure. 18 pigs are observed carefully at various stages

of bleeding and resuscitation.

utes after the end of bleeding; (4) Before resuscitation: 90 minutes after the end of bleeding; (5)

End of resuscitation: the end of the resuscitation process, in which the Henxtend fluid is infused

intravascularly; (6) After resuscitation: end of observation period.

From the point of view of current knowledge of physiology of the observed processes, as the

blood pressure decreases due to bleeding, a general reduction in blood flow velocity is expected. It

should be manifest by a shift of the distribution of velocities across vessels towards lower values of

velocity. Although resuscitation should intuitively led to an increase of microcirculatory flow, the

temporal relation between restoration of arterial pressure and cardiac output to microcirculatory

flow is complex and not yet fully understood. Still, one would expect that if resuscitation efforts

were successful, that microcirculatory blood flow would return to baseline values.

The estimated distributions of the blood flow velocity estimated from the corresponding videos

are consistent with the above intuition. The results for five pigs are shown in Fig. 6.8. For better

visualization, in the right column we show only the results for three most important stages in the

process. For Pig 44 and Pig 60, the blood flow in the capillaries diminishes after bleeding as the

blood pressure and the vitality of the pig deteriorate. This change has been reflected in the figure as

the flow velocity distribution, shown in the green curve, squeezes towards a lower values. In addi-

tion, the number of capillaries with slow flow velocity decreased after resuscitation as compared to

the after bleed phase. This is consistent with physiologic expectations, and represents the opening

of capillary beds that were previously closed probably due to insufficient input pressure during

shock. Given that this protocol was intended to study the individual responses of each animal to

hemorrhage, blood volume shed was different between animals. Pig 44 and 60 had 534 ml and 760

ml, respectively, which represented 23% and 36.7% of their calculated total blood volume, respec-

tively. This analysis also demonstrated how for example pig 44 had a lower relative increase in

capillaries with slow flow, than pig 60, which is consistent with having had a less intense response,
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to a less intense injury.

For Pig 47, the difference in the blood flow velocity distributions between the baseline and

after bleed is smaller than those for Pig 44 and Pig 60. This is because more probe pressure on the

tissue was introduced during capturing the microcirculatory video for Pig 47 in the baseline stage,

making the blood flow suppressed at that stage. Our method has reflected such measuring artifacts

during capture. For Pig 55, there are only 5 stages in total since the pig died before last stage.

6.6 Determine Local Flow Velocity and Type

The analysis of local blood flow motion patterns serves as another aspect to measure the response

of the micro-circulation system to the hemorrhage and resuscitation processes. For example, the

cardiorespiratitory insufficiency caused by blood pressure loss is usually spatially variant. Such

spatial variance demonstrates how the local micro-circulation system reacts to the blood pressure

reduction. To visualize the spatial variance in the change of blood flow, we have designed the

motion features to represent the local flows motions based on 3D convolution with pre-defined

spatial-temporal filters. On top of that, a cascade of classifiers are trained to distinguish between

different flow types, enabling us to localize the abnormal flows due to the loss of blood pressure.

6.6.1 Motion Features

The optical flow based flow estimation fails due to the high-level noise in the captured video

and lack of texture around the capillaries. We propose to use the pre-defined spatial-temporal

filters to extract the local motions. To detect the spatial-temporal structure of the blood flow, we

used the second order derivative of the Gaussian function Gθ(x, y, t) = ∂2G
∂θ2

where G(x, y, t) =

e−(x
2/σ2

x+y2/σ2
y+t2/σ2

t ), θ is the direction of the gradient in the spatial-temporal space. In addition to

Gθ(x, y, t), the Hilbert Transforms of the second-order derivatives Hθ(x, y, t) are included in the

filter bank. In our experiment, the filter bank spans 16 spatial orientations corresponding to vessel

segments of different directions and 11 temporal orientations corresponding to different blood flow

velocity levels.

The spatial-temporal filters suppress the noise given that the noise in the video is random and

uncorrelated among different pixels. On the other hand, high response happens if the local flow

motion is aligned with the motion pattern of the applied filter. Another benefit of using the spatial-

temporal filters is that by adjusting their sizes, we are able to get localized filter responses both

spatially and temporally. The prior knowledge about the vessel structures leads us to design the

filters of appropriate elongated anisotropic shapes.

With the location denoted as x, the velocity level s and time t, given the filter response

m (x, s, t), the weighted kernel density of the velocity across all the frames is calculated. For

simplicity of denotation, the dependence on the location x is ignored in the followings. In each

frame, the weighted average velocity level s̄ (t) is first estimated by:

s̄ (t) =

∑

i m (si, t) si
∑

i m (si, t)
(6.3)
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Figure 6.8: The estimated blood flow velocity distributions for pigs at different stages. For each

plot, the x-axis is the blood flow velocity, in unit of pixels per frame; the y-axis is the distribution

density of vessels with corresponding flow velocity. (a) The blood flow velocity distributions at

three key stages of pigs: Baseline, end of bleed and right after resuscitation. (b) The blood

flow velocity distributions for all six stages. The annotations for stages: Baseline (blue) - right

before the bleeding procedure; EndBleed (red) - end of bleed; Afterbleed (green) - 60 minutes

after EndBleed; BeforeResusc (black) - Before resuscitation, 90 minutes after EndBleed, before

the resuscitation procedure; EndHextend (purple) - end of resuscitation procedure; AfterHextend

(yellow) - 120 minutes after EndHextend.
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Figure 6.9: The velocity level distributions at three points. The corresponded points and velocity

level distributions are plotted in the same color. Point 3 is located on a capillary with normal flow.

Point 1 and Point 2 are located on capillaries with stopped and intermittent flows respectively.

with si = {0, 1, . . . 10} for 11 blood flow velocity levels. Based on the average velocity level

per-frame The weighted kernel density of the velocity across frames f̂(s) is:

f(s) =

∑

t m(ŝ, t)ϕh (s− s̄(t))
∑

t m(ŝ, t)
(6.4)

where the weight is determined as the motion energy m (ŝ, t), with ŝ = {0, 1, . . . 10} the closest

velocity level to s̄; ϕh(x) is the kernel function with bandwidth h. In our case we use the Gaussian

kernel functions. The weighted kernel density of velocity f(s) is used as the per-pixel motion

feature. The motion feature at three locations where different flow types passing by is shown in

Fig. (6.9). Point 3 is located on a capillary with normal flow while point 1 and point 2 are located

on capillaries with abnormal intermittent flows due to loss of the blood pressure. The intermittency

of the flow at point 2 is greater than that for point 1. This has been reflected in the motion feature

in Fig. (6.9) (b): the kernel density for point 2 spans a wider support than point 1, while almost all

density for point 1 is concentrated at a narrow range of velocity level.

6.6.2 The Spatial-temporal filters

The spatial-temporal filters we used in the paper are second derivative of the 3D Gaussian and their

Hilbert Transform functions. For the isotropic case, the second derivative with respect to x of the

Gaussian is:

G2(x, y, z) = (2x2 − 1)e−(x
2+y2+z2) (6.5)

and its Hilbert Transform is:

H2(x, y, z) = (−2.254x+ x3)e−(x
2+y2+z2) (6.6)

To accommodate to the curvilinear structure of the shape of the vessels, we use different scales

in the three axis. To describe the flow in different directions and speeds, we use a set of rotated
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Figure 6.10: Four out of 176 spatial-temporal filters we used in the experiment. Left column: G2

filters; Right column: H2 column; First row : the elongated direction of the filters are aligned with

the x-axis; Second row : the filters rotated in the x-y plane.

versions of the above defined filters. The filter bank include the filters of 16 spatial orientations

and 11 speeds. The visualizations for some of the spatial-temporal filters and the filter responses

for a given video are shown in Fig.6.10 and Fig. 6.11.

6.6.3 Blood Flow Types

The blood flow dynamics decreases as a result of the blood pressure reduction during the hem-

orrhage process. To better quantify and visualize the flow motion pattern changes, based on the

clinical experience we define three types of flows: stopped flow, intermittent flow and normal flow.

For the stopped flow, the blood within the capillaries has little or no motion either because the

blood pressure is insufficient or due to the external pressure introduced by the contact with the

measurement device. The intermittent flow includes the flows with unstable velocity. Usually it

varies within the low velocity range. The normal flow shows fast and consistent motion patterns.

According to the definitions, the velocity distributions f(s) for normal and stopped flows are con-

centrated within a high velocity range and the range close to zero; while for the intermittent flow,

the velocity distribution is similar to the stopped flow but spans a wider velocity range due to the

intermittency in the flow motion, as shown in Fig. 6.9.
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6.6.4 Classify the Blood Flow Types

Although we are able to quantify the match of the current flow to either of the three defined types

based on the scoring functions defined above, it is not guaranteed that the three flow types are

mutually exclusive since the scoring functions are defined separately and in a heuristic manner.

So in addition to using the manually defined scoring functions, we also propose a learning-based

approach with cascade classifiers. To this end, we have labeled all the 97 micro-circulatory videos

of the 18 pigs in the experiment. In each video, a subset of vessels/background area are labeled as

one of stopped, intermittent, normal flows and background classes. Examples of the labeled video

are included in the supplementary material.

In the first stage, vessels are separated from the background based on the local structure infor-

mation encoded in the spatial structural feature:

l1 = [Imin, σt, fOOF (ki; Imin) , . . . , fOOF (ki; σt) . . . ] (6.7)

, where Imin is the minimal image, σt is the intensity variance map across all frames fOOF(ki; Imin)
is the Optimal Oriented Flux filter [103] response at scale ki operated on Imin.

In the second stage, wide vessels are removed and the flow patterns in those wide vessels are

not considered as capillaries. The analysis of blood flow is therefore restricted to capillaries less

than 20 µm in diameter, because these are the vessels involved in oxygen exchange and thus in

tissue perfusion. The larger vessels can be used to evaluate for possible measurement artifacts

such as excessive pressure. Also, since the wider vessels are located deeper below the surface than

the capillaries, they are usually out-of-focus given the small depth of focus of a micro-scale lens.

Thus the evaluated motion patterns in the wide vessels are not reliable due to the blurring effect.

In the second stage, we use the same feature as in the first stage to represent the local structure

information.

In the third stage, the blood flow within the detected vessels are categorized into stopped,

intermittent and normal flows. The features for flow type determination is the concatenation of

speed level distribution evaluated using Eq. 6.4 along with the local structural features:

l3 = [f(s), fOOF (ki; Imin) , . . . , fOOF (ki; σt) . . . ] (6.8)

,where f is the speed distribution defined in Eq. 6.4. We use the Random Forest Classifiers in all

three stages.

Compared with a one-stage classifier which directly categorize the pixels into background and

three types of flows, the cascade classifier emphasizes different types of features in stages. For the

task of separating the vessels from the background, the statistics of the video such as the denoised

vessel enhanced image provides more structural information than the raw frames from the video

with high-level noise and lack of texture.

To evaluate the robustness of the features and the learned classifiers, we train and test the cas-

cade classifiers in three cases with different rules of selecting the training and testing set: (1) The

training and testing samples are selected randomly from the labeled data without any constraints;

(2) The samples are selected such that the training and testing samples are on different vessels; (3)

Training and testing samples are selected from videos of different pigs. In the second and third
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cases, we consider the influence of the variance in locations and subjects. The performance is eval-

uated in terms of the third stage in the cascade classifier and shown in Fig. 6.12. For all classes,

although the performance drops due to the variances among vessels and different subjects as ex-

pected, those drops are relatively small. This suggests some level of robustness of the proposed

approach to inter-subject variability.

The blood flow type map estimated by the cascade classifier for Pig 54 is shown in Fig. 6.13.

The local changes in the types of flow due to bleeding and resuscitation are shown to be different for

different locations. This local flow type measurement provides a new approach for the clinicians

to study the oxygen delivery status in micro-scale.

6.7 Conclusion

We presented a multi-stage framework for processing microcirculatory videos automatically and in

real time. The processing stages include video stabilization, image enhancement, and micro-vessel

extraction, in order to automatically estimate statistics of the micro blood flow captured in SDF

videos. We applied our method to analyze changes in microcirculation in test animals at different

stages of induced bleeding experiment, including before, during and after bleeding as well as after

resuscitation. The results show that by using image augmentation and continuous video sampling

techniques, reliable microcirculatory imaging processing can be automated and accomplished in

real time despite the inherent challenges to microcirculatory flow quantization. The parameters

described in this analysis represent novel metrics of SDF imaging that should substantially improve

the utility of SDF imaging to assess microcirculatory changes with disease and its treatment. In

addition, local features such as local flow velocity variation and intermittency of the flow have

been studied to further enhance the functionality and clinical relevance of the framework.
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Figure 6.11: Local motion estimations on a zoomed-in region of the motion magnified video show-

ing the micro-vascular blood flow. (a) The zoomed-in region in frame 3 of the motion magnified

video; (b) The same local region as in (a) in frame 4 ; (c) The estimated optical flow using the two

frames in (a) and (b); (d) The overall motion energy calculated from the filter response. The flow

motion induces high motion energy while the motion energy for the noise is low since the artifact

motion patterns introduced by noise are not aligned with any of the applied 3D filters. (e)(f) The

filter responses at the marked points in (a), revealing the approximate speed of the flow and the key

frames in which there is observable blood flow passing by those locations. The flow speed at Point

2 is shown to be faster than Point 1.
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Figure 6.12: The ROCs evaluating the flow type classification on the testing sets for three cases

of train/test sample selection: No block - The training and testing samples are selected randomly

from the labeled data without any constraints; Vessel block - the samples are selected such that the

training and testing samples are from different vessels; Pig block - the samples are selected such

that the training and testing samples are from videos of different subjects. (a) The performance on

the stopped flow; (b) The performance on the intermittent flow; (c) The performance on the normal

flow.
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Figure 6.13: The blood flow type map estimated by the cascade classifier for Pig 54 at different

different critical care stages. The stages are defined in Sec. 6.5. The color encoding for flow

types: red - stopped flow; green - intermittent flow; blue - normal flow; light yellow - background.

The dynamics of the blood flow in the capillaries decreases, manifesting as increased fraction of

stopped and intermittent flows, during the hemorrhage process. Then it recovers to normal after

the resuscitation process.



Chapter 7

Conclusion

In this thesis, we work towards the goal of developing computational methods and small baseline

imaging system for 3D sensing of complex scenes in real world conditions, with the design prin-

ciple of physically modeling the scene complexities and specifically inferring the uncertainties for

the images captured with small baseline setups. We have shown that the challenges in the real

world condition can be tackled by physically modeling the way light interacts with the scene and

specifically inferring the uncertainty.

In Chapter 2, we introduce a compact photometric stereo system using a small LED ring (6

cm in diameter) as the light sources. By utilizing the differential images, we show that the highly

non-convexity of the original inverse problem can be greatly alleviated. With the proposed method,

we are able to reconstruct high quality 3D mesh with a compact and low-cost imaging system.

In Chapter 3, a matting and depth estimation method using a focal stack image has been dis-

cussed for reconstructing scenes with high spatial frequency and mutual occlusions. The method

has been applied for in-vivo micron scale reconstruction of capillary veins.

In Chapter 4, we develop a learning based pipeline for monocular depth estimation from a

monocular video with uncertainties. The per-frame depth probability distribution is fused over

frames in a Bayesian way. This not only leads to an accurate and temporally consistent depth

sensing scheme, but also an uncertainty estimation that can be useful for various applications.

In Chapter 5, we implement a high resolution DOT imaging pipeline with a pair of high res-

olution camera and laser projector. The verged projector-camera setup enables the capturing of

short-range indirect images over smaller FoVs. Hence more details about the fine structure under-

neath the scatter medium are imaged. The scanning lines setup, rather than the paired points setup

in traditional DOT, enables a new highly efficient 3D tomography algorithm.

In Chapter 6, we showcase a fully automated real-time system for analyzing the blood flow

within capillary veins from a microscopic video. The video is captured with a Sidestream Dark

Field imaging device consisting of a video camera and a small ring of LEDs. The analysis system

can serve as a tool to greatly reduce the manual blood flow analysis efforts for critical care doctors.
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7.1 Future Work

There are several directions in which we can extend the computational methods and hardware

developed throughout this thesis. Those directions include more physically accurate models of

the scene complexity, optimized representation for the 3D structure, theoretical modeling for es-

timation uncertainties, and more agile subsurface imaging. These directions lead to the following

specific topics for future works.

Appearance capture of more general scenes In Chapter 2, we have assumed that the object

surface is Lambertian. However, this assumption is not held for a lot of materials in the real

world. Although the usage of small baseline light source has partially alliterated the failure of this

assumption, there are still regions on the object where the lines of sight are close to the glazing

angle of the surface. As a result, the specular lobe will be present in most images captured with

a close cluster of light sources. As a result, the image formation model used for our surface

reconstruction pipeline will fail to model the light intensity. One way to tackle this issue is to use

a polarizer in front of the camera to remove the specular lobes so the remaining component can

be approximated using the Lambertian model [172]. An alternative way is to explicitly model the

BRDF of the material and recover both the BRDF and the geometry of the surface, or derive the

BRDF invariants [26] for near-light photometric stereo and extract the geometry information with

the invariant constraint.

For scatter medium, the light reaching the camera is contributed by both the direct reflectance

from the surface, and the scattered light from points other than the sensed point. In general, the

subsurface scattering effect acts as a low pass filter that blurs the image gradient. As a result,

the reconstructed 3D surface without considering the subsurface scatter is smoother than the true

shape, with sharp curvatures blurred out. One way to alleviate this issue is to model the subsurface

scattering effect with a convolution over the surface and perform the deconvolution after an initial

guess of the 3D geometry is available. One thing to note here is that the deconvolution operation

has to be applied on the 2D manifold of the surface rather than directly in the image domain.

Last but not least, for real-world application, it is necessary to consider multiple rather than

one single object in the scene. One example of application is the 3D reconstruction of a room (or

part of it) using the NIR LED light sources around an indoor surveillance camera. In this case, the

depth variations among objects would be larger than those for the objects itself. In addition, the

cast-shadows among different objects need to be considered. The indoor scene 3D shape recovery

using small baseline light sources will be useful for surveillance-related tasks such as background

subtraction and abnormal detection.

3D sensing with semi-transparent or volume occlusions In Chapter 3, we have modeled the

occlusion as completely opaque. For occlusions such as rain drops, stained glass, and tissues com-

monly seen in daily photography and microscopy, the foreground occlusions are semi-transparent,

allowing part of the background light go through the occluder and reach the camera. Simultaneous

matting and depth estimation for semi-transparent occluders will be a more challenging task than

its opaque counterpart, since the degree of transparency serves as another set of spatially-variant

variables, in addition to the matting pattern and depth values. To handle the additional set of

variables for the semi-transparent case while maintaining the complexity of the inverse problem,

we can consider using single imaging matting methods [210] to decompose the problem into two
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separate problems: matting pattern estimation, and depth estimation for the foreground occlusions.

Other than representing the occlusions as layer-wise depth maps, a more realistic geometric

model for the occlusions should include the thickness. For example, the shape of the projection

of a 3D sphere onto an image plane would be different from the shape of a 2D circle projection.

Octree-based volumetric representation can be used for memory efficiency and 3D structure with

higher resolution.

Learning 3D representation tailored for small baseline setups Compared with predefined

3D representation such as layer-wise depth voxel grid, (truncated) signed distance function, the

CNN-encoded volumetric representation [144, 171] has shown to be both compact and effective

in representing high-resolution 3D structure. The encoders are learned with images captured with

sparely sampled view points. For small camera baseline images (i.e.densely angular sampling for

camera views), more information about the reflection property of the surface is available, especially

for non-Lambertian materials. As a result, it would be an promising direction to learn the encoder

for both 3D structure and the surface at the same time, by using images/videos from densely

angular sample views.

Another direction is to learn the 3D encoder for a scene rather than a single 3D object. To

regularize the huge configuration space of the 3D scene, besides using a simplified raw represen-

tation for 3D (e.g.depth map as used in [15]), we can utilize the graph representation to encode the

relation for multiple objects in the scene along with the single object 3D encoder to enjoy the ben-

efits from both world. Compared with 3D scene encoding for a single object, learning the optimal

representation for a 3D scene has more applications, such as view interpolation/extrapolation and

scene relighting.

Extending and utilizing the uncertainties In Chapter 4, we have shown that the uncertainty

map can be used for filling the regions with inaccurate depth and low estimation confidence to

generate more accurate depth map. In addition to serving as a proxy for post-processing, the

uncertainty estimation can be used for other purposes. For example, by classifying the source of

uncertainty (e.g.due to lack of input information, or due to lack of the representation ability of

the model), we can tell the direction to improve the model in order to have more reliable depth

sensing results. As another example, for regions with lower confidence, we can apply the single

image depth estimation method, which is usually more computationally expensive, but more robust

to the cases where the triangulation based methods fail. Also, rather than focusing on the depth

uncertainty estimation, it would be useful to model the probabilistic distribution of other unknowns

such as camera pose or the 3D scene flow for dynamic scenes.

Another interesting direction is to guide the sampling distribution for a dedicated depth sensor

by taking advantage of the uncertainty from a helper RGB camera [146]. Depth sensors such as

LiDAR usually have very long sensing range and high depth resolution. But due to the complex

sensor fabrication procedure, the spatial resolution is much lower than that for an RGB sensor.

By re-distributing the depth sampling points of the depth sensor over regions with lower depth

confidence for an RGB camera, we can have a hybrid imaging system with both high accuracy in

depth measurement, and high spatial resolution from the RGB camera at the same time.

Faster EpiVerge system with more degrees of freedom Currently the capture speed of

Epiverge is limited due to the usage of the point-to-point (quasi static) mode of the MEMS for
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projecting vector graphs. To speed up the capture procedure for dynamic scene imaging, we need

to replace the point scanning MEMS laser with a line scanning laser system. The line scanning

can be implemented with a Powell lens that reshapes a laser spot into a plane. The reshaped plane

illumination is further reflected and redirected with a 1D galvo mirror. In this way, we can generate

a pencil of laser lines by rotating the galvo. The frame rate for the laser project is determined by

the 1D galvo mirror. In this case, the epipolar geometry is formulated by the camera image plane,

and the position and orientation of the 1D galvo mirror. Their relative pose could be calibrated

with the same calibration process for the current system.

More control dimensions, such as spatial coding and light source spectrum, could be added on

top of the current system. To add spatial coding, we can simply place another LCoS or DMD to

add spatial patterns. To add control over the light source spectrum, we can use a programmable

spectral light source rather than a narrow band laser with fixed wavelength [156].
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