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Abstract
As robots are developed for large-scale applications in autonomous driving, pack-

age delivery, and agriculture, there is a growing need for affordable and reliable
depth sensing. Robots use active illumination sensors like scanning LIDAR and
depth cameras to perceive their worlds. Scanning LIDAR is prevalent because it
offers long-range, robust sensing, but it is expensive and only captures sparse point
measurements. Consumer depth cameras, on the other hand, are inexpensive and
produce high-rate, dense depth measurements but fail outdoors in bright light.

This thesis developed active illumination depth cameras and sensing method-
ologies that combine the robustness of scanning LIDAR with the speed, sampling
density, and economy of consumer depth cameras. Rather than sample the entire
scene at once like consumer depth cameras or with points like LIDAR, the key ap-
proach uses sheets of projected light and imaging to rapidly sample the scene along
a single line at a time.

Using this approach, four contributions have been made. The first is a contribu-
tion to the development of a light sheet depth imaging device that applies the concept
of epipolar imaging to continuous-wave time-of-flight cameras. The resulting depth
camera can see up to 15 meters in bright sunlight and is robust to global illumination
and motion. The next contribution developed a second generation of this camera
that demonstrated sensing ranges up to 50 meters. The third contribution uses the
projected sheets of light and imaging to triangulate and sense along a 3D line. By
sweeping this line through the volume with galvomirrors, a programmable light cur-
tain is formed that detects objects along its surface at five frames per second. Finally,
rapid imaging of programmable light curtains at 60 frames per second was enabled
with the custom development of a device that uses the rolling shutter of a camera
to steer the imaging plane instead of a galvomirror. The speed and selectivity pro-
vided by this device enabled applications in agile depth sensing where scenes are
adaptively sampled based on detected regions of interest.

The research developed in this thesis contributes methods and hardware for high-
resolution depth imaging that works in challenging conditions, provides methods for
computationally inexpensive agile depth sensing, and has the economics that could
enable next generation and wide-scale applications in mobile robotics, agriculture,
and industrial manufacturing.
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Chapter 1

Introduction

Once confined to industrial manufacturing facilities and research labs, robots are increasingly
entering everyday life. As specialized robots are developed for tasks such as autonomous driving,
package delivery, and aerial videography, there is a growing need for affordable depth sensing
technology. Robots use sensors like scanning LIDAR, depth cameras, and passive stereo cameras
to navigate the world. Challenges for depth sensors include conditions such as bright light,
darkness, global light transport, and scattering media. Scanning LIDAR devices are the most
robust to these conditions, but capture only sparse measurements, have poor coverage at close
range, and are expensive. Alternatively, active illumination consumer depth cameras, such as
the Microsoft Kinect, and Intel Realsense™ devices, are inexpensive and produce dense, high-
rate depth measurements, but fail in bright ambient light, and are susceptible to effects of global
light transport. These differences are caused by how each device concentrates and images their
emitted light.

Scanning LIDAR devices emit a short pulse of highly concentrated light that when reflected
is detected by a co-located receiver to record a measurement. This laser point is then repeatedly
scanned to measure the rest of the scene. Consumer depth cameras, instead, emit a broad flash
of light that covers the entire scene and exposes the camera for a few milliseconds to capture the
image. Both of these devices may receive the same amount of energy for each pixel measure-
ment, but due to the reduced light power per area, consumer depth cameras must expose several
orders of magnitude longer to capture an acceptable measurement. This measurement difference
has important implications on the ability to image in bright light. In general, for a given amount
of energy collected by a camera, shorter exposures and greater concentrations of light result in
higher quality imaging. This thesis addresses many of the challenges with current depth sensing
technologies by using sheets of projected light and imaging to rapidly sample the scene along a
single line at a time, which provides much of the robustness of LIDAR, but maintains the frame
rate and resolution of consumer depth cameras, as shown in Figure 1.1.
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(a) Consumer Depth Camera (b) Scanning LIDAR (c) Light Sheet Depth Imaging

Figure 1.1: Stair scene for comparison of depth sensors. (a) Consumer grade depth cameras
are inexpensive and provide high-resolution data, but have very limited range outdoors in bright
sunlight. (b) LIDAR systems work well outdoors in bright sunlight, but have poor resolution and
are expensive. (c) Light sheet depth imaging devices can improve the robustness of consumer
grade depth cameras technology so that it works outdoors in bright sunlight.

1.1 Motivation

Although scanning LIDAR devices are more robust than consumer depth cameras and can sense
at long ranges, many robotics applications do not require the range provided by scanning LIDAR
and the shorter sensing range, increased vertical field-of-view, and higher resolution sampling
of outdoor depth cameras would be preferred. The motivation for this research is to increase
the performance of depth camera technology such that it can be used to reliably image outdoors
in bright sunlight and provide an economical and preferable alternative to scanning LIDAR for
short to medium range applications.

By utilizing techniques presented in this thesis that trade some of the robustness of scan-
ning LIDAR systems for the speed, resolution, and economics of depth cameras, a new class
of depth sensor is established that offers unprecedented performance compared to existing con-
sumer depth cameras. These devices use low cost, easy to fabricate sensor technologies and are
well-placed for wide-scale adoption in a large number of applications.

1.2 Related Depth Sensing Methods

The most common depth sensors include LIDAR, Continuous Wave Time-of-Flight (CW-ToF),
triangulation, SONAR, and RADAR devices. Each of these devices has their own benefits as
well as limitations. This section briefly discusses these popular technologies.
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LIDAR. LIDAR devices emit light in short and highly directional bursts. The light sensors are
also highly directional and are co-located to the light source. The concentration of the light both
temporally and spatially enables the pulses to be detected even in bright ambient light. Since only
a single point of light is being illuminated at a time, very little global light reaches the sensor.
Although this configuration offers great performance, the source and sensor must be actuated to
change the scan angle and image a different point in the scene, which slows down the system. 2D
line scan devices are severely limited in this respect, because to generate 3D measurements the
entire LIDAR unit must also be actuated in some way. These line scan LIDARs have been used
in many applications and actuated with LIDAR spinners [5], hand-held springs [19], and push-
broomed [11] to create dense point-clouds. Other LIDAR devices increase field-of-view and
sampling rate by using arrays of lasers and receivers that spin together to create full 360◦ models
of the environment [117]. Most LIDAR devices operate in the near-infrared (NIR) spectrum
because NIR light is invisible to the human eye and offers increased reflectance of low-albedo
objects. Due to eye-safety concerns, these devices have a maximum rated range of 120 m [117].

Several other LIDAR systems use a short-wave infrared (SWIR) wavelength, of 1550 nm, to
increase range to over 200 m [78]. These devices are able to use greater optical power because
eye-safety concerns at this wavelength are minimal [7]. Besides being able to use more power,
SWIR wavelengths are much less susceptible to scattering media such as smoke and even dust.
SWIR devices have the disadvantage of requiring exotic InGaAs materials and difficult manufac-
turing processes to make the sensors, which, currently, causes these devices to be prohibitively
expensive and limits their use in most applications.

Due to the low resolution of LIDAR devices, object recognition can be difficult with only
a single or few laser/sensor pairs. Handling dynamic scenes can also be challenging due to the
sparse data, and often a separate sensing modality such as a camera or inertial measurement unit
is necessary to track motion of the scanner so that point measurements can be registered together
from a moving platform.

Flash LIDAR devices address both the speed limitation and the need for moving parts. They
emit short, diffuse flashes of light and measure the round-trip time of the reflected light with
a two-dimensional imaging array [110]. These devices work well in ambient light, but perfor-
mance can be degraded by global light transport. These devices are difficult to make and very
expensive due to the need for an array of highly sensitive photodetectors with the required tem-
poral resolution for time-of-flight measurements.

Continuous Wave Time-of-Flight Depth Cameras. CW-ToF cameras use undirected contin-
uous wave modulated light rather than pulsed light like LIDAR. These devices typically measure
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distance by detecting a phase shift between emitted modulated light and received light, and thus
have a maximum unambiguous range dependent on the modulation frequency [70]. These de-
vices are capable of generating high-resolution depth maps at high-frame rates, but are highly
susceptible to global light transport and ambient light. CW-ToF imagers based on Photonic
Mixer Device (PMD) technology have built-in background light suppression technology [67]
which prevents saturation from ambient light but does not remove shot-noise. Several depth
cameras have been based on this technology. Examples include, the Microsoft Kinect2 [38],
PMDTech sensors [25], and MESA Swissranger devices [89]. All of these cameras are meant
for indoor use. The high-resolution data provided by these sensors is useful for many of the
same applications as regular visual images and is often paired with visual cameras to provide
registered depth information to images. These RGB-D frames are then used in object detection,
segmentation, and many other applications where LIDAR is not suitable.

Triangulation-Based Depth Sensors. Triangulation-based depth sensors use a broad class of
depth imaging techniques that rely on the triangulation of corresponding points to determine
depth. One of the most prolific is stereo-vision. Stereo-vision uses two rectified cameras sepa-
rated by a baseline distance to image the scene. Corresponding points in the image are matched
to compute their disparity and then depth. By matching windows around features, dense depth
maps can be reconstructed [87]. The crux of stereo-vision and other triangulation based tech-
niques is that the scene needs to have texture so corresponding points can be identified. If the
scene is uniform, there are no uniquely identifiable points to match and stereo-vision will fail.
Stereo is usually implemented without a light source and is thus called passive-stereo. To in-
crease texture and stereo reliability, texture is sometimes projected onto the scene with a light
source [66]. This method is called projected-texture stereo and is sometimes referred to as active
stereo.

When one of the cameras in stereo-vision is replaced with a projector, traditional structured
light systems are formed. Instead of imaging corresponding points with two cameras, structured
light systems emit light with a projector and then detect it with a camera. If the projector emits
light in a single direction and it is detected with the camera, the distance to the scene can be
measured by triangulation, assuming the baseline between the camera and light source is known.
Line striping systems triangulate depths one line at a time by sweeping this line across the scene
to form the image [4]. Line striping has the benefits of trivial line detection and correspondence
matching as well as reduction of global light transport effects such as scattering. To increase
the rate of line striping, multiple light stripes are projected at time to create a structured light
pattern [41, 104]. The scene geometry distorts these patterns and the imaged patterns are decoded
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to establish correspondences. Structured light devices can generate depth maps at a few frames
per second, but are sensitive to ambient illumination and can be affected by global light transport.
Structured light and line striping methods are often used for detailed modeling due to their high
precision.

Sonar and Radar. Sonar and radar are most similar to scanning LIDAR in that they emit a
pulse of high energy in a specific direction and measure the time it takes for the signal to get
back to determine the distance to the object using the speed of either sound or light in whatever
medium the light traveled through. Sonar has been used for robot navigation in air [35, 64], but
is most often used for imaging underwater due to its long range and predictable performance [71,
122]. Sonar has shown to improve localization results by tracking features in 2D images from
imaging sonars [59], but it has too low of resolution for most inspection tasks. Radar is similar to
sonar in that its long-wavelength is robust to scattering media and that it has low resolution. Many
adaptive driver assistance systems (ADAS) on vehicles use RADAR and SONAR for detection of
cars and other objects on and near roadways due to their reliable performance in all conditions.
However, radar and sonar both only provide localized measurements and require either arrays
of sensors [86] or scanning [37] to create maps of the scene. Sonar and radar have the large
advantage of not being affected by scattering media but provide limited resolution that is often
not adequate for tasks that require precise 3D information.

1.3 Challenges

Active illumination depth sensors face a number of challenges, many of which relate to the
complex interaction between the emitted light and the scene. For example, bright ambient light
sources, such as the Sun, can overwhelm the sensor’s low-power illumination source which el-
evates noise and reduces range. Another example is scattering media, like fog or smoke, which
attenuates and scatters emitted light from the sensor and corrupts measurements. Another chal-
lenge for these devices is sampling efficiency. Depth sensors have a fixed number of points they
can image per second and many depth sensors do not use these samples very effectively. In the
uniform sampling methods that most depth sensors use, low and high detail areas are sampled at
the same resolution even when the low detail area could be defined by much fewer samples. This
thesis addresses these three challenges and discusses them here in more detail.

Ambient Light The irradiance of the Sun that reaches the surface of the Earth can reach up
to 1120 W m−2 on a sunny day [8], whereas light sources used by active illumination systems
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are usually much less powerful. Shot noise is the fundamental limitation of any light sensor to
detect a weak light signal in the presence of a much stronger source. The r2 fall-off of effective
brightness of a point source with distance heightens this limitation. Even when ambient light
isn’t strong enough to cause failure of active illumination systems, it adversely effects the signal-
to-noise ratio and degrades performance.

Increasing the power of an active light source provides diminishing returns as four times the
amount of light is needed to double a given working range. The only way active illumination
systems can work in bright sunlight is to block as much of it as possible through design. Since
the Sun is a broadband source that emits many wavelengths of light, a large fraction of light
can be blocked by bandpass filtering the sensor with an optical filter matched to the wavelength
of the emitting source. Most active illumination systems that operate in bright ambient light,
and especially those that operate outdoors, use a narrow-band light source and matching optical
filters to reduce the amount of light received from the ambient light.

A complimentary approach to reducing the effects of ambient light is by temporally and spa-
tially concentrating the emitted light. LIDAR devices use this approach by emitting very short
pulses of high power light, but the circuitry needed to accurately time these pulses for precision
range calculation is expensive. Spatial and temporal concentration of light for increased robust-
ness to ambient light is used in many types of other active illumination systems. An example
in projector-camera based depth imaging systems include [85], where a raster scanning laser
projector was used for line striping outdoors. An epipolar imaging system described in [93] fol-
lowed a similar approach and paired a raster scanning laser projector with a synchronized rolling
shutter camera to concentrate projected light and imaging to a single scanning line. This tech-
nique enabled the device to image structured light patterns outdoors for reconstruction in bright
sunlight.

Scattering Media Scattering media is debilitating to active illumination imaging devices. Light
that is emitted into a scattering media is absorbed and scattered throughout the volume. Images
that are captured in scattering media suffer from loss of contrast and brightness. These effects are
amplified as distance through the volume increases. When photons are emitted into the scattering
media most of them are scattered, but a few will propagate in straight lines, and these are termed
ballistic photons. As distance increases, the number of ballistic photons decreases exponentially
as a function of the media’s scattering and absorption coefficients, otherwise known as optical
thickness. Sensing the ballistic photons is difficult especially when the sensor also captures scat-
tered light. For any significant depths, the signal from ballistic photons will be overwhelmed by
the scattered photons which saturate conventional sensors and obscure the image.

20



Most techniques to see through scattering media try to block or reduce the scattered pho-
tons in some way or another. Confocal imaging [81] and time gating [83] are highly effective
methods of blocking scattered photons from reaching the sensor. Several structured light meth-
ods for imaging through scattering media include using thin laser lines [56] and sweeping light
planes [88]. Disparity gating [93] is a triangulation based method that reduces scattering by only
capturing light from a certain disparity or depth at a time. Polarization and stereo-vision have
also been used together to descatter stereo images for reconstruction of dynamic scenes [102]. A
larger overview of methods that selectively image the ballistic light is given in [33].

Sampling Efficiency The sampling efficiency of depth sensors is the amount of information
they acquire from the scene per sampled point. Most depth sensors sample their field of view at a
fixed uniform resolution. Although this sampling method is simple to implement with traditional
depth sensors it is usually not efficient, because many sampled points fall on parts of the scene
that are very similar and could have been defined by the other sampled points around them (e.g.,
the ground, walls, large nearby objects, etc). Once captured, this data is used for tasks like
obstacle detection and recognition [128] or ground plane removal [24] where the data is heavily
processed and most of the data is discarded. Instead of sampling at these locations and then
discarding the data, these samples would be better utilized by sampling more entropic parts of
the scene, like moving pedestrians or cyclists.

Adaptively sampling the scene and only imaging regions at the necessary resolution results in
much higher sampling efficiency. Adaptive sampling based on scene complexity can be used to
capture the fine details of complex objects, while sampling simpler objects in lower detail [113].
Similar work has made its way into commercial LIDAR platforms where companies claim their
devices can make the perception system 10 times faster by intelligently selecting and sampling
regions of interest [3, 52].

1.4 Approach

This thesis develops light sheet depth imaging cameras and sensing methodologies for high-
resolution and adaptive depth imaging in challenging conditions such as bright light and scatter-
ing media. Light sheet depth imaging uses lines of imaging and lines of illumination to sample a
scene. A line of illumination, like a line laser, creates a planar sheet of light when projected onto
a scene. Likewise, a line of imaging captures only along a single plane. Geometrically, there
are only three ways these two planes can interact. They can be co-planar, they can intersect, or
they can be parallel. Each of these configurations results in a different type of light sheet depth
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(a) Outdoor Depth Imaging (b) Sensing through Smoke (c) Adaptive Depth Sampling

Figure 1.2: Light sheet depth imaging improves performance in ambient light, scattering media,
and enables high-resolution adaptive depth sampling. (a) Epipolar ToF imaging can see out to
50 m outdoors. (b) Triangulation range gating can be used to see through scattering media. (c)
Adaptive sampling with triangulation light curtains provides high-resolution depth sensing out
to 20 m and provides much better sampling efficiency than scanning LIDAR (shown as white
points).

imaging. The co-planar case takes the form of epipolar depth imaging and the intersecting case
is the principle behind triangulation range-gating. These two cases are a form of direct imaging,
where the first reflection of the light is captured. The case of parallel planes on the other hand is
a form of indirect imaging, where the light is not directly imaged and is captured after multiple
reflections. By changing the distance between the parallel planes the captured indirect light can
be separated into short and long-range indirect light [69].

This thesis uses epipolar-depth imaging and triangulation range-gating to increase the perfor-
mance of active illumination depth cameras. These two light sheet depth imaging methods im-
prove performance by concentrating the light and imaging into a single line that is then quickly
swept through the volume to generate dense measurements. This compromises some of the ro-
bustness of scanning LIDAR for the speed of traditional depth cameras. The resulting imaging
methods have less working range than scanning LIDAR, but have higher performance than tradi-
tional depth cameras. Specific benefits of light sheet depth imaging include dense outdoor depth
imaging in bright light, seeing through smoke, and improved sampling efficiency, as shown in
Figure 1.2.
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Epipolar Depth Imaging In epipolar imaging, a line of pixels in a camera and a line emitted
from a projector are colinear along a common epipolar plane. When the projector and camera are
physically aligned so that they are in a rectified stereo configuration, each row of projector pixels
corresponds to a row of pixels in the camera image. This geometric arrangement provides several
benefits. First, it enables the concentration of light and imaging into a line, which as previously
indicated, increases the robustness to ambient light and scattering media. This geometry also
is important because the direct component of illumination, or the first bounce of light, always
obeys the epipolar geometry constraint between the light source and imager, whereas scattered
or multi-bounce light generally does not. This insight from [92], means that by implementing
epipolar-imaging, most multi-bounce scattered light can be blocked and the majority of the light
captured is direct light. Some multi-bounce light will end up on the epipolar-plane but it is only
a small fraction of the light collected. Epipolar depth imaging was demonstrated in [93], with
a custom-designed structured light system that showed impressive performance in ambient light
and scattering media.

Triangulation Range-Gating Range-gating is the concept that light is only received by a cam-
era from a specific distance in the scene, rather than the entire volume. Pulsed range-gating
devices do this by emitting a very short (pico to nano-second range) pulse from a light source
and then briefly opening the shutter of a time-gated camera for an instance after a certain time
has elapsed. Light from a given distance is imaged by delaying the camera for the amount of
time it would take for the light to travel from the source to the target plane and then back to
the camera. This concept is used in some scanning LIDARs [84] and full-frame range-gated
cameras [27, 109] to see through scattering media. With sufficient illumination power these de-
vices can measure depths of greater than 250 m [27] which offers incredible performance in
challenging conditions.

An alternative method of range-gating that does not rely on time, but rather on geometry is
a technique termed here as triangulation gating. Triangulation gating is the concept that in two-
dimensions a ray of illumination and a ray of imaging separated by a baseline and angled such
that they are not parallel will intersect only at single point of known depth. At this intersection,
light will only be reflected back to, and imaged by, the camera if there is an object at the inter-
section of the two rays. To image light at different depths, this intersection of light and imaging
is steered by the relative angle between the emitted light ray and the imaging ray. This technique
is similar to the disparity gating method demonstrated in [93] and works well in scattering media
and bright light. Since range-gating methods only sample at a specific depth at a time, multiple
measurements must be taken to sample the entire volume like a LIDAR or depth camera.
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Epipolar ToF 
Imaging EpiToF 2.0

Programmable
Triangulation 
Light Curtains

Agile Depth Sensing 
with Light Curtains

Ambient

Scattering Media

Speed

Resolution

Agility

Reliability

Epipolar Imaging Triangulation Range Gating

Table 1.1: Thesis Contributions. Comparison of techniques presented in this thesis based on their
characteristics. The red, yellow, and green circles indicate the performance in a given category.
Colors are as follows: Poor (Red), Fair (Yellow), and Good (Green).

1.5 Thesis Statement & Contributions

This thesis asserts that 1) imaging a sheet of light with an aligned plane of imaging enables
robust, high-rate, and agile depth sensing; 2) when these planes are aligned and scanned in an
epipolar configuration, the depth of the entire scene can be captured out to a maximum working
range; 3) when the rotation axes of these scanned planes are parallel and separated by a baseline
they can triangulate to capture only the depths of objects along a defined surface in the volume;
and 4) that these planes can be steered to select and adaptively change which regions of the scene
are sampled and at what resolution.

The following contributions have been made in this thesis:

• Epipolar Time-of-Flight Imaging [2] (Chapter 2): In this work, the concept of epipolar
imaging, described and implemented with rolling shutter cameras in [93], was extended
to continuous wave time-of-flight imaging. By imaging lines containing only the direct
components of reflected light, epipolar time-of-flight imaging solved many of the com-
mon problems that limit time-of-flight cameras, including multi-path interference, ambient
light, and camera motion. This work was a collaboration with Supreeth Achar in which
the author contributed to prototype development, experimentation, and dissemination.

• Extending the Range of Epipolar Time-of-Flight Cameras (Chapter 3): Simulations
based on design considerations of various system parameters were used to guide the de-
velopment of a second generation epipolar time-of-flight camera to improve the working
range of the device. This new prototype demonstrated imaging of outdoor scenes at 50 m

ranges and pushed the limits of existing hardware.
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• Programmable Triangulation Light Curtains [119] (Chapter 4): By rotating a light
sheet with respect to an imaging plane such that their rotation axes are parallel and sepa-
rated by a baseline, a device was developed that senses depths only along the line formed
by the intersection of the planes. This line can then be rapidly swept, by steering the planes,
to form programmable light curtains. The constructed prototype uses a line sensor and line
laser both steered by galvomirrors to generate light curtains along any ruled surface and
can image curtains in most environments including in smoke and at over 25 m outdoors
in bright sunlight. This work was a close collaboration with Jian Wang. The author con-
tributed to prototype development, software, experimentation, and dissemination.

• Agile Depth Sensing using Triangulation Light Curtains (Chapter 5): A triangulation
light curtain prototype was developed that uses a rolling shutter camera to steer the imaging
plane and when synchronized with a light sheet projector can image 60 different curtains
per second. This capability enables applications in agile depth sensing as well as adaptive
sampling where regions of interest could be sampled on-demand with specified resolution.
These capabilities were used for robotic mapping of environments including a cluttered
high-bay environment and a smoke-filled tunnel.

1.6 Organization

The remainder of this dissertation is organized in order of the stated contributions. An overview
of the related research is first provided within Chapter 1. Chapter 2 introduces epipolar time-of-
flight imaging and describes results acquired with an initial hardware prototype. Design consid-
erations for epipolar time-of-flight imaging systems and an advanced prototype are then detailed
in Chapter 3. The concept and first prototype for light sheet depth imaging using programmable
triangulation light curtains is then discussed in Chapter 4. Based on this concept, Chapter 5
introduces the idea of agile depth sensing using triangulation light curtains. The dissertation is
concluded with a discussion on the future outlook of light sheet depth imaging and potential
applications of the technology.
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Chapter 2

Epipolar Time-of-Flight Imaging

2.1 Introduction

Time-of-flight (ToF) depth sensors have become the technology of choice in diverse applica-
tions today, from automotive and aviation to robotics, gaming and consumer electronics. These
sensors come in two general types: LIDAR-based systems that rely on extremely brief pulses
of light to sense depth, and continuous-wave systems that emit a modulated light signal over
much longer duration. The former can acquire centimeter-accurate depth maps up to a kilo-
meter away in broad daylight but they have low measurement rates and their cost per pixel
is orders of magnitude higher than the latter—whose range, outdoor operation and robustness
are extremely limited. Since low cost, large-scale production and high measurement rate often
trump other considerations, continuous-wave ToF (CW-ToF) sensors continue to dominate the
consumer electronics and low-end robotics space despite their shortcomings.

In this chapter we present a first attempt to significantly reduce these shortcomings by energy-
efficient epipolar imaging. The idea is to project a continuously-modulated sheet of laser light
onto a sequence of epipolar planes that is chosen carefully and that spans the field of view. At
the same time, only the strip of CW-ToF pixels that belong to each epipolar plane is exposed, as
shown in Figure 2.1. Our prototype implementation couples a custom-built projection system to
an off-the-shelf CW-ToF sensor that has a controllable region of interest. It outputs live 320×240

3D video at 7.5 frames per second, with the frame rate only limited by the sensor’s API.

Epipolar imaging was first proposed for acquiring live direct-only or global-only video with
a conventional (non-ToF) video sensor [92]. This approach was then extended to the ToF do-
main [91] but its energy efficiency was very low and it involved capturing more than 500 images
to calculate a single “direct-only” ToF image. In the context of triangulation-based 3D imaging,
O’Toole et al. [93] showed that significant improvements in energy efficiency and robustness can
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be achieved with a 2D scanning-laser projector and a rolling shutter camera. Our approach can
be thought of as extending this idea to the ToF domain; as such, it inherits all the advantages of
non-ToF energy-efficient epipolar imaging while also tackling major challenges that are specific
to CW-ToF.

First and foremost, the range of CW-ToF sensors is severely limited by power consumption
and eye safety considerations. Although most sensors electronically subtract the DC compo-
nent of incident light [90], photon noise from strong ambient sources such as sunlight easily
overwhelms the CW-ToF signal at distances more than a few meters outdoors [26, 42, 85]. By
concentrating the light source’s energy into a single sheet, epipolar ToF boosts this range to 10
meters and acquires useful—albeit noisier—depth signal at over 15 m outdoors.

Second, the depth accuracy of CW-ToF sensors is strongly affected by global illumination
effects such as inter-reflections. These effects produce longer light paths and thus show up as a
source of structured additive noise. They are extremely common indoors (e.g. corners between
walls, shiny surfaces of tables and floors, mirrors, etc.). Methods that aim to cancel the effects
of global illumination a posteriori [31, 43, 48, 61] require extra image measurements and make
strong assumptions in how they model transient responses. In contrast, epipolar CW-ToF opti-
cally blocks almost all global light paths prior to acquisition. This provides significant robustness
to all forms of global light transport without having to capture additional images.

Last but not least, CW-ToF sensors must acquire two or more frames with a different phase of
emitted light in order to compute a single depth map. This makes them highly sensitive to camera
shake: unlike conventional cameras where this shake merely blurs the image [36], camera shake
in CW-ToF causes the static-scene assumption to be violated [107]. This leads to depth maps
that are both blurry and corrupted by motion artifacts. Epipolar ToF makes it possible to address
both of these problems: motion blur is minimized because only a very short exposure is used for
each epipolar plane; motion artifacts and depth errors are minimized by acquiring multiple phase
measurements per epipolar plane rather than per frame. The rolling-shutter-like distortions [10,
63] due to the sequential nature of epipolar-plane ToF can be reduced by scheduling the sequence
of epipolar planes so that post-acquisition distortion correction becomes easier.

2.2 Continuous Wave Time-of-Flight

The operating principles of CW-ToF cameras are discussed thoroughly in [70], but a brief sum-
mary is provided here. CW-ToF cameras use a temporally-modulated light source and a sensor
where the exposure is also modulated during integration. If the illumination modulation func-
tion is fω(t) = cos(ωt) and the sensor modulation function is gω,φ(t) = cos(ωt + φ) where ω
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is the modulation frequency in rad/s and φ is the phase offset between the source and sensor
modulation functions, then the measurement integrated over an exposure time of texp at a pixel x
is

Iω,φ(x) =

∫ texp

0

fω(t) ∗ [hx(t) + βx]gω,φ(t)dt (2.1)

=
texp

2

∫ ∞
0

cos (ωτ − φ)hx (τ) dτ , (2.2)

where ∗ denotes convolution, hx(t) represents a pixel’s transient response to the active light
source and βx is the response due to the DC component of the active light source as well as other
ambient sources. In practice, Iω,φ(x) is measured by integrating incoming light to two different
storage sites (called taps) depending on whether gω,φ(t) is positive or negative and then taking
the difference between the stored values. Thus even though βx drops out of the integral, ambient
light still adds to the measurement shot noise.

If there are no indirect light paths between the light source and sensor pixel x, then hx(t) ∝
δ (t− l (x)/c) where c is the speed of light and l(x) is the length of the path from the light source
to the scene point corresponding to x and back to the sensor. Assuming the scene is static, we
can recover the path length l(x) by capturing a pair of images at the same frequency but two
different modulation phases φ = 0 and φ = π/2:

l(x) =
c

2ω
atan2

(
Iω,π

2
(x), Iω,0(x)

)
. (2.3)

The pixel depth z(x) can be computed from l(x) using the geometric calibration parameters of
the light source and sensor. This relationship has an inherent 2π phase ambiguity, where any
distance greater than the maximum distance is phase wrapped.

2.3 Epipolar Time-of-Flight

The geometry required for epipolar ToF imaging was realized using a 2D sensor with controllable
region of interest and a light sheet projector comprised of a line laser source with a 1D-scanning
mirror that projects a steerable light sheet onto the scene. The ROI of the 2D sensor is set to
be one row tall and the sensor is aligned in a rectified stereo configuration with the light sheet
projector to match the requirements of epipolar imaging, as shown in Figure 2.1.

To capture a scene using epipolar ToF, the active plane must be swept across the field of view
in one of a variety of ways. Several of these ways are illustrated in Figure 2.2. For example,
the ordering in Figure 2.2b illustrates the operation of a hypothetical rolling-shutter ToF cam-
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Figure 2.1: Epipolar time of flight. A projector that generates a steerable sheet of modulated laser
light is combined with a ToF sensor whose rows can be exposed one at a time. The projector
and camera are placed in a rectified stereo configuration so that the light sheet always lies on
an epipolar plane between the projector and the camera. At any given instant, only the row of
camera pixels on the epipolar plane is exposed to light.

era, where one complete image is acquired per modulation phase. This method is not desirable
because if the scene or camera move during acquisition, the recovered depth map will contain
errors that are difficult to correct.

A better ordering strategy is to loop through the set of modulation phases at one epipolar
plane before going onto the next row (Figure 2.2c). Since the exposure of each row is very short,
all phases for a single row can be acquired quickly to minimize depth and motion blur artifacts
from scene/camera motion.

Using this strategy, each row is captured at a slightly different time which introduces a rolling-
shutter-like distortion effect to the acquired depth map. The individual depth values will be
blur- and artifact-free and can be combined into a consistent model by post-processing using
continuous time pose-estimation techniques [6, 63]. To make this post-processing easier, we
order the plane sampling into a sawtooth pattern (Figure 2.2d), which essentially provides depth
maps covering the full field-of-view at twice the frame rate but half the vertical resolution. This
makes depth correction easier for fast camera shake and/or scene motions.
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Figure 2.2: Epipolar plane sampling schemes and row exposures in ToF imaging. (a) In con-
ventional CW-ToF all epipolar planes are illuminated simultaneously and all camera rows are
exposed at the same time. This requires long exposures and leads to severe artifacts due to mo-
tion, ambient light, and global light transport. (b) Ordering the epipolar ToF planes similarly to a
rolling-shutter camera confers robustness to ambient light, global illumination and motion blur.
Sensitivity to motion remains, however, because of the significant delay between the phase mea-
surements acquired for each row. (c) Interleaving those measurements plane by plane minimizes
such artifacts. (d) Scanning the entire field of view twice within the same total exposure time
yields higher temporal sampling of the scene and makes consistent merging of individual depth
map rows simpler.

2.4 Hardware Prototype

We developed an epipolar time-of-flight hardware prototype that uses a galvomirror-based light
sheet projector for illumination and a ToF sensor with adjustable region of interest (ROI) for
imaging. The ToF sensor is the Espros Photonics EPC660, which has a resolution of 320×240
and pixels that prevent ambient saturation. The sensor is integrated and accessed with the camera
development kit (DME660) from the manufacturer. The camera is fitted with an 8 mm F1.6 low-
distortion lens and an optical bandpass filter (640 nm, 20 nm bandpass) to reduce ambient light.
The sensor allows the ROI to be changed with every readout which we use to quickly select
which row to image.

The light sheet projector we developed uses a 638 nm laser diode with a peak power of 700
mW. The laser light is first collimated and then passed through a Powell lens that produces a
uniform, diverging line at a 45° fanout angle. This light sheet is then directed at and steered with
a 1D scanning galvomirror. The optical scan angle of the galvomirror provides the projector a
40° field-of-view.
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Figure 2.3: Our hardware prototype uses a custom light sheet projector (orange assembly) and a
DME660 camera with fast ROI control to capture arbitrary rows of pixels.

A micro-controller (Teensy 3.2) is used to synchronize and command the projector and sen-
sor. It communicates with the sensor over an I2C bus to set exposure time, modulation frequency,
and ROI as well as to trigger the capture. The micro-controller also commands the setpoint of
the projector’s galvomirror and can read the rotational velocity of the camera from an attached
MEMS inertial measurement unit. A frequency generator circuit enables us to select a modula-
tion frequency between 1 MHz and 24 MHz.

The camera and projector are aligned side-by-side in a rectified stereo configuration as re-
quired for epipolar imaging. When precisely aligned, the projected light sheet illuminates a
single row of pixels on the camera that is independent of depth. The galvomirror is calibrated to
the camera to provide a known mapping between the galvomirror angle and illuminated camera
row.

2.4.1 Sensor Calibration

Due to fixed-pattern noise, non-uniform pixel sensitivity, crosstalk between the taps, and small
variations in the phase of the exposure modulation function at each pixel, the observed measure-
ments from the sensors do not match their expected values. We model the relation between the
expected sensor measurements Iω (x) and the actual measurements Îω (x) using a 3× 3 calibra-
tion matrix Hω (x) at each pixel.
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Iω,0Iω,π
2

1

 = Hω(x)

Îω,0Îω,π
2

1

 (2.4)

Hω (x) is found by imaging a fronto-parallel surface at a set of known distances zk, k =

1, .., K. At each position of the plane, sensor measurements at different aperture settings (s = 1, .., S)

are captured to simulate various scene albedos. For each plane position, k, the path length lk (x)

and expected phase 2ωlk(x)
c

at the pixel are computed. The calibration matrix that best explains
the sensor measurements, Iw,k,s (x), is then found by minimizing the least-squares error between
the corrected measurements and expected phase. This calibration matrix is dependent on both
the modulation frequency and the exposure time, so it is found for each setting.

2.4.2 Timing

The time needed for the prototype to image one row is a function of the number of readouts per
row n, the exposure time texp, the readout time for a row tread, and the time tmirror taken by the
galvomirror to move to the next rows position in the sampling sequence:

trow = ntexp + (n− 1) tread + max (tread, tmirror) . (2.5)

The image sensor in the prototype has two-taps, so at least n = 2 readouts are required to measure
the depth using a single modulation frequency. A timing example is shown in Figure 2.4, where
tread is 175 µs and for most experiments texp was 100 µs. In our row sampling sequence, the
mirror rotates through two rows per step and, for this step size, tmirror is approximately 100 µs.
Combined, trow is 550 µs when n = 2, which provides a frame rate of 7.5 fps (or 3.8 fps when
n = 4).

2.4.3 Limitations

The frame rate is currently limited by the read-out time enforced by the development kit. Our
approach requires only one sensor row to be read out, but the EPC660 sensor supports a minimum
region of interest of 4 rows, which forces us to read out three extra rows that are unused. The
development kit also limits the sensor readout bus to 20 MHz when the sensor actually supports
rates up to 80 MHz. The frame rate is also limited by the minimum exposure time necessary
to collect sufficient light at a desired range, which depends primarily on peak laser power. Our
prototype uses a 700 mW laser source while most other experimental time-of-flight imaging
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Figure 2.4: Timing diagrams for camera exposure, readout, and mirror position for a particular
sequencing of the rows. First, the scanning mirror is moved to the new active row and takes tmirror

to settle in the position. When the previous row readout is complete (which takes tread) and the
the mirror is in position, the camera is triggered. Each exposure lasts for texp and at the end of
each exposure the row is read out.

systems have peak light power in the 3 W to 10 W range. With a more powerful light source,
much shorter exposure times could be used without loss of range. Lastly, the settling time of
the low-cost galvomirror we used could be replaced with a higher-grade galvomirror with lower
settling times, or even with a faster 1D MEMS mirror. With these improvements, a system based
on this prototype would operate at video frame rates.

The sensor used for this prototype supports a maximum modulation frequency of only 24
MHz whereas most other time-of-flight sensors can operate in the 50 MHz to 100 MHz range.
This low modulation frequency limits the depth precision and the prototype’s ability to accurately
scan smaller objects. The EPC660 datasheet specified that the sensor ADC returns 12-bit values
but the preliminary version of the sensor we are using only returns 10-bit values, which affects
the range and makes output depth maps noisier.

2.5 Results

We demonstrate the benefits of epipolar ToF imaging by comparing to regular ToF imaging in
different scenes and conditions. For accurate comparison we implemented regular ToF imaging
with our prototype sensor. The first way we implemented regular ToF was by removing the
light sheet projector and replacing it with a diffused light module using the same laser and peak
power. The second method we implemented was to still use the light sheet projector but keep
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Figure 2.5: A simulation of the standard deviation in depth measurements obtained using regular
and epipolar ToF imaging (15 MHz modulation frequency) for a target 10 m from the camera as
a function of ambient light level is shown in (a). For both cases, the peak light source power is
2 W and the total exposure time is the same (7.2 ms per image) but epipolar ToF is more robust
to ambient light because it concentrates light source power and uses a short exposure for each
row (30 µs). (b) shows the working range of the same simulated camera at different levels of
acceptable range accuracy. Note that simulated camera’s parameters differ from prototype.

the entire sensor exposed until the projected sheet had been swept across the full field of view.
For the camera motion experiments we used the diffused light module, but for the ambient light
comparisons we used the full frame ROI approach to prevent light loss at the diffuser from
affecting our comparisons.

2.5.1 Ambient Light

CW-ToF cameras have been engineered to be unaffected by ambient light by implementing
charge dumping, ambient light suppression, and by using bandpass filters on the imager. How-
ever, the fundamental limitation of these devices is that they cannot remove the shot noise from
the system. By broadcasting the light over the entire image they must expose longer than an
epipolar system which will increase the amount of shot noise they receive. Even in burst modes,
where a higher-power illumination source is used with short exposures, the light is still not as
concentrated as an epipolar system.

Figure 2.5 shows working range and depth error simulations of a regular and epipolar ToF
system with the same illumination power and system parameters as the EpiToF prototype. For
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Figure 2.6: We placed a white planar target at a range of distances from the sensor in both cloudy
weather and bright sunshine. Even under cloudy conditions, epipolar ToF imaging produced
far less noisy depth measurements than regular ToF. Under bright sunlight, regular ToF failed
completely whereas epipolar ToF still provided useful depth returns. Depth maps in column (c)
and (d) range from 0 m to 15 m. The camera modulation frequency was set to 10 MHz. (a)
shows standard deviation in depth estimates versus distance to target (slower rising curves are
better). Our prototype has depth error of around 3% at 10 m in bright sunlight.
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the epipolar simulations the exposure time of frame is divided by the number of rows (240) to
get an exposure time of 100 µs per row. So the regular ToF system exposes the entire frame for
24 ms, whereas the epipolar system exposes each of the 240 rows for 100 µs to provide the same
amount of exposure time on each frame. Range simulation is performed as described later in
Chapter 3.

For the working range simulation, a maximum depth error (or resolution) of 5 cm and 10 cm

was used. As expected and shown in Figure 2.5, the epipolar ToF imaging system performs better
than the regular ToF system in ambient light. As the ambient illumination and distance increases,
the working range decreases for both systems, but the EpiToF system provides much less error.
In these simulations, it is assumed that the illumination lines up perfectly with the imaging to
occupy only one row, which is a reasonable assumption given the size of ToF pixels. These
simulations do not take into account any proprietary ambient suppression circuitry the imagers
use, and when compared to empirical results, any differences seem negligible.

A simulation that illustrates the benefits of epipolar time-of-flight imaging in brightly lit envi-
ronments is shown in Figure 2.5. For a given light source power, depth accuracy degrades rapidly
with regular time-of-flight imaging as ambient light increases from 0 lux (complete darkness) to
100 klx (direct sunlight). Epipolar imaging degrades much more gradual.

A quantitative comparison of our prototype operating outdoors under both sunny and cloudy
conditions in regular ToF and epipolar ToF imaging modes is shown in Figure 2.6. Regular ToF
mode performs poorly in bright sunlight, while epipolar ToF is considerably more robust.

2.5.2 Global Illumination

The ability of epipolar ToF imaging to suppress the effects of global illumination is shown in
Figure 2.7. These results were generated using a single modulation frequency of 24 MHz. In
regular ToF mode, the diffuse interreflections between the walls and ceiling cause depths to be
overestimated and the corner to be rounded. With epipolar imaging, the walls appear straight and
meet at sharp right angles. The conference table in the second row appears specular at grazing
angles and reflects light off the projector screen behind it. The water fountain is particularly
challenging because the surface reflects mostly indirect light back to the sensor and the direct
reflections are very weak. For epipolar imaging, we combine multiple exposures to recover a
sufficient direct signal. Longer exposures do not help regular imaging because the interreflections
saturate the sensor.
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Figure 2.7: Comparing depth maps with epipolar and regular ToF imaging in the presence of
global light transport: diffuse interreflections at the corner, glossy interreflection from projection
screen onto a shiny conference table, reflections from in between the wall and the shiny water
fountain. Epipolar ToF eliminates most of the global light transport resulting in depth maps that
are significantly more accurate than regular ToF. All profile curves are in meters.

2.5.3 Camera Motion

Due to each row being captured at slightly different times, the captured frame will show effects
from rolling-shutter-like distortion. Consider the case of a rotating camera with known rotational
trajectory acquired from a MEMS gyroscope, shown in Figure 2.8. With regular imaging, mo-
tion blur and strong artifacts appear at depth discontinuities because the measurements are not
aligned. With epipolar ToF imaging, motion blur has basically no effect on the depth values, but
the depth map will have rolling shutter distortion. This distortion is corrected with a simple warp
computed from the known rotation.

2.5.4 Outdoor Depth Imaging

Epipolar ToF imaging has the capability of producing depth maps of scenes outdoors in bright
sunlight (70 klx), as shown in Figure 2.9. While regular ToF imaging is only able to correctly
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(a) scene (b) Regular ToF (c) Epipolar ToF (d) Corrected Epipolar

Figure 2.8: Fast camera motion causes blur and misalignment between images captured with
regular ToF cameras (b). With epipolar ToF cameras, the motion causes rolling shutter distortion
(c) that can be corrected with a simple image warp if the motion is known (d).

sense depths in the shadows of the scene, epipolar ToF imaging can reconstruct the entire scene.
These results were generated with a modulation frequency of 10 MHz which provided a 15 m

unambiguous range. Wrap-around is noticeable on the wall of the building beyond the staircase
which is more than 15 m away.

(a) scene (b) Regular ToF (c) Epipolar ToF

Figure 2.9: Outdoor Depth Imaging. (a) An outdoor stair scene was captured with our ToF
camera on a sunny day. (b) When the camera is operated in regular ToF mode the depth is only
properly reconstructed in the shadows. (c) In epipolar mode the full scene is reconstructed.

2.6 Discussion

Epipolar imaging for continuous-wave time-of-flight depth cameras mitigates many of the prob-
lems commonly encountered with these devices. The line-by-line sampling mechanism em-
ployed by epipolar imaging mitigates problems of highly degraded performance in bright light,
systematic errors from global illumination, and artifacts induced by sensor motion. Compared
to depth cameras, systems like scanning LIDAR that illuminate and image a single point at a
time are very robust to all of these effects but have a low measurement rate. Epipolar imaging
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can be considered as a compromise between these two extremes of full-field capture and point-
by-point capture. Because epipolar imaging illuminates and captures a single line at a time, it
enables a depth camera to have much of the robustness of point scanning while still having a
high measurement rate.

In our prototype, the scanning mirror follows a sawtooth pattern and captures rows in an or-
dered sequence. However with a faster mirror, row sampling strategies could be implemented that
would enable adaptive sampling of the scene based on current scene knowledge. This would en-
able high-resolution and high-rate depth imaging of areas of interest and lower-resolution, lower
rate sampling of other areas. Pseudo-random row sampling strategies could also be used with
compressed sensing techniques to temporally super-resolve depth maps of fast-moving scenes.
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Chapter 3

Extending the Range of Epipolar
Time-of-Flight Cameras

3.1 Introduction

Epipolar time of flight imaging solves many common problems with continuous wave time-of-
flight imaging, as described in Chapter 2. The first epipolar time-of-flight prototype, referred
to from now on as EpiToF, demonstrated that pairing a modulated light sheet projector with
a conventional 2D ToF camera and quick ROI adjustment was an effective implementation of
epipolar time-of-flight. The EpiToF prototype demonstrated working ranges of up to 15 m in
bright daylight and had a maximum frame rate of 7.5 fps.

Among its successes, the first EpiToF prototype also demonstrated the weak points of the
design and left several areas for improvement. Improving many of these weak areas required a
completely new design based on a ToF imager with characteristics that did not seem to exist at
the time. The desired characteristics were higher modulation frequency, quicker row readout, and
better modulation contrast, as well as the ability to quickly change the region of interest. Other
areas of improvement such as working range and reliability of the device could be improved
modestly with a new hardware design.

This chapter discusses the simulation-based procedure used to design a second generation
epipolar time-of-flight imaging prototype, EpiToF 2.0, that has improved working range and
higher reliability. Finally, results from EpiToF 2.0 are shown in a variety of scenes and then
current limitations and the outlook for this technology is discussed.
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Figure 3.1: Diagram of image formation model, showing how the irradiance from the ambient
light and a laser projector corresponds to the pixel on the image sensor surface.

3.2 Epipolar ToF Range Simulation

Range of active illumination systems are limited by noise. Contribution of ambient light to the
image is essentially independent of distance, but light from the active illumination source has an
inverse square fall off with increasing distance. When the ambient light reaching the camera is
small compared to the light from the active illumination source, the range is limited by read noise.
But as the relative contribution of ambient light to the image increases, the light from the active
source is lost in the shot noise of the ambient component. When the ratio of the signal received
to the noise received is less than a defined signal to noise ratio, then the device is defined to be at
max working range. The amount of light received by the camera depends on many aspects of the
system, including illumination power, camera optics, image sensor sensitivity, laser wavelength,
ambient light, and scene albedo. The range of an active illumination camera system is analyzed
here with the image formation model for such a system.

3.2.1 Image Formation

A camera with lens of aperture diameter, d, and focal length, f , viewing a scene patch at an
angle, α, as shown in Figure 3.1, measures the irradiance of the scene, Em, which is related to
the radiance of the scene, Ls, by (3.1), where ηL is a loss factor to account for transmission losses
in the camera optics [51].
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Em = ηLLs
π

4

(
d

f

)2

cos4 α (3.1)

Assuming point sources and a lambertian reflectance from the surface with albedo ρd, the radi-
ance of the scene, Ls, is related to the incoming irradiance on the scene, Es, at incident angle, θi
by (3.2).

Ls =
ρd
π
Es cos θi (3.2)

For an active illumination imaging system, the irradiance on a scene patch is a combination of
the irradiance from ambient light, Ea, and that emitted from the projection system, Ep. In these
equations radiance and irradiance units are W·m−2·sr−1 and W·m−2, respectively.

Es = Ea + Ep (3.3)

Signal
The energy (in Joules) on a camera’s pixel, Ep, from the measured irradiance during a given
exposure te (in seconds) is given by (3.4), where Ap is the area of the camera pixel in m2.

Ep = EmApte (3.4)

The number of photons to generate this energy is determined by dividing the energy on the pixel
by the energy of a photon hitting the pixel. The energy of a photon, ep, depends on its wavelength,
λ and is calculated with (3.5), where h is Planck’s constant in J·s, and c is the speed of light in
m/s. Although each different wavelength in the bandpassed ambient light and the laser light have
slightly different energies, it is assumed here that they have the average energy of the projector’s
wavelength.

ep =
hc

λ
(3.5)

The number of photons is then calculated with (3.6) and then converted into signal, e−sig, by
finding the number of collected electrons with the quantum efficiency, ηqe of the image sensor,
as shown in (3.7).

np =
Ep
ep

(3.6)

e−sig = ηqenp (3.7)
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Noise
The noise of the camera is comprised of shot noise, readout noise, and dark current noise. Shot
noise describes the inherent fluctuation in the arrival rate of photons on the imager and is a
Poisson process. The shot noise, e−shot, is calculated as the standard deviation of the mean number
of electrons generated on the imager, e−sig, which for a Poisson process is the square root of the
mean,

e−shot =
√
e−sig. (3.8)

RMS readout noise, e−read, is the noise associated with the electronic digitization of the signal and
is constant with time. Readout noise can be determined by either calibration [97] or estimated
from values on the datasheet

(
e−read ≈ Qsat/10SNR/20

)
. The dark noise, e−dark, is due to thermal

generation of electrons, e−dcur, in the imager and is highly dependent on temperature of the imager.
Total dark signal noise depends on exposure time and the RMS value is calculated as

e−dark =
√
e−dcurtexp. (3.9)

The total noise e−noise, of the camera can be calculated as an RMS sum of the shot noise, readout
noise, and dark signal noise, as shown in (3.10) [96].

e−noise =
√

(e−shot)
2 + (e−dark)

2 + (e−read)
2 (3.10)

Projector Irradiance
The irradiance a scene receives from a laser illumination system is a function of the laser’s power,
PL, the area of the scene imaged by a single camera pixel, As, and how many camera pixels the
reflected irradiance of the laser covers, npix, during a single exposure. For a global shutter camera
and illumination system, where a flash of diffused light is pulsed with the capture of an entire
image of resolution w×h, np = w×h and each pixel receives 1/(w×h) the power of the laser
power. In epipolar imaging, where a single row is illuminated, np = w, and each pixel receives
1/(w) the power of the laser. To calculate the projector irradiance, Ep, (3.11) is used. The area of
the scene, As imaged by a single camera pixel with area Ap, is calculated with (3.12), where z is
the distance to the scene [51].

Ep =
PL

npixAs
(3.11)

As =
cosα

cos θi

(
z

f

)2

Ap (3.12)
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Figure 3.2: Solar irradiance on the atmosphere (extraterrestrial) and on the Earth’s surface. The
atmosphere absorbs some wavelengths of light and reduces Earth’s exposure to them.

Solar Irradiance
The sun is a 5800 K blackbody at a distance of 1 AU (1.496 ×1011 m) from the Earth. The
total irradiance of the Sun on the atmosphere of the Earth is roughly 1367 W m−2, and is known
as the solar constant [8]. Each wavelength of light has a different spectral irradiance, Ēλ, and
each wavelength is absorbed differently in the atmosphere, as shown in Figure 3.2 to provide a
total irradiance on the Earth’s surface of 1000 W m−2. The total irradiance of a specific range of
wavelengths, Eλ1→λ2 from wavelength λ1 to wavelength λ2 is found by integrating the spectral
irradiance, Ēλ, of the wavelengths in the range as shown in (3.13). Their is no closed form
solution, so this must be done numerically. Integrating over the entire distribution verifies the
total irradiance values provided by [8].

Eλ1→λ2 =

∫ λ2

λ1

Ēλdλ (3.13)

3.3 Range Simulation for Design

In the design of new epipolar imaging devices the maximum working range as it relates to
changes in system parameters is of key interest. The maximum working range, z∗, is deter-
mined by finding the range where the emitted light signal captured by the imager, Sp, is equal to
the captured noise, N , by a specified signal-to-noise ratio, SNR.

S∗p = SNR ·N∗ (3.14)
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As detailed in [38, 45, 70, 115] and summarized in Chapter 2, CW-ToF systems use several
images captured at different modulation phases to compute distance. The signal of a pixel, x, of a
time of flight cameras is defined as the amplitude, α, of the measured signal, which is computed
using

Sp(x) = α(x) =

√(
Iω,π

2
(x)− Iω, 3π

2
(x)
)2

+ (Iω,0(x)− Iπ(x))2

2
, (3.15)

where Iω,φ(x) are the number of electrons at the pixel captured at different modulation phases.
Here, the working range is defined using measurements captured at four different modulation
phases (φ = 0, π/2, π, 3π/2) as is commonly used in practice, instead of the two measurements
as described in Chapter 2. Using four measurements improves results by averaging out noise.

The noise of the measurements is comprised of shot noise from the ambient light and projec-
tor, as well as read noise, and dark noise. The shot noise from the ambient light first requires the
ambient light be calculated as the DC offset coefficient,

β(x) =
Iω,0(x) + Iω,π

2
(x) + Iω,π(x) + Iω, 3π

2
(x)

4
, (3.16)

which is just the average of the four readings. Although this DC offset due to ambient light
cancels out during the subtraction of measurements, its shot noise does not. The read noise is
also subtracted out during the measurements since it is constant, and the dark noise is considered
negligible at these short exposures. Therefore the noise, N , is just the sum of the shot noise from
the ambient light and the projector,

N(x) =
√
α(x) + β(x), (3.17)

where α and β are in electrons.

The signal-to-noise ratio is important to define the performance of the system, as it determines
the depth resolution of the system. The depth resolution, ∆d, is a function of the shot noise from
each measurement and requires error propagation of (3.15). It is calculated and simplified from
[70] as

∆d =
dmax
√

2

8
· 1

SNR
, (3.18)

where SNR is the measured signal to noise ratio. Rearranging (3.18), the required signal-noise-
ratio can be found to achieve a required depth resolution at the maximum working distance.
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Table 3.1: EpiToF System Parameters

Parameter Value

Scene Albedo 0.5

Model ESPROS DME660
Resolution (w x h) 320 x 240

Camera Pixel Pitch (µm) 20
Exposure Time of Frame (ms) 24
Quantum Efficiency 0.71

Center (nm) 638
Filter FWHM Passband (nm) 20

Transmission 0.95

Focal Length (mm) 8
Lens Aperture (f-number) 1.6

Lens Transmission 0.80

Optical Power (mW) 90
Projector Wavelength (nm) 638

Field of View 45◦H × 30◦V

3.3.1 Comparison of EpiToF Systems

This section compares configurations of the EpiToF system detailed in Table 3.1 by varying laser
power, row exposure, f-stop, and albedo as shown in Figure 3.3 and the modulation frequency as
shown in Figure 3.4. All parameters are unchanged from the table unless they are the parameter
varied in the given plot. All simulations were performed with a modulation frequency of 15 MHz,
unless otherwise stated. As expected, these plots show that increasing laser power, lens aperture
diameter, scene albedo, and row exposure time all increase working range. The effects of these
changes are substantial without ambient light, but provide smaller yet significant increases in
working range.

For laser power, these plots show the effect of the inverse-square law of light and that to
double the working range, a four-fold increase in power is required. A reasonable powerful
400 mW laser doesn’t enable imaging over even 10 m in bright sunlight. To increase range to a
working distance of 25 W, a powerful 6.4 W laser is necessary with a depth error of 10 cm and
15 MHz modulation frequency.

The f-stop number of a lens, describes the aperture of the lens and is important in the per-
formance of the system. The lens aperture is an opening in the lens through which light travels
and determines the cone angle of light that focuses on the image plane. The f-number (N ) (or
f-stop) of an optical system is the ratio of the lens’s focal length (f ) to the diameter(D) of the en-
trance pupil (N = f/D). The amount of light captured by the lens is proportional to the area of
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Figure 3.3: Effects of system parameters on working range with a max depth error of 10 cm. (a)
Maximum working range approximately doubles with the quadratic increase in laser power. (b)
Increasing exposure has a large effect on performance in darkness, but has marginal effects in
ambient light. (c) Decreased f-number results in a larger aperture and more light being let in. (d)
The higher the scene albedo the more light that is reflected.

the aperture and a smaller f-stop number increases the aperture area and more light is collected,
which increases range.

Albedo of the scene has large implications on the working range, as well. The lower the
albedo of the scene, the less light that is reflected and the shorter the working range. Albedo
ranges from 0.0–1.0, where 0.0 is a completely light absorbing material, and 1.0 is a completely
reflective material (similar to a retro-reflector). Changing the albedo of the scene is not usually
possible, and most common objects are in the albedo range of 0.05–0.5. For example, a white
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Figure 3.4: Effects of modulation frequency on depth error in ambient light. The modulation
frequency directly controls the depth error, thus with a higher modulation frequency, the depth
error is smaller for a given range, but the unambiguous range is shorter. With a high modulation
frequency a depth error of a few centimeters can be achieved in bright ambient light.

piece of paper has an albedo of 0.6, grass has an albedo of 0.25, and black paint has an albedo of
0.05. The albedo plot shows that there is a significant increase in range with albedos under 0.5,
but a much smaller increase in the albedo range of 0.5–1, when viewed in full ambient light.

When in darkness, increasing row exposure produces significant increases in range due to the
increased time to collect the emitted light. However, when not in darkness, the longer exposure
also increases the amount of ambient light (and shot noise) captured, which quickly reduces the
benefits to working range.

As indicated in the simulation calculations, the modulation frequency has a large effect on the
depth resolution of the system. The smaller the modulation frequency, the better depth resolution,
but lower the unambiguous range. With systems capable of modulation frequencies of 50–100
MHz, the precision can be just a few centimeters in bright light, but the unambiguous range is 3
m and 1.5 m, respectively.

3.3.2 Simulation Insights

The developed range simulation methods can be used to design new devices with increased per-
formance. Given a certain image sensor, several system parameters are easily adjusted to improve
performance. The laser power is shown to have the greatest effect on performance, so the higher
the laser power, the better the range. Increasing the lens aperture has a modest but beneficial
effect on range. Matching the laser wavelength with the optimal transmissions of the lens, filter,
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and quantum efficiency of the image sensor can have large benefits when done together. One of
the largest benefits to the device is to switch to near infrared. Near infrared light has higher re-
flectance off many low albedo objects like grass, dark clothing, and some dark paints. Increasing
the effective albedo of the scene can have large implications on detection range depending on the
material.

3.4 Hardware Prototype

A new hardware prototype was designed based on an iterative multi-parameter analysis of differ-
ent system configurations. Besides optimizing the working range, the prototype had to abide by
a key component constraint; the ToF image sensor. At the time of design, the ESPROS EPC660
was the only ToF sensor identified that could change its ROI during the readout of every row.
As this feature is critical to the operation of our epipolar camera, we were required to use this
image sensor. Instead of pursuing the custom design of read-out electronics and interface to this
sensor we opted to keep using the development kit, which sped up the development time, but
maintained the limited frame-rate of the camera.

The completed EpiToF 2.0 prototype we built is shown in Figure 3.5 and detailed in Table 3.2.
The light sheet projector, ToF camera, and other components are housed in an enclosure to help
protect the system. The front and top panels of the enclosure are removed in these images to
provide a full view of the system. A color helper camera was added to this system for color
visualization of the scene and could be used for creating RGB-D imagery similar to that of other
depth camera systems.

Light Sheet Projector. Many of the light sheet projector and imaging components were chosen
based on the optimal wavelength of the system. A near-infrared wavelength of 830 nm provided
the longest working range and also satisfied component availability. Other common wavelengths
such as 808 nm and 850 nm were considered but, due to increased lens transmission losses or
reduced image sensitivities, were not selected. The laser selected was a 830 nm laser diode
with 1 W of peak output power (Thorlabs LD830-MA1). The light sheet projector assembly
was redesigned based on the one used in the EpiToF. In addition to a different laser diode, the
light sheet projector uses a more reliable galvomirror (Thorlabs GVS001) with a 50° scan angle.
A collimation tube (Thorlabs LTN330-B) and 45° Powell line lens (Thorlabs PL0145) are used
to form the laser line. The new projector mounting was custom designed and machined out of
aluminum for simpler and more precise alignment as well as better heat-sinking ability.

50



Camera Optics. The Kowa LMVZ4411 vari-focal lens was selected for the camera optics as
it provided an excellent combination of low-distortion (<0.35%) and light throughput with its
f/1.6 aperture. A bandpass filter was then carefully selected to match the system’s operating
wavelength and 45° field-of-view. Bandpass filters are a very important aspect of the system for
ambient light suppression and must be carefully selected to match the laser’s wavelength. These
filters are interference based and are sensitive to angle-of-incidence (AOI), so when the AOI is
increased from 0° the features of the filter’s spectrum shift to shorter wavelengths. This means
that the center pass frequency of the filter moves to a shorter wavelength and light entering the
filter at non-normal angles could be blocked if the shift is greater than the bandpass. Although, a
tight bandpass filter blocks out more ambient light it will also block out more of the light entering
at the edges of the lens due to the increased AOI. Therefore, the filter must have a correct center
frequency and wide enough passband to avoid this light loss. For our system, we selected a
nominal 56 nm bandpass filter centered at 842 nm. When at a 25° AOI (half the maximum field-
of-view), this filter shifts the center-frequency to 825 nm with a 25 nm FWHM passband and
at the nominal 0° incident angle the filter will still transmit light at 830 nm. Although this filter
lets in a little more ambient light than ideal, it also ensures reception of all the projected light.
This filter is placed between the camera lens and image sensor to minimize the size of the filter

Table 3.2: EpiToF 2.0 System Components

EpiToF 2.0

Model ESPROS DME660
Resolution (w × h) 320×240

Camera Pixel Pitch (µm) 20
Number of Exposed Rows 1
Quantum Efficiency 0.7

Center (nm) 830
Filter FWHM Passband (nm) 56

Transmission 0.95

Model Kowa LMVZ4411
Focal Length (mm) 8mm

Lens Aperture (f-number) 1.6
Lens Transmission 0.63
Field of View 45◦ H × 45◦ V

Optical Power (mW) 1000
Projector Wavelength (nm) 830

Field of View 45◦ H × 45◦ V
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(a) Front View (b) Detailed Top View

Figure 3.5: The EpiToF 2.0 prototype is comprised of a light sheet projector, ToF camera, RGB
helper camera, a galvo mirror controller, and power and control electronics.

and for protection. Ideally, a custom filter would be designed specifically for this application that
would optimally match the AOI and wavelength requirements.

Mounting & Alignment. A large limitation of the original EpiToF prototype was its reliability
and ease of alignment. Issues with misalignment due to bumps and vibrations were common
and most incidents required a tedious process of realignment and calibration. Precisely aligning
the projector and camera systems was difficult but was required for epipolar imaging. Fixing
these issues was a priority in the redesigned system. To enable quicker, easier, and more reliable
alignment, the structures of all mechanical mounting components were redesigned to include
easy-access fine-pitch adjustment screws where necessary. Many of the alignment issues were
remedied by precise measurement and low-tolerance design and machining. Precisely design-
ing the location and alignment of the centers of imaging and projection and only providing the
required degrees of freedom enabled much simpler and more reliable alignment.

Electronics. Many of the electronics on the new prototypes were custom-designed. Although
bench-top electronics could have been used to drive the galvomirrors and lasers, a smaller so-
lution was necessary for a mobile prototype. The electronics designed include a laser driver,
galvomirror driver, and system controller. The system controller interfaces with a host com-
puter that initiates frames and then commands the laser driver and galvomirror driver to generate
the necessary signals to modulate the laser and move the galvomirror. Reliable design of these
electronic systems and their embedded software was necessary for a robust system.
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Figure 3.6: Simulated working range of EpiToF 2.0 at varying depth errors operating at a modu-
lation frequency of 10 MHz and scene albedo of 0.5

3.5 Results

The redesigned EpiToF was evaluated in simulation and experimentally. The prototype was used
to capture data outdoors in both bright sunlight and under cloud cover. It was then compared to
regular ToF, similar to comparisons in Chapter 2. Unambiguous ranging out to 50 m was per-
formed using a single low-frequency and compared to using the same low-frequency to unwrap
a data captured at higher-frequencies. The device was then used for long-range imaging of static
and dynamic scenes.

3.5.1 Simulated Results

Simulation results for the redesigned system, as detailed in Table 3.2, are shown in Figure 3.6.
These simulations show the working range of the EpiToF as a function of ambient light with
scene albedo of 0.5. The working range of the EpiToF system (operating at fmod =10 MHz) is
shown at different acceptable depth errors. This data was simulated with nominal exposures of
100 µs per capture. The maximum working range (ambiguous) of the sensor could be increased if
a higher modulation frequency was used. For example, a modulation frequency of 20 MHz would
double the working range at an error of 5 cm, but it would also have a maximum unambiguous
range of only 7.5 m. The 10 MHz modulation frequency allows for a 15 m unambiguous range
and is the primary frequency used on the device. For example, on a cloudy day (10 W m−2), the
device can see 60 m, and the error percentage is then less than 1%. Although the device is able
to see at these distances, the range is outside its unambiguous range and will phase-wrap several
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(a) Scene (b) EpiToF 2.0 (c) Regular ToF

Figure 3.7: Comparison between EpiToF 2.0 and regular ToF imaging on a cloudy (10 W m−2)
day. Even under cloudy conditions regular ToF is much noisier than epipolar time-of-flight. The
white target is barely visible in the regular ToF image, while it is clearly visible in the EpiToF
2.0 image. The white target was at a range of 35 m, and the exposure time per row was 400 µs.

times. At the EpiToF’s unambiguous range of 15 m, when operating at 10 MHz, it has a working
error of 25 cm in full daylight, which is approximately 1.5%.

3.5.2 Initial Results

The first results from the EpiToF 2.0 were collected outdoors on a cloudy (10 W m−2) day.
Before testing the device was calibrated as described in Chapter 2. The device imaged a white
target until loss of detection in the depth images. Results comparing the EpiToF 2.0 to regular
ToF (using the same system, but with regular imaging method) are shown in Figure 3.7. These
results show that, even on a cloudy day, regular ToF is much noisier than epipolar time-of-flight.
The white target is very noisy and barely recognizable in the regular ToF image at 35 m, while it
is clearly visible in the epipolar captured images. Results from two scenes with varying exposure
are shown in Figure 3.8. In the first row of images, a white target is set at 50 mand is identifiable
in the depth image captured with a 400µs exposure. These depth maps show phase-wrapping as
the detectable ranges exceed the unambiguous range of the device. These images were captured
with a modulation frequency of 10 MHz, so the unambiguous range occurs at 15 m. The captured
images show several phase-wraps as indicated by the coloring from blue to red and then red to
blue. The depth images shown in these figures are the raw data from the sensor and have not been
thresholded with a signal-to-noise ratio to identify maximum range. With this type of filtering,
the noise in these images could be significantly reduced.
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(a) Scene (b) 100 µs exposure (c) 200 µs exposure (d) 400 µs exposure

Figure 3.8: Initial unprocessed results from EpiToF 2.0 outdoor testing on a cloudy day
(10 W m−2). Two different scenes were captured at several exposure times. As the exposure
increases, so does the working range. Maximum range in these images is approximately 50 m.
At these ranges phase wrapping occurs several times and parts of the scene are out of the 15 m
unambiguous range. The white target towards the middle of the scene was at 50 m in the first
row of images and is visible in the depth image captured with 400 µs exposure. The inner corner
of the building in the bottom row has a range of 40 m and is identifiable with all exposures but
has high noise levels. Depth error reduces as exposure increases.

3.5.3 Phase Unwrapping

Although these results show that the device is capable of imaging at ranges greater than the
original EpiToF, the results don’t have much significance due to phase ambiguities. To enable
applications at these ranges, we must be able to sense unambiguously at these ranges. The
maximum unambiguous range of a time of flight camera with modulation frequency fmod is

dmax =
c

2fmod
, (3.19)

where c is the speed of light. To avoid phase wrapping a modulation frequency with large enough
wavelength can be used so that the entire range of interest is resolvable in one period. Although
this increases the unambiguous range, it sacrifices depth precision as more range is forced to be
resolved with fewer bits. This effect also increases depth error because each bit of shot noise
accounts for a larger depth error. To avoid this and still resolve the full-range of interest, two
different modulation frequencies can be used together [32, 43, 45, 60]; one with high depth reso-
lution and short ambiguous range and one with low depth resolution but long unambiguous range.
A simple way of combining these is to use the depth from the lower modulation frequency, dlow
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(a) fmod = 24 MHz (b) fmod = 3 MHz

(c) Combined (Raw) (d) Combined (SNR)

Figure 3.9: Phase unwrapping of ambiguous ToF depth maps using two frequencies. (a) A depth
map was captured with a 24 MHz modulation frequency, which has a maximum unambiguous
range of 6.25 m but low depth error. (b) Another depth map was captured with a 3 MHz mod-
ulation frequency, which has a maximum unambiguous range of 50 m, but higher depth error.
(c) A full-range depth map is produced but with higher-precision by guiding the period of the
phase-wrapped image in (a) with the depths from (b). (d) Combined full-range depth map where
if the signal to noise ratio of the pixels in (a) are larger than a specified value the high-frequency
image is unwrapped, but if the SNR is lower than the threshold, the depth value from the lower-
frequency image is used. This results with the front of the image having higher-precision than
the back of the image.

as a guide to find which period the waveform is in by solving (3.20) for np.

dlow = dhigh + npdmax,high, (3.20)

where dhigh is the depth from the higher frequency, and dmax,high is the maximum depth for that fre-
quency. By using the low precision but full-range depth map to guide the period of the waveform
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a more precise full-range depth map can be generated.
An example of this is shown in Figure 3.9 where dhigh and dlow are 24 MHz and 3 MHz,

respectively. At these frequencies their maximum unambiguous distances are 6.25 m and 50 m,
respectively. The repeating depths in Figure 3.9a show the ambiguity caused by the short range
compared to the full-range depth. It is also noticeable that the depth map captured with the
higher 24 MHz frequency is noisier than the one captured at the 3 MHz. This seems to occur
from decreased modulation contrast at the higher frequencies. This means that the sensor is not
able to sense the changes in received light as well as it can at lower frequencies. This could
either be caused from the sensor’s modulation contrast or poor electrical design on the modu-
lation circuitry. Regardless, it drastically reduces the effectiveness of using higher modulation
frequencies and phase-unwrapping for reduced depth error with this prototype.

When the measurements are combined instead of fusing the noisy parts of the image, they
are fused based on a simple signal to noise threshold. If the higher frequency image at a certain
pixel is above a certain signal-to-noise ratio then (3.20) is used to calculate the depth of the pixel.
Otherwise the depth of the pixel in the 3 MHz image is used. These results show that we can
phase unwrap using two frequencies, but that imaging at the higher frequency in addition to the
low frequency has little advantages with this prototype, especially due to the increased time it
takes to capture the additional measurements at that frequency. For frame-rate considerations it
is beneficial to only image at the lower frequency than take the minor near-range improvements
from the dual sampling.

3.5.4 Long-Range Depth Imaging

Long-range depth imaging with traditional CW-ToF cameras is not possible outdoors in sunlight
but it is possible with epipolar time-of-flight cameras. To evaluate this capability of the new pro-
totype, several scenes were imaged with the device. Sampling the scene using a lower frequency
is preferred due to decreased sensitivity and range at higher frequencies, so the long range scenes
were captured at the 3 MHz modulation frequency and with an exposure of 400 µs. The ambient
light level of these scenes was around 500 W m−2 and the 50 m unambiguous range provided
by the 3 MHz modulation frequency was adequate for the maximum range of the device in these
conditions. Figures 3.11 shows the various scenes captured with the prototype. The second row
of this figure shows the unprocessed raw depth data from the camera for a single frame. This
frame shows significant noise at ranges that are outside the devices range. A mean depth image
was created from the captured frames for each scene. This mean image shows the smoothing and
filling effects of averaging 50 frames. The standard deviation of these frames per pixel is shown
in the fourth row. Most areas of the scene that are within the working range have less than a 3 m,
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Figure 3.10: Simulated depth error of the EpiToF 2.0 system at (a) 50 m and (b) 20 m at varying
ambient light conditions and modulation frequencies. As the modulation frequency increases,
the error levels decrease significantly and even approach LIDAR levels of noise (∼5 cm) under
bright sunlight at ranges under 20 m with a 100 MHz modulation frequency.

or 6%, depth error as indicated by the standard deviation. Parts of the scene outside the working
range have depth errors up to and sometimes greater than 10 m. A filtered version of the mean
depth image is shown in the last row. Here, points outside the working range of the device were
filtered by removing the ones that had too low of an amplitude or signal to noise ratio.

The calculated depth error of 3 m is approximately the same as the 3.5 m simulated depth
error of our system in these conditions (500 W m−2) as shown in Figure 3.10a. To put this
amount of error into perspective, 3 m error is approximately the same amount of error a small
baseline (∼5 cm) stereo system like the Intel Realsense™ D435 would theoretically have at the
same 50 m range. At 20 m range, the error is significantly less and can even reach LIDAR er-
ror levels of a few centimeters at high modulation frequencies of 100 MHz or greater as shown
in Figure 3.10b. Although the image sensor used in the EpiToF 2.0 prototype has a maximum
modulation frequency of 24 MHz, CW-ToF cameras capable of imaging at these high modula-
tion frequencies are common. Phase unwrapping becomes necessary at these frequencies and is
commonly done in consumer depth cameras like the Microsoft Kinect 2 [95, 126].
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Figure 3.11: Multiple frames of several long-range scenes were captured at 3 MHz modulation
frequency (shown in the second row). To reduce noise this set of images was then averaged to
find the mean unprocessed depth image (third row). The standard deviation of the measurements
is shown in the fourth row. A filtered version of the mean depth map is shown in the bottom row.
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Long-range epipolar ToF imaging also works for moving scenes. Figure 3.12 shows results
from moving the EpiToF 2.0 through a parking lot scene. In this figure the raw and processed
depth maps for a few frames are shown. Unlike the previous experiment with a static scene
where a filtered depth map of the averaged image was shown, these images are for each captured
frame. Filtering the raw depth information by amplitude and signal-to-noise thresholding as
before produces adequate depth images even of single frames. One limitation of the device with
movement of the scene is that moving objects will appear distorted because of the rolling shutter
like progression of the imaged line as discussed in Chapter 2. Minor effects from this appear
in the third column of the image with the two people walking through the scene. This can be
minimized by using a faster frame-rate but will always appear as a small blur if the object is
moving too fast.
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Figure 3.12: The EpiToF 2.0 was moved through a parking lot scene while capturing data. Raw
depth data from the device was thresholded by amplitude and signal-to-noise to remove most
of the noisy data and produce a depth map for each captured frame. Data was captured with a
3 MHz modulation frequency.
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3.5.5 Eye-Safety

Eye-safety requirements place a limit on the power that can be emitted by the light source of
an active illumination device. This has implications for accuracy, range, and frame rate. The
quantity of interest in determining eye safety for a laser source is the Maximum Permissible
Exposure or MPE. MPE is expressed in terms of energy of power per unit area [7] and is a
function of light source wavelength and exposure time among other factors. In our light sheet
projector, light spreads out from a point so the power density drops as the distance from the
source increases. While the EpiToF is imaging a single line it captures four images, each with a
given exposure, before moving onto the next row. Due to the modulation of the emitted signal,
the duty cycle of each exposure is 50%. These four exposures are each separated by a constant
175 µs readout. At the nominal 100 µs exposure time, the energy density is safe at a distance of at
least 40 cm from the source. This minimum safety distance is termed the Nominal Optical Safety
Hazard Distance, or NOSHD. For modest increases in range, the exposure time can be increased
to 200 µs or 400 µs, in which the NOSHD is increased to 54 cm and 70 cm. As the EpiToF
exposure time increases, the on-time of the laser becomes greater than the off time of the laser
during readouts and the NOSHD inscreases as shown in Figure 3.13. The discontinuities in the
plot are due to the different conditions affecting eye-safety. These conditions are that: (1) a single
pulse must be eye safe for the duration of the pulse. (2) a train of pulses that lasts one exposure
time must be eye-safe. (3) the sequence of consecutive exposures and readouts performed on a
single row before moving to the next must be eye-safe. (4) if more than one consecutive row
can illuminate the pupil, the total light received must be eye-safe. (5) in continuous operation
(8-hours), the total light received must be eye-safe. The fourth case is the limiting factor for most
of the examined exposures. For the detailed eye-safety calculation procedure refer to [2, 7].

3.6 Discussion

The EpiToF 2.0 device is capable of depth imaging at ranges over 50 m in ideal conditions,
which is well beyond the limits of traditional CW-ToF cameras. At this long range, detection
is no longer the limiting factor but now precision and phase wrapping are the limiting factors
for broad use. Although the device can detect objects at this range, its ability to resolve depth
accurately and precisely at this range is limited by the modulation frequency and phase-wrapping.
Phase unwrapping can be solved in many ways, one of which was shown in Figure 3.9, but the
precision or depth error of the measurements is determined by the signal to noise ratio which
ultimately limits the maximum range. Although the signal to noise ratio cannot be changed
directly, the amount of depth error produced by the noise can be reduced by imaging with higher
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Figure 3.13: The nominal optical safety hazard distance of the EpiToF 2.0 device operating with
a 100 µs row exposure time is 40 cm. Increased exposure time results in increased safety hazard
distance.

frequencies. The higher the frequency the higher the precision. Unfortunately, as the modulation
frequency increases, the modulation contrast and ability for the imager to resolve the modulated
signal decreases. The CW-ToF imager we are using has a maximum modulation frequency of
24 MHz, which is already much lower than other devices on the market [53, 95]. In addition, the
modulation contrast at this frequency seems to be much lower than that at the lower frequencies
as shown by the amount of noise captured at 24 MHz in Figure 3.9. Although the EpiToF 2.0
can range out to 50 m, the level of noise at those ranges unfortunately limits the device’s use at
those ranges.

The frame rate of the device also limits its applicability. The speed of the current device is
limited by the speed of the development board’s readout clock and the image sensor’s require-
ment to read out three more rows than required for each imaged row. Before this technology
will be broadly applicable to computer vision, these limitations must be surpassed. This should
be possible by using other time of flight imagers that do not have these limitations. An ideal
CW-ToF imager for epipolar imaging would have a maximum modulation frequency of at least
100 MHz, high modulation-contrast at all frequencies, sufficient resolution, and the ability to
rapidly change and read-out the imaged row. CW-ToF imagers are emerging now that have
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most of these capabilities, but since most applications of CW-ToF imagers do not require them
to rapidly change the region of interest, most of them are not specifically designed to do this.
To solve this problem, a custom imager may need to be designed specifically for this type of
imaging.

One of the other factors limiting the applicability of these devices is laser power and eye-
safety. For a device to be considered eye-safe, it has to be ensured that nothing can get closer
than the NOSHD to the device. Currently, this standoff distance of the EpiToF 2.0 is 40 cm at
best, which is greater than most reasonable enclosures for depth imaging devices. This standoff
distance is determined by the maximum laser power collected per unit area on the eye. Since our
laser originates from a point, the eye can refocus it back into a point of light the same size as
emitted. To reduce the MPE per unit area and thus NOSHD, an extended laser source such as a
VCSEL array or multiple point lasers could be used to illuminate the scene. Since these types
of sources cannot be focused into a single point, the allowed laser power can be higher, which
would increase the maximum range.
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Chapter 4

Programmable Triangulation Light
Curtains

4.1 Introduction

3D sensors are critical in the deployment of autonomous systems such as field robots, unmanned
aerial vehicles (UAVs), and self-driving cars. However, there are many tasks which fully capable
3D scanners, such as LIDAR or ToF cameras, are not necessary and can even complicate tasks.
For example, consider a self-driving car’s collision avoidance system. This system must contin-
ually monitor the vehicle’s surrounding for obstacles entering its path. In this system, full 3D
perception is important for long-term path planning, but it is less useful for time-critical tasks
like obstacle detection and avoidance. For these tasks, a proximity sensor requiring less energy
and computational power is sufficient and arguably better. The notion of proximity sensing here
is generalized by proposing an optical system to detect the presence of objects that intersect a
virtual shell around the system. By detecting only the objects that intersect the virtual shell,
many tasks pertaining to collision avoidance and situational awareness can be solved with little
or no computational cost. This virtual shell is referred to as a light curtain.

A light curtain is a safety device that detects nearby obstacles (e.g., a human) to stop the
operation of a machine. Light curtains are ubiquitous. They are used in garage doors and el-
evators to stop the doors from closing when an object blocks them. They are used on factory
floors around dangerous machinery. Light curtains operate on a simple principle that an object
is detected when it obstructs the line of sight between a source and a sensor. Even though they
are simple, they are very reliable. However, light curtain systems are specifically customized for
each machine and configured for each task, which hinders their broad use for vision and robotics.

Programmable triangulation light curtains extend this principle to generate light curtains of
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Figure 4.1: A programmable light curtain monitors for the entrance of objects into a virtual
shell around the device. (a, b) This is implemented by intersecting a light plane emitted from
a line laser and a plane imaged by a line scan camera. The two planes are rapidly rotated in
relation to each other to generate light curtains of varying shapes as required by the application.
Example curtains are shown for use on a robot (c) and a car (d). The device detects objects on
the virtual curtains with little computational overhead, making it useful for collision detection
and avoidance.

any shape using a line sensor and a line source. Here, an obstacle is detected when it intersects
both the plane of illumination generated from the line source and the imaging plane captured by
the line sensor (see Figure 4.1a). If there is an object at the intersection of these planes, light will
be reflected to the camera, but if there is not an object at the intersection of the planes, then no
light is reflected. This provides a binary result of whether there is an obstacle in contact with the
line or not. The full light curtain is then created by synchronously moving the illumination and
imaging planes to sweep this line through the scene. This idea can be interpreted as a general-
ization of pushbroom stereo [12] to active illumination for determining the presence of an object
that intersects an arbitrary ruled surface in 3D. The shape of a light curtain is programmable and
can be configured dynamically to suit the demands of the immediate task. For example, light
curtains can be used to determine whether a neighboring vehicle is changing lanes, whether a
pedestrian is in the crosswalk, or whether there are vehicles in the adjacent lanes. Similarly, a
robot might use a light curtain that follows its planned motion trajectory. Figure 4.1c-d shows
various light curtains for use in robots and cars.
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4.2 Triangulation Light Curtains

Fundamentally, a light curtain is generated by intersecting a ray of light with a ray of imaging.
In the absence of ambient and indirect illumination, the sensor measures only light reflected by
an object at this point. In general, an imaged point s on the light curtain surface in the camera’s
frame at time t is defined by

s (t) = r̂c (t)uc (t) , (4.1)

where r̂c and uc are the unit vector of the camera ray and its magnitude at time t, respectively.
The light curtain point s occurs at the intersection of the camera ray and the light ray, so it is also
defined by

s (t) = pop + r̂p (t)up (t) , (4.2)

where pop is the origin of the light ray in the camera frame and r̂p and up are the unit vector of
the laser ray and its magnitude at time t, respectively.

By changing the point of intersection of the camera ray and associated light ray, the surface
of the light curtain can be formed. Programmable light curtains can be generated from a set of
any of these intersecting rays, and although very flexible, scanning a single intersection point for
full coverage of a surface is very time consuming. Here, we consider the case where an entire
line is scanned at once which results in much quicker coverage of a curtain.

4.2.1 Light Curtains with Planes

A light curtain line is formed by the intersection of an imaging plane and a plane of light. The
equation of this intersection line is

r (t) = r0 + λa, (4.3)

where r0 is a point that is on both the camera and light planes and a is the direction vector of the
line at time t. This line will be perpendicular to both the camera plane, pc, and projected light
plane, pp at time t, and therefore must be parallel to the line defined by the cross product of the
unit normal vectors, n̂c and n̂p, of the planes, where both planes are defined with respect to the
camera frame. Therefore,

a = n̂c × n̂p. (4.4)
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Figure 4.2: Light Curtain Geometry. (a) The projected light plane, pp (t), and camera plane,
pc (t), intersect at a line, r (t), on the curtain surface. (b) Top-view of the planar-parallel geom-
etry of a triangulation light curtain. Given that a 3D point, X (t), is on line r (t), the required
camera plane angle, θc (t), and projector angle, θp (t), to image that point can be found through
simple geometry. (c) The finite sizes of camera pixels and the laser sheet produce a light curtain
with certain thickness.

The common point can be found by solving (4.5) for r0, where pc and pp are the distances of the
camera and light planes from the origin, as defined by the Hessian normal form of the planes.

[
n̂c n̂p

]>
r0 = −

[
pc

pp

]
(4.5)

Although light curtains can be generated by sweeping the intersection of a plane of light and
imaging through any 6-DoF motion profile (as discussed in [119]), here we only consider the
case where both the camera and projector each have a single degree of motion around their y-
axes.

Given that a 3D point in the camera frame, X (t), lies on the light curtain surface, the camera
plane, pc (t), going through this point is found by creating a plane from X (t) and two points
that lie on the camera plane’s rotation axis (e.g. (0, 0, 0) and (0, 1, 0)). The required illumination
plane is then found in a similar manner by first projecting X (t) into the frame of the projector to
get

Xp (t) = Tp
cX (t) , (4.6)

where Tp
c is the transformation matrix that converts points in the camera frame to the projector

frame found through calibration. The point Xp (t) is then used with two points on the projector
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rotation axis to find the projected light plane, ppp (t), which is in the frame of the projector. This
plane in the camera frame is then found by

pp (t) = Tp
c
>ppp (t) . (4.7)

Now, the equation for the entire line containing this point can be found using (4.3-4.5). To
generate these curtains, the required angle about the y-axis of the camera, θc (t), and projector,
θp (t), can be found using the x and z components of the points by

θc (t) = atan2 (xz (t) , xx (t)) (4.8)

θp (t) = atan2 (xpz (t) , xpx (t)) . (4.9)

With these equations, light curtains can be generated from any organized path of points. Figure
4.1(c, d) shows different types of light curtains for use on robots and cars and Figure 4.3 explains
each in detail. For each curtain, we show the rendered scene with the light curtain, a 2D cross
section of the curtain, and the corresponding rotation angle profiles θc(t) and θp(t), computed
using (4.8) and (4.9).

4.2.2 Curtain Thickness

Triangulation light curtains have a finite thickness due to the finite sizes of the sensor pixels and
the laser illumination [18]. Suppose that the laser plane has a thickness of ∆L meters and each
pixel has an angular spread of δc radians. Given a device with a baseline of length b meters and
imaging a point at depth z(t) = z, the thickness of the light curtain is derived (see [119]) as an
area of a parallelogram shaded in Figure 4.2c, which evaluates to

A =
r2
crp
z

δc∆L

b
(4.10)

where rc and rp is the distance between the intersected point and the camera and laser, respec-
tively. Since different light curtain geometries can produce curtains of the same area, a more
intuitive and meaningful metric for characterizing the thickness is the length of this parallelo-
gram,

U =
A

∆L

=
r2
crp
z

δc
b
. (4.11)

In any given system, changing the laser thickness ∆L requires changing the optics of the illu-
mination module. Similarly, changing δc requires either changing the pixel width or the focal
length of the camera. In contrast, varying the baseline provides an easier alternative to changing
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Unit: mUnit: degrees

X-axis

Z-axis

Cylindrical safety curtain

Planning path curtain

Lane curtain

Blind spot zone curtain

Discrete road sampling

Lane marking observer

start end

camera
laser

(c) and (d) Uncertainty U (a) Application scenarios (b) 2D cross section

Light fall-off 
Relative 

exposure/power

(e) Light fall-off

Figure 4.3: Different types of light curtains used by a robot and a car. (a) Envisioned application
scenarios visualized using 3D renderings. (b) 2D cross section (all units in meters) of the light
curtain and placement of the camera and laser. The arrow on the curtain indicates the scanning
direction. (c) Rotation angle profiles of camera and laser to achieve desired light curtain in each
scan. (d) Thickness of the light curtain for a camera with 50µm pixel width and focal length of
6mm. (e) Light fall-off and corresponding adaptation of exposure or laser power to compensate
for it.

the thickness of the curtain that involves a single translation. This is important since different
applications often have specific requirements for curtain thickness. A larger baseline helps in
achieving very thin curtains which is important when there is a critical need to avoid false alarm.
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Alternatively, thick curtains can be achieved by having a smaller baseline and are important in
scenarios where missed detections, especially those arising from the discreteness of the curtain,
are to be avoided.

The thicknesses of various light curtains are shown in Figure 4.3(d). The camera’s pixel
width is set to 50 µm with a lens of focal length f = 6 mm, thereby giving a value for δc =
50µm
f

= 0.008 radians. The baseline b was set to 300 mm for the first two rows, 2 m for the third
row, and 200 mm for the last three rows.

4.2.3 Combining with Time-of-Flight Sensors

The analysis in (4.11) indicates that U ≈ z2δc
b

when rc, rp ≈ z and that the light curtain is
expected to get thicker, quadratically, with depth. Increasing baseline and other parameters of
the system can only alleviate this effect in part due to the physical constraints on sensor size,
laser spot thickness as well as the baseline. We show that replacing the line intensity sensor with
a 1D continuous-wave time-of-flight (CW-ToF) sensor [74] alleviates the quadratic dependence
of thickness with depth.

CW-ToF sensors measure phase to obtain depth. A CW-ToF sensor works by illuminating
the scene with an amplitude modulated wave, typically a periodic signal with frequency, fm, and
measuring the phase difference between the illumination and the light received at each pixel. The
phase difference φ and the depth d of the scene point are related as

φ = mod
(
fmd

c
, 2π

)
. (4.12)

As a consequence, the depth resolution of a ToF sensor ∆d = c∆φ
fm

(ignoring the phase wrapping)
is constant and independent of depth. Further, the depth resolution increases with the frequency
of the amplitude wave. However, ToF-based depth recovery has a phase wrapping problem due
to the presence of the mod(·) operator; this implies that the depth estimate has an ambiguity
problem and this problem gets worse at higher frequencies. In contrast, traditional triangulation-
based depth estimation has no ambiguity problem, but at the cost of quadratic depth uncertainty.

We can leverage the complementary strengths of traditional triangulation and CW-ToF to en-
able light curtains with near-constant thickness over a large range. This is achieved as follows.
First, the phase and intensity of the triangulated region are measured by the CW-ToF sensor;
examples of this is shown in Figure 4.8(iii, iv). Second, knowing the depth of the curtain, we
can calculate the appropriate phase to retain and discard pixels with phase values that are signifi-
cantly different. An alternative approach to achieving this is to perform phase-based depth gating
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using appropriate codes at illumination and sensing [112]. The use of triangulation automatically
eliminates the depth ambiguity of phase-based gating provided the thickness of the triangulation
is smaller than half of the wavelength of the amplitude wave. With this, it is possible to create
thinner light curtains over a larger depth range.

4.2.4 Implementation

One implementation of a light curtain device consists of a line scan camera and a line laser, as
shown in Figure 4.1 (a, b). A Powell lens fans a laser beam out into a planar sheet of light and the
line camera senses light from a single plane. In the general configuration, the two planes intersect
at a line in 3D and, in the absence of ambient and indirect illumination, the sensor measures light
reflected by any object on the line. By rotating both the camera plane and the laser plane at a
high speed, we can sweep the intersecting line to form any ruled surface. We refer to this ruled
surface, on which we detect presence of objects, as the light curtain. The resulting device enables
programmable imaging of any ruled light curtain profile.

4.3 Hardware Prototype

A hardware prototype of the light curtain device was developed that has a sensing module and
illumination module as shown in Figure 4.4. For the sensor, an Alkeria NECTA N2K2-7 line
scan intensity sensor with a 6 mm f/2 S-mount lens whose diagonal field of view is 45° and has
a 7 mm diameter image circle. The line camera has a resolution of 2048×2 with square pixels
and pitch of 7 µm. Only the center 1000 pixels are used due to the limited image circle of the
lens. The line sensor is capable of reading out 95,000 lines/second. To suppress ambient light,
a 50 nm optical bandpass filter, centered at 630 nm, is placed directly between the lens and the
imager. A low cost 1D galvomirror is used to rotate the camera’s viewing angle. The 2D helper
camera (shown in the middle) is used for a one time calibration and then solely for visualizing
the light curtains in the scene of interest by projecting the curtain to its view.

The illumination system uses a custom made light sheet projector, similar to those used in
Chapters 2- 3, comprised of a custom 1D laser module and a galvomirror. The 1D laser module
contains a 700 mW, 638 nm laser diode (Thorlabs L638P700M) that is collimated and then
emitted through a 45° Powell lens to create a uniform light sheet. The light sheet is then projected
onto its own 1D galvomirror that sweeps the light sheet across the scene. The galvomirrors
chosen for the modules each use a 11 mm × 7 mm mirror and have a 45° field of view. The
galvomirrors need 500 µs for a 0.2° step change in optical angle. A microcontroller (Teensy 3.2)
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AB
C

DE

F

G

A
Laser 
Thorlabs L638P700M

B
Powell lens 
Thorlabs PL0145

C Galvo mirror 
Wonsung P/N 0738770883980

D Line sensor
Alkeria NECTA N2K2-7

E Lens for line sensor
Boowon BW60BLF

F Galvo mirror 
Same as C

G
2D helper camera
FLIR GS3-U3-23S6C-C 
(for calibration only)

Figure 4.4: Hardware prototype with components marked. The prototype implements the
schematic shown in Figure 4.1(b). The illumination module is on the left and the sensing module
is on the right. The 2D helper camera marked as (G) is used for a one-time calibration and for
visualization of the light curtain.

interfaces to custom-designed galvomirror and laser driver circuitry for synchronization of the
camera and laser to the galvomirror. The illumination and imaging modules are then arranged
such that the rotation axes of the galvomirrors are parallel with a baseline of 300mm. The light
curtain device’s field of view is approximately 45°×45°.

Ambient Light Suppression. In darkness, the only light received is that from the intersection
of the imaging and illumination planes, but in daylight, the camera also measures the contribution
of ambient light to the entire scene. This ambient light hinders detection of objects in the camera
image because now the sensor receives light even when the intersection of the sensing plane and
illumination plane is clear. This light is suppressed by capturing two images at each position
of the light curtain — one image with the laser illumination (both ambient and laser light are
collected) and one image without (only ambient light is collected). Subtracting the ambient-only
image from the combined image provides just the light from the illumination system. This is
critical for improving the performance of the device in ambient light. The synchronization and
design of the system provides the ability to capture these images rapidly with 100µs exposures
for each image and enables real time performance even in dynamic environments.

Scan Rate. The prototype is implemented with low quality galvomirrors that take approxi-
mately 500 µs to stabilize before a line can be captured, which limits the overall scan rate of the
device. With each line requiring two 100µs exposures and the stabilization time, the system is
limited to capturing approximately 1400 lines per second. For experiments, the system imaged
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curtains containing 200 lines, which with a small readout time for each line enabled a curtain re-
fresh rate of 5.6 Hz. This rate can be increased by using higher quality galvomirrors with lower
stabilization time or MEMs mirrors with much lower stabilization time.

Calibration. Successful deployment of light curtains requires precise calibration of the light
sheet projector to the virtual 2D camera formed by the line sensor and galvomirror. Calibration
is performed by identifying the plane in the real world associated with each position of the light
sheet projector and the line associated with each position of the 1D camera’s galvomirror and the
camera pixels. The helper camera and a 2D projector are used to perform calibration, following
steps largely adapted from prior work in calibration [73, 127].

4.4 Results

Evaluating Light Curtains. Figure 4.5 shows the results of implementing various light curtain
shapes both indoors and outdoors. When nothing contacts the light curtain, the image is dark;
when a person or other intruders contact the light curtain, they are immediately detected. The
small insets show the actual images captured by the line sensor (after ambient subtraction). The
light curtain and the detection are geometrically mapped to the 2D helper camera’s view for
visualization. Our prototype uses a visible spectrum (red) laser and switching to near infrared
can improve performance when the visible albedo is low (e.g. dark clothing).

Light curtains under sunlight. Figure 4.6(a) shows the detections of a white board with cur-
tains of various depths in bright sunlight (∼ 1000 W/m2). The ambient light suppression works
even at 25 m range, but does not work at 35 m. Under cloudy skies, the range increases to more
than 40 m, and indoors the range is approximately 50 m. All of these ranges use the same refresh
rate (and exposure time) for the curtains. In Figure 4.6(b), we create a depth map by sweeping
the curtain over a dense set of depths and accumulate the resulting detections.

Performance under volumetric scattering. Figure 4.7 shows the benefits of using light cur-
tains in scattering media. A fronto-planar light curtain is set at a fixed distance of about 5 m

to image the sign in the scene. Thick fog is then produced to reduce the visibility of the scene.
Images from the visual camera show that visibility to the sign is highly reduced, but the light
curtain suppresses multi-path light scattering significantly and is capable of seeing much clearer
and deeper. The sign text is still readable when the sign is not even visible in the visual image.
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Figure 4.5: Light curtains of many shapes including a sinusoidal, curved path, cuboidal and tilted
plane. The curtain in the second row detects objects by sampling a volume with a discrete set of
lines. The images shown are from the 2D helper camera’s view with the light curtain rendered
in blue and detections rendered in green. The curtains are shown both indoors and outdoors
in sunlight. The insets are images captured by the line sensor as people/objects intersect the
curtains. The curtains have 200 lines with a refresh rate of 5.6 fps.

Reducing curtain thickness using a ToF sensor. We use our device with a line ToF sensor to
form a fronto-parallel light curtain at a fixed depth. The results are shown in Figure 4.8. Because
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Figure 4.6: Performance under bright sunlight (∼ 1000 W/m2) for two different scenes. (a)
Raw light curtain data is shown at various depths from a white board (no noise reduction or
image enhancement is applied). Notice the small speck of the board in the middle visible even
at 35m. (b) The light curtain is swept over the entire scene to generate a depth map. Depth maps
are used only to visualize performance at various depths and not necessarily as a substitute to a
depth sensor.

Figure 4.7: Seeing through volumetric scattering media. A fronto-planar light curtain is set at a
fixed distance of 5m from the targets in the scene and thick fog is then introduced to the scene.
Visibility is highly reduced, but the light curtains suppress multi-path light significantly and can
see much clearer.

of triangulation uncertainty, the camera could see a wide depth range as shown in (a.iii) and
(b.iii). However, phase data, (a.iv) and (b.iv) helps to decrease the uncertainty as shown in (a.v)
and (b.v). Note that in (b.iv), there is phase wrapping which is mitigated using triangulation.

Adapting laser power and exposure. Finally, we showcase the flexibility of our device in
combating light fall-off by adapting the exposure and/or the power of the laser associated with
each line in the curtain. We show this using depth maps sensed by sweeping fronto-parallel
curtains with various depth settings. For each pixel we assign the depth value of the planar curtain
at which its intensity value is the highest. We use an intensity map to save this highest intensity
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Figure 4.8: CW-ToF Light Curtains. For both scenes, we show that fusing (iii) triangulation
gating with (iv) phase information leads to (v) thinner light curtains without any phase wrapping
ambiguity.

value. In Figure 4.9(a), we sweep 120 depth planes in an indoor scene. We performed three
strategies: two constant exposures per intersecting line and one that is depth-adaptive such that
exposure is linear in depth. We show an intensity map and depth map for each strategy. Notice the
saturation and darkness in the intensity maps with the constant exposure strategies and uniform
brightness with the adaptive strategy. The performance of the depth-adaptive exposure is similar
to that of a constant exposure mode whose total exposure time is twice as much. Figure 4.9(b)
shows a result from an outdoor scene with curtains at 40 depths, but here the power is adapted
linearly with depth. As before, a depth-adaptive budgeting of laser power produces depth maps
that are similar to those of a constant power mode with 2× the total power. Strictly speaking,
depth-adaptive budgeting should be quadratic though we use a linear approximation for ease of
comparison.
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Figure 4.9: We use depth adaptive budgeting of (a) exposure and (b) power to construct high-
quality depth maps by sweeping a fronto-parallel curtain. In each case, we show the results of
three strategies: (1) constant exposure/power at a low value, (2) constant exposure/power at a
high value, and (3) depth-adaptive allocation of exposure/power such that the average matches
the value used in (1). We observe that (3) achieves the same quality of depth map as (2), but
using the same time/power budget as in (1).

4.5 Discussion

Benefits of Programmable Light Curtains Besides being able to dynamically change the
shape of the light curtain, another benefit is the ability to dynamically adapt illumination power,
exposure time, and light curtain refresh rate to compensate for the inverse square light fall-off
with distance. This enables the allocation of higher power and longer exposures to lines of the
curtain that are further away and is a significant advantage over traditional depth sensors which
typically expend max energy in all directions. Programmable light curtains also have benefits in
dynamic range and computational efficiency.

Two of the greatest benefits are the performance of these light curtains in scattering media and
ambient light. The optical design of the light curtain shares similarities with confocal imaging in
that only a small region is selectively illuminated and sensed [81]. This has inherent advantages
when imaging in scattering media, such as smoke and murky water, because many multi-bounce
light paths are optically avoided thereby providing images with increased contrast. The key
advantage in ambient light is that the illumination and imaging are concentrated to a thin region
which together with power and exposure adaptability, enables significantly better performance
under strong ambient illumination at maximum working ranges of v20-30 m. In the absence of
ambient light indoors or under cloudy skies this range increases to 40-50 m.
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Another benefit is that it provides a large dynamic range. At any time instant, the sensor only
captures a single line of the light curtain that often has small depth variations and consequently,
little variation in intensity fall-off. Thus, the dynamic range of the measured brightness is of-
ten low. Hence, even a one-bit sensor with a programmable threshold would be ample for the
envisioned tasks.

Light curtains are not just limited to intensity and CW-ToF sensors. They can also use exotic
sensors like InGaAs [46], SPAD [20], or neuromorphic sensors (DVS) [76]. The fact that we
scan lines from 1D imagers enables the creation of 2D images with these exotic and expensive
sensors without purchasing a 2D array.

Limitations of Programmable Light Curtains A fundamental limitation of light curtains is
that they require the laser and sensor to have line-of-sight to the intersection of the light curtain.
When it does not, the intersection of the sensing plane and illumination plane is inside an object
and cannot be seen by the camera. This can be partially resolved by sampling multiple lines in
the scene to maybe carve out the volume or at least detect the object at another location.

These devices could also be limited by interference in the case of several sensors operating
a time. This could be resolved by synchronization, adding a second camera, or using a time
of flight sensor operating at different frequencies. Objects that move at high speeds could also
possibly avoid detection by crossing the light curtain in a vacant region between two successive
scans. This is unlikely though for large targets as it would need to be highly maneuverable given
the high scan rate. This is likely for small targets however as the scan rate of the device is not
fast enough to detect high-speed small objects.

In the realm of 3D sensing, the fact that light curtains only image along a single surface and
not the entire volume can be thought of as a limitation of the device in some applications. How-
ever, having the ability to sample only around objects of interest can be a great advantage. For
example, many applications with UAVs and mobile robots would prefer to have high-resolution
depth sensing just around a few objects and then lower resolution in other areas. With con-
ventional depth cameras and most LIDAR systems this is not possible. Usually, uniform high-
resolution data is collected and then down-sampled to the desired resolution. In this regard,
programmable light curtains can be thought of more generally as on-demand depth sensors.

Future Work. These results show that programmable light curtains have promise as a sen-
sor for autonomous systems with applications in path planning and sensing in bright light and
scattering media. Further areas of research for these systems include how to use light curtains
for obstacle avoidance with robots, how these devices could be used to enable robots to navi-
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gate in challenging conditions, and how they may be used in underwater environments to enable
depth imaging for AUVs. With improved hardware that enables higher frame rates they could be
used for agile and adaptive depth sensing that image only what is required rather than the entire
volume.
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Chapter 5

Agile Depth Sensing using Triangulation
Light Curtains

5.1 Introduction

In this chapter, we build upon the idea of triangulation light curtains and develop a general
framework for agile depth sensing for vision and robotics. Since triangulation light curtains
intersect the scene along 3D lines, instead of capturing 3D data of the scene in the entire volume
of interest (using say, a LIDAR [106] or Kinect [126]), this framework allows us to flexibly
sample the depths along 3D lines in a scene over time. The depth sampling detects the presence
or absence of obstacles (or scene points) at these locations in real-time without any additional
computation. The depth sampling could be sparse, non-uniform (including random), or dense
only at specified 3D surfaces. The sparse sampling can be used to adaptively increase the spatial
density of the depths only in the regions of interest as specified by an application. Or objects in
the scene can be discovered quickly by initial random sampling followed by adaptive sampling
of depths. The depth sampling can be rapidly varied over time depending on the task at hand.

Our agile depth sensing framework has several advantages over traditional depth sensing that
uses a fixed acquisition strategy independent of the scene. First, we show that it is possible to
capture small, thin, and fast moving objects that is typically difficult for low frequency, uniform
angular resolution LIDAR, or low spatial resolution RGB-D sensors. Example objects include
thin wires or meshes, or balls thrown at high speed. We also demonstrate fast and dense 3D
capture of objects (e.g. pedestrians) far away from the sensor when they are barely visible in
a LIDAR point cloud, allowing for better detection, recognition and tracking of such objects.
Our framework also allows a robot to explore a region of interest based on initial sparse depth
estimates. By continuously and sparsely sampling the scene as the robot moves, it is possible to
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simultaneously detect obstacles and map the 3D scene.

To achieve these results, we present a novel design for triangulation light curtains that uses
a 2D camera and a laser line. The rolling shutter of the 2D camera and the rotating laser line
triangulate at a set of 3D lines in the scene forming a light curtain. By controlling the pixel clock
and steering the source mirror, it is possible to generate arbitrary ruled surfaces as in Chapter 4.
However, because we use a rapid 2D rolling shutter sensor, we achieve significant advantages
over the line sensor design: (a) our light curtains have a refresh rate of 60 fps (more than a 10x
speedup) allowing us to change the curtains rapidly and adaptively for the first time, (b) our
system is more light efficient and achieves similar range with less collected light because the
optics in front of a 2D sensor are not limited by the size of a steering mirror, and (c) the system
has fewer moving parts and is more reliable. Our system of triangulation light curtains and depth
sampling works outdoors at ranges up to 20-30 m and indoors at up to 50 m (something that
the Kinect [126] cannot do). For this, we propose a new method to suppress strong ambient
illumination. Due to sampling only a single line at a time our device even works in smoke by
blocking most scattered light.

5.2 Related Work

Safety light curtains are used for ensuring safe operation of automated machinery near humans
but since they typically only protect a planar region, 2D scanning LIDAR units are used for more
complex settings. Safety laser scanners detect objects radially out to a maximum range from
the device and can be configured to trigger a safety event if something enters a programmed 2D
safety zone [108].

The ability of triangulation light curtains to image light from a single depth in a scene is a
geometric form of depth gating. Temporal depth gating [9, 40] also images light from a specific
depth but does so by imaging a pulsed laser with a synchronized high-speed gated shutter camera.
By emitting a short laser pulse and then briefly opening the shutter once the time has elapsed for
the light to travel to the depth of interest and back (usually pico- to nano-seconds), the camera
will only receive light from this depth of interest. Another depth selective imaging method uses
time-of-flight cameras and on-chip modulation to reject light outside a specified depth range
[112]. Push-broom stereo selectively images depths by only processing pixel disparity pairs that
have matching features [12], and enables high-speed obstacle detection and avoidance on UAVs.

Existing work in robust depth scanning has shown that imaging points [81] and lines of light
[42, 88] perform much better in the presence of global and ambient light than full frame methods.
Synchronized imaging of epipolar-aligned planes of light with planes of imaging enable video
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frame rate depth imaging of scenes with high levels of robustness to ambient light and scattering
[2, 93].

To reduce the amount of data processed from 3D LIDAR scanners and depth cameras, ad-
vanced pointcloud filtering methods have been developed that intelligently and adaptively filter
entire pointclouds and process only virtual regions of interest around objects [24]. Recent ad-
vances in beam steering technology and MEMS mirrors have enabled the adaptive sampling of
scenes with LIDAR point scanners by “zooming in” on certain regions of interest while sampling
the rest of the scene at a lower resolution [62, 113]. This type of adaptive sampling can reduce
pointcloud processing and enable more intelligent sampling of the scene so that fewer points are
sensed and immediately filtered out.

5.3 Light Curtains with 2D Cameras

Chapter 4 showed that light curtains could be imaged by steering a line imager with a galvomir-
ror, but the nature of that design limited the frame rate to 5.6 fps and used a small lens to fit the
line sensor’s field of view onto the rotating galvomirror, which reduced its light efficiency and
range. Both of these issues can be improved by using a 2D camera and larger aperture lens to
image the light curtains.

Instead of the continuous scanning of a single line sensor plane over time, a 2D camera has
a discrete set of imaging planes that are defined by the optics and pixel array. To design a light
curtain for a 2D camera, the intersection of the pixels on these planes and the desired light curtain
surface must be found. In other words, only points at the intersection of the camera rays and a
surface can be imaged. This is in contrast to being able to image any desired point on the light
curtain surface as with the dual-galvomirror solution. This has some implications that will be
discussed later, such as the inability to sample curtains uniformly.

For simplicity of design, we assume that the pixel rays of a given camera column are coplanar
and that the light sheet projector emits a true plane of light and that its rotation axis is parallel to
columns of the camera. These assumptions can be generally enforced by using a low-distortion
lens, careful design of the light sheet projector optics, and precise alignment of the projector
axis to the camera columns. With these assumptions, light curtains can now be designed in two-
dimensions by looking at the rays on the xz-plane, as shown in Figure 5.1. This is the same
design approach as in Chapter 4, but now with known discrete camera rays. The main difference
here is that instead of being able to select any point, X(t), to image at time t, the points now have
to lie on the discrete rays of the camera, which will originate from one of the pixels on column i
of the image sensor. So now the point being imaged is written as Xi(t).
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Figure 5.1: Top-view of the planar-parallel geometry of a triangulation light curtain using 2D
cameras. Given that a 3D point, Xi(t), is on the intersection of the camera plane, pci(t), and
the desired curtain surface, the required projected light plane, ppi(t), and angle, θp,i(t), to image
that point can be found through simple geometry. As the camera plane changes (as indicated by
the faint lines), the required light planes are calculated for each new point.

Given that a 3D point in the camera frame, Xi(t), lies on the light curtain surface and along
a discrete camera ray, the camera plane, pci(t), going through this point is found by creating a
plane from Xi(t) and two points that lie on the camera plane’s rotation axis (e.g. (0, 0, 0) and
(0, 1, 0)). The required laser plane is then found in the same manner by first projecting Xi(t)

into the frame of the projector to get

Xp
i (t) = Tp

cXi(t), (5.1)
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where Tp
c is the transformation matrix that converts points in the camera frame to the projector

frame found through calibration. The point Xp
i (t) is then used with two points on the projector

rotation axis to find the projected light plane, pppi(t), which is in the frame of the projector. This
plane in the camera frame is then found by

ppi(t) = Tp
c
>pppi

(t). (5.2)

To image a curtain profile, the desired profile is first discretized into a series of m points
uniformly distributed along the curtain profile, wherem is approximately the number of columns
of the camera. Line segments are then formed between adjacent points. The ray representing
each column is then checked for intersection with the line segments following the approach in
[98] to produce a series of points, Xi(t) . . Xn(t), on the column rays that lie on the light curtain
profile, as shown in Figure 5.2. It is possible that some of the camera rays will not intersect the
desired curtain profile or that the design points will be outside the field of view of the light sheet
projector or camera. Any points that lie outside the field of view of either module are marked
invalid and not used to image the light curtain. If the design point is valid, it is transformed into
the frame of the light sheet projector using (5.1) and the galvomirror angle needed to create a
light sheet that will travel through the design point is calculated using

θp,i(t) = atan2
(
xpz,i(t), x

p
x,i(t)

)
. (5.3)

For an ideal system with true planes of illumination and imaging, the 3D points of the surface
are defined by the intersection line of the two planes. However, for a real system, the lens has
a small amount of distortion and there may be some small alignment error between the camera
and light sheet projector, so the true points of intersection with the light sheet plane for pixels
in a given column will not be coplanar and can be found by calculating the intersection of each
pixel ray with the light sheet plane, using known calculation methods for ray-plane intersection.
This means that the actual 3D surface of the light curtain can vary from the designed profile
throughout the camera field of view as shown in Figure 5.2. However, depending on the severity
of the distortion and misalignment, the curtain profile is fairly consistent towards the middle of
the field-of-view and only changes significantly towards the edges of the field-of-view.

5.4 Rapid Curtain Imaging with Rolling Shutter Cameras

Light curtain imaging requires the imaging plane to change and intersect the light curtain surface
where desired. For a 2D camera, this can be done by capturing an entire frame and only using a
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Figure 5.2: Light curtain design with 2D cameras. (a) Light curtains are designed with a 2D
camera by finding the points at the intersection of the camera rays with the desired curtain profile
that is within the field-of-view of the both the camera (blue dotted lines) and the projector (red
dotted lines). This produces a non-uniformly spaced set of points on the curtain surface. (b) Due
to small optical distortion and alignment error, the actual 3D profile of the curtain is not a perfect
extrusion of the designed curtain into 3D, as shown by the difference in curtain shape along each
axis. For example, note the varying depth of the front of the curtain in the z-axis.

given column or by only imaging a select region-of-interest on the imager. Although simple to
implement, both of these methods are too slow to enable agile light curtain imaging.

A much quicker method of imaging the curtain is to use the rolling shutter of a 2D CMOS
imager to move the imaging plane. The rolling shutter rapidly moves the imaging plane at a
uniform speed by changing the actively exposed line on the imager. This characteristic enables
light curtain imaging at the full frame rate of the rolling shutter camera.

Imaging a curtain is as simple as commanding the light sheet projector to the angle necessary
to project the light sheet at the point defined by the intersection of the active line of the 2D camera
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and the light curtain profile. For a rolling shutter camera, the active line of pixels is defined by
the speed of the rolling shutter and the time since the start of the frame. The speed of the rolling
shutter is determined by the readout rate of the pixels, known as the pixel clock.

Assuming no trigger delay, the active line, li, of the camera at time t since the camera trigger
is found by

li =

⌊
t
pclk
npix

⌋
, (5.4)

where pclk is the pixel clock of the camera in pixels per second and npix is the number of pixels
in a given line. The equation of the imaging plane (at a given 3D design point on this plane) for
this active line is known through calibration. The maximum time that a given line is active and
exposed is found by dividing the number of pixels on the line by the pixel clock.

texp,max =
npix
pclk

(5.5)

By synchronizing the motion of the rolling shutter with the motion of the light sheet, light cur-
tains forming any ruled surface can be imaged.

For each frame of the rolling shutter camera, an image of the captured curtain is produced.
While imaging light curtains, the camera captures both laser light and ambient light. If the
ambient light is low enough, (e.g., indoor imaging), the image from the camera can be directly
thresholded to produce a mask indicating the detected points. However, in many circumstances
the captured ambient light is much greater than the captured laser light and the curtain cannot be
detected (i.e. outdoors in sunlight). A narrow band-pass filter significantly reduces the captured
ambient light, but for maximum performance we want to detect the laser signal at as few bits as
possible.

5.4.1 Ambient Subtraction

To increase the performance in the presence of ambient light, we follow a similar approach
to Chapter 4, where ambient light was subtracted by capturing both an ambient image and
laser+ambient image at each light curtain position. This enabled great ambient performance
but required that the same camera plane be imaged twice. This can be done with a 2D camera if
the entire image or a selectable ROI is being imaged, but not with a single rolling shutter frame
capture. To solve this, we developed a method using adjacent columns of a captured image to
perform ambient subtraction.

Our method sacrifices curtain resolution and captures a raw image where even columns are
captured with the laser on and odd columns with the laser off to get an ambient only image and
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a combined image, as shown in Figure 5.3. We then interpolate the two images to form full
resolution images and subtract the ambient image from the combined image to get an image with
just the laser light, which we call the curtain image. This image is then thresholded to provide
a mask indicating the detected points. In areas of high ambient light, this technique may still
produce errors at locations of high intensity gradient as shown by the faint edges in the laser
image and vertical thin lines in the thresholded mask image in Figure 5.3. We remove these and
any upsampling artifacts by filtering the mask with a thin horizontal erosion/dilation filter and/or
by weighting the laser image with the gradient of the ambient image.

Depending on the synchronization precision of the rolling shutter motion with the motion
and timing of the light sheet projector, there may be slight bleed through of the laser light onto
neighboring columns which shows up in the ambient image. Since this light appears in the
ambient image, it is subtracted from the combined image and reduces the measured signal from
the laser light and can reduce the performance of the device. With a precise synchronization, the
amount of this light can easily be limited to a few bits or removed altogether, so that it does not
greatly affect the performance of the system.

5.4.2 Limitations

In exchange for the imaging speed and enhanced light efficiency of using a rolling shutter camera,
the uniform sampling of the light curtain profile that dual galvomirrors provided in Chapter 4 is
surrendered due to the discrete nature of the camera pixels. This leads to a situation where there
may be a gap in the curtain profile that the light curtain device cannot image and occurs when
the rays of the camera are similar in direction to the curtain surface. This effect is shown in the
top-right portion of the curtain profile in Figure 5.2. One other disadvantage of using a rolling
shutter camera is that each plane of the camera can only be imaged once in a given frame. If a
camera plane intersects multiple curtain segments (e.g., a zig-zag) one of the segments must be
chosen for the imaged curtain and sequential curtains must be imaged to capture all the points
along a given ray. A limitation of the galvomirror is that if it is commanded to move very quickly
(greater than a 100 Hz step function) then it will lag behind the commanded position and the
intersection of the planes will be at a point different than designed, which will causes errors in
the locations of the detected points. This constrains which curtains can be imaged and in practice
requires random and adaptive curtains to be smoothed with a spline before imaging. This error
can be accounted for by using the angle measured from the closed-loop feedback of the mirror
to calculate the position of the detected points, rather than trusting open-loop control.
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Raw Image Combined Image Ambient Image

Laser Image Thresholded Mask Filtered Mask

Figure 5.3: Our method of ambient light suppression captures an image where the even columns
of the image are captured with the laser on and the odd columns captured with the laser off.
Separating these columns and upsampling them forms a full resolution ambient-only image and
a combined image. Subtracting the ambient image from the combined image produces a laser-
only image, which can then be thresholded to find the light curtain detections. Filtering this mask
provides improved robustness to large intensity gradients and upsampling artifacts.

5.5 Depth Sensing with Light Curtains

Sensing depth with light curtains does not provide depth of the entire volume at once like LIDAR
or traditional RGB-D sensors, but rather enables the selective depth sampling of the volume.
Only lines of points in the volume that are of interest can be imaged, rather than sensing the
entire volume and then filtering out what is not needed. This capability can not only be used
to sample a scene uniformly, but also in many non-uniform and more efficient ways. Here we
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discuss several methods of depth sensing that can be used to sample a volume.

Plane Sweeping A volume can be sampled by simply sweeping a planar light curtain over its
extents. This has the advantage of providing a uniform sampling of the volume and is useful if a
fully predictable and defined sampling pattern is desired. This type of depth sensing provides the
most similar results to LIDAR and RGB-D sensors, but takes longer to fully sample the scene.
Since most scenes are not uniformly distributed with points of interest, this type of sampling is
not efficient.

Random Sampling A possibly more efficient but non-deterministic method is random sam-
pling of the volume. Random sampling of a volume is done by fitting a curtain to randomly
generated points within the specified volume. Ideally, the randomly generated points should be
uniformly distributed over the volume to produce a light curtain that covers the extents of the
scene. By rapidly changing the random curtains, different parts of the scene are imaged and
an estimate of the full volume is produced quicker than a uniform plane sweep. As more and
more random curtains are imaged, the scene is iteratively refined to ultimately produce a high-
resolution estimate of the scene.

Adaptive Sampling The previous methods sample the scene naively and do not adapt their
sampling strategy based on their current knowledge of the scene. Provided an estimate of the
current scene, light curtains can be designed based on specific regions or objects of interest that
have been identified. One interesting example is scene discovery. When discovering a scene, the
light curtain initially knows nothing about its environment, and first uses random or swept planar
curtains to generate a sparse map of the scene. This sparse map provides guidance on where
to sample next and a curtain profile can be generated to fit the detected points in the scene. To
discover more of the scene, this curtain can be dithered back and forth to scan nearby areas at
high-resolution and build up the map in these regions. These curtains can be tuned to precisely
scan an area of interest at high-resolution, or to scan the area at courser resolution to discover
more of the scene. In order to monitor other areas of the scene and dynamically adapt to new
objects entering the scene in other locations, the entire volume can continue to be sampled at
low-resolution by interleaving random curtains or another type of coverage curtains in with the
adaptive curtains. In this way, the scene can be adaptively sampled to generate high-resolution
3D information at areas of high interest and low-resolution information in other areas.

On-Demand Sampling Triangulation light curtains also enable on-demand depth sampling
based on information from other sensors. For example, ultrasonic or RADAR sensors that pro-
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vide robust but low-resolution proximity detection can be paired with light curtains to perform
on-demand high-resolution sampling of a certain region of interest when required.

Another example is providing 3D information about detected objects in a monocular camera.
A monocular camera provides information about the entire volume and can be used to guide the
light curtain to sample depths around identified objects of interest such as people or cars. One
specific application here is people tracking, where a person detection algorithm is used to find
and track people in the scene of a monocular camera. By using the light curtain to first probe
along the directions of the detected people from the monocular camera, the depth and therefore
3D pose and size of the detected people can be found. Then the light curtain can be used to
rapidly sample around these people and adaptively adjust to track their 3D location in the scene.
During this, the monocular camera can be providing information on new objects entering into
the scene for tracking. This method of on-demand sampling is powerful as it provides high-
resolution depth information in areas indicated by a sensor that can see the entire scene, but only
in two dimensions. Ideally these methods would work in symbiosis to provide just the right
amount of depth information for each given area of the scene.

Each of these sampling methods can be interleaved to create a powerful adaptive depth sam-
pling mechanism as needed by each unique application and scene.

5.6 Hardware Prototype

The hardware prototype is comprised of a light sheet projector and a rolling shutter camera. The
light sheet projector contains a custom-designed line laser module using a 1 W 830 nm laser
diode (Thorlabs LD830-MA1W) that is then collimated and shaped into a line with a 45° Powell
Line Lens (Thorlabs PL0145). This laser line is then projected onto and steered with a galvom-
irror (Thorlabs GVS001). The line laser module is aligned and mounted to the galvomirror in an
aluminum mount that enables the precise collinear alignment of the laser line with the galvom-
irror’s axis of rotation. The mirror has dimensions of 14.5 mm × 8.5 mm and has a 50° optical
scan angle.

The rolling shutter camera (IDS UI-3240CP-NIR-GL) was fitted with a low distortion C-
mount lens (Kowa LMVZ4411) with 70°(h) × 60°(v) field of view. This camera provides 10-bit
precision and has a native resolution of 1280 × 1024 pixels with 5.3 µm square pixels. We
operate the camera in 2x binned mode for a resolution of 640 × 512 to increase the signal of the
received light and reduce the noise. We used a low-distortion lens to ensure that the intersection
of the light sheet and the camera rays along a given column formed as close to a line as possible.
We placed a 12 nm bandpass filter centered at 830 nm between the lens and the image sensor to
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Figure 5.4: The hardware prototype is comprised of a light sheet projector, rolling shutter camera,
and helper camera. The light sheet projector uses a custom line laser module to project a laser
line onto a galvomirror which then steers the light sheet onto the light curtain surface. The rolling
shutter camera is aligned and rotated 90° so that the rolling shutter and rows of the camera are
parallel with the galvomirror axis, with a baseline of 200 mm. The helper camera is used for
visualization of the light curtains only.

reduce the amount of collected ambient light. The camera is aligned to the galvomirror such that
the rows of the camera are parallel with the galvomirror’s axis of rotation. The rotated camera
was then placed at a fixed baseline of 200 mm from the galvomirror’s rotation axis. A micro-
controller (Teensy 3.2) is used to synchronize the camera, the laser, and the galvomirror. A color
2D helper camera is used for visualizing the light curtains and detected results in the scene by
projecting the light curtain to its view.

5.6.1 Calibration

The performance of light curtains depends on precise calibration of the camera and light sheet
projector. First, the camera intrinsics were determined by following the traditional calibration
approach of [127]. Next, the extrinsic calibration of the light sheet projector and camera was
determined by imaging a set of light planes projected by the light sheet projector onto a planar
wall. A checkerboard target of known dimensions was attached to the wall and imaged with the
calibrated camera to get the known 3D coordinates of points on each imaged laser line. This was
repeated with the same set of planes at several depths to fully define each plane of light. Best
fit plane equations were then found for each set of points using weighted least squares where
the weights were the normalized intensity values. Then, given the equations for the planes, the
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location of the galvomirror axis with respect to the camera was then found by a least squares fit
of a line to the intersection of all the planes. We then fit a continuous function to the relationship
of the plane angle (with respect to the galvomirror axis) and the commanded light sheet projector
angle, which is then used to determine the commanded galvomirror position needed for any
specified angle of a given design point.

5.6.2 Capture Process

To image a light curtain, a host computer transmits the required galvomirror positions to the
micro-controller which then triggers the camera to start the frame capture. The micro-controller
then sequentially commands the galvomirror positions and laser power in lock step with the
timed progression of the rolling shutter. This process then repeats for each successive light
curtain. Sending the galvomirror positions for every frame enables a different light curtain to be
imaged every frame at the full frame rate of the camera.

5.6.3 Working Range

The working range of of our device depends on the maximum exposure time for a given row. At
the maximum 60 frames per second capture rate of the camera in our prototype, the maximum
active exposure time of a line is approximately 15 µs. With this exposure, the rolling shutter
light curtain device has a maximum working range of 15 m while imaging a whiteboard in
100 klx (≈ 1000 W/m2) of ambient light and a working range of 50 m indoors. As shown
in Figure 5.5, this is similar to the dual galvomirror device, but with only 15% of the 100 µs

exposure time used in that device. When the rolling shutter device is configured for an exposure
of 100 µs the device can image over 25 m outdoors in similar conditions, but at this range the
detection ability is actually more limited by the resolution of the camera.

5.7 Results

Agile and Dynamic Light Curtains: Our device is capable of imaging 60 different light cur-
tains per second. This speed and flexibility enables agile and dynamic light curtains that can be
used to intelligently and adaptively sample the scene. This capability can be applied to many
areas including, path planning, high-resolution safety curtains, and depth sensing. Figure 5.6
shows the results of imaging various types of light curtains both indoors and outdoors and are
just a sample of the different types of curtains that can be imaged with our device. Images shown
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Figure 5.5: The rolling shutter light curtain device has a working range similar to that of the
dual galvomirror device, but with better light efficiency. In bright sunlight with an exposure of
15 µs per line (top row), the rolling light curtain device has similar range to that of the dual
galvomirror device with a 100 µs exposure (bottom row). When the rolling shutter device is
configured with an exposure of 100 µs (middle row) the detection range is longer than the dual
galvo device. However, at longer ranges, the resolution of the camera limits the detection ability
of small obstacles.

in the figure are the light curtain surface and detections projected into the helper camera’s view
for visualization on the scene.
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(c) Sine Sweep

Figure 5.6: Agile and Dynamic Light Curtains. Light curtains captured with our prototype can
be imaged and changed up to 60 times per second to quickly scan different curtains through a
volume. The images shown here are from the 2D helper cameras view with the light curtain
surface rendered in blue and detections rendered in green. The agile nature of these curtains
enables many types of curtains to quickly be imaged such as plane sweeping (a), proximity
searching (b), and sine sweep (c).
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(f) Safety-Zone Monitoring

Figure 5.6: Agile and Dynamic Light Curtains (cont). Random curtains randomly sample a
defined volume with randomly generated splines (d). Curtains can be generated based on the
planned path of a vehicle to ensure nothing enters its path (e). A safety zone (f) can be monitored
by rapidly alternating between checking the border of the safety-zone and the area within it.
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High-Resolution, High Speed Light Curtains: The rapid capture rate and resolution of our
device enables the imaging of small and fast objects as they pass through light curtains, as shown
in Figure 5.7a-5.7c. The resolution of light curtains provide increased detail over scanning LI-
DAR devices and can enable enhanced object recognition and critical detection of small objects
(e.g. wires, branches, etc). This is especially noticeable when imaging thin structures or objects
at a distance as shown in Figure 5.7d-5.7i.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: Our device can capture the depth of small, fast objects and provides more detail
than scanning LIDAR devices. Top Row: Several composite images show the view and detected
location of small 70 mm (a) and 30 mm diameter balls (b) and a 30 mm thick, 265 mm diameter
Frisbee that were thrown through a planar curtain 5 m away. The detections of the objects are
shown in (c). Middle Row: A planar curtain (d) was swept through a volume containing a thin
wire fence to create a dense 3D pointcloud (e). The light curtain (green points) in (f) reconstructs
the fence mesh at much higher resolution than a 16-beam Velodyne VLP-16 scanning LIDAR
(white points) at a distance of 1.5 m away. Bottom Row: By imaging a planar curtain, the range
and resolution of the light curtain enable it to create high resolution height maps of objects at
ranges of 15 m outdoors (g-i). At this range, a static VLP-16 scanning LIDAR only senses the
objects as a few points, shown in white.
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Figure 5.8: Adaptive depth imaging of a table and chairs scene is performed by first randomly
sampling a volume of interest to find objects. Then, the detected points at the front of these
objects (indicated by red dots in plots and white dots in bottom row) are used to design a set of
light curtains which is then imaged to refine and discover more of the scene. As time continues,
the curtains eventually discover and image the back wall of the scene.

Adaptive Depth Imaging: The ability to specify depths of interest at high-rates enables in-
telligent depth imaging of an environment based on the current knowledge of the scene. For
example, when a device first enters into the scene, it has no knowledge of it’s environment, but
by quickly scanning a volume of interest with light curtains it can generate a coarse estimate of
the locations of objects in the scene, and a new curtain can be designed to image around these
points of interest. This process is then rapidly repeated to form an accurate map of the objects in
the scene. Figure 5.8 shows an example where random curtains were used to initialize the cur-
tain by randomly sampling a volume of interest within 3 m of the light curtain. These curtains
detected several objects, which the device then used as design points to fit a new curtain to the
front surfaces of the objects. In less than a few milliseconds, a set of 10 curtains were designed
that were scaled versions of this spline to cover the area directly in front of and behind the de-
tected scene points. These new curtains were then imaged and used to refine and discover more
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Figure 5.9: Depth imaging of a scene using planar curtains, random curtains, and adaptive cur-
tains, shows that adaptive curtains intelligently cover more of the scene in less time than sweep-
ing a plane or random sampling of the scene. After initialization with random sampling, the
adaptive curtains discovered the interesting parts of the scene in 0.25 s and then continued to
refine the map.

of the scene. By interleaving a few random curtains with the adaptive curtains, the device can
continue checking the scene for any changes and sample the rest of the scene at low resolution.
The design process for the experiment in Figure 5.8 projected all of the detected points to the
xz-plane and used the closest point within an angular region as the design point for that region.
By splitting the entire plane into these uniformly spaced angular regions, a set of design points
were determined.
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Depth Imaging Comparison: A comparison of depth imaging methods using different light
curtain types was performed by capturing the same scene with each curtain type and comparing
the coverage of the scene at specified times. The methods included plane sweeping, random
sampling, and adaptive depth imaging. For plane sweeping, the planes were designed to fully
image the 4.25 m scene in 1.0 s with a depth resolution of 0.2 m. The adaptive curtains were
tuned to sense the front surfaces of detected objects at a high resolution and the rest of the scene
at a low resolution. Figure 5.9, shows the results of this comparison. Once initialized with 0.25 s

of random detections, the discovery nature of the adaptive curtain enabled it to sense near the
detected objects and not waste time sensing empty areas at the front of the scene and it was able
to quickly cover the interesting parts of the scene in less than 0.25 s. Given the time, plane sweep
curtains can provide high resolution and complete coverage, but with limited time random and
adaptive curtains can image more of the scene in less time. For example, the plane sweep curtains
could have been configured to image the entire scene in 0.5 s but at 0.4 m depth resolution, which
is much less than the other methods.

Discovery and Mapping using Adaptive Light Curtains: Adaptive light curtains can be used
to discover and map a scene from a moving platform. We used a small robot with on-board lo-
calization to move the light curtain device through a cluttered highbay scene. As the robot pro-
gressed through the scene, adaptive light curtains discovered the scene structure and continuously
adapted to image the newly detected objects from each frame. Rather than using a fixed depth
sensing strategy, the light curtains intelligently sampled regions around the detected objects at
high-resolution and sampled the rest of the scene with random curtains at a lower resolution. For
our mapping experiments, a set of 5 uniquely random curtains were interleaved with every 10
adaptive curtains. Figure 5.10 shows a few instances of the curtains fitting to objects in the scene.
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Figure 5.10: As the light curtain device was moved through a highbay scene, adaptive light
curtains discovered the scene and adapted to image the surfaces in the scene. Notice that the
curtains (shown in blue) fit tightly around the objects in the scene. When moved throughout the
environment, the detected points on the curtains (shown in green) also mapped the scene (right
column). The white points on the 3D maps show the design points for the set of adaptive curtains.
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(a) Robot Inside of Tunnel (b) Outside View of Tunnel

Figure 5.11: Tunnel environment for smoke experiments. (a) A small robot was equipped with
the light curtain device and a scanning LIDAR and was then used to map a 25 m long tunnel.
The beams in the tunnel are made of wood. (b) An outside view shows that the wood structure is
covered with a dark tarp material to form the enclosed tunnel. The robot in (a) is just inside the
white doors in (b) and looking at the end of the tunnel (right side of b).

5.8 Mapping in Smoke using Light Curtains

As demonstrated in Chapter 4, light curtains work well to see through smoke. The key insight
here is that since light curtains only receive light from a single depth at a time they can block most
of the light that is scattered by the smoke through the volume since it is not at the same depth,
which in turn reduces the signal to noise ratio and extends the visibility range. We demonstrated
the enhanced ability of light curtains to see through smoke by mapping a smoke-filled tunnel
with the light curtain prototype. The light curtain was moved through a 1.5 m tall, 1.5 m wide,
by 25 m long tunnel by a tele-operated robot shown in Figure 5.11. A 2.5 m planar curtain
was pushed through the volume and a map was created using the robot’s on-board localization
system. Figure 5.12 shows the results of these tests. A comparison of the light curtain to a
Velodyne scanning LIDAR (VLP-16) is shown in Figure 5.13. In many locations, the maximum
range of the LIDAR is roughly 2.5 m; the same distance the light curtain was set to. Several
longer range curtains were tried between 3-5 m, and although they worked where the smoke was
thinner they were not adequate for areas with thicker smoke. The LIDAR returns more points
on the side of the tunnel than the light curtain for two reasons. First, is that the side of the
tunnel was a black material which has a low albedo that the 905 nm operating wavelength of
the LIDAR can see better than the 830 nm wavelength of the light curtain device. The second
reason is that since the light curtain is only looking at a single depth at its maximum range in
smoke, the returns from the side are even lower than they would be at closer ranges. The LIDAR
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Figure 5.12: Light curtains in smoke. A planar light curtain set at 2.5 m was pushed through
a tunnel by a tele-operated robot. Data was collected with and without smoke in the tunnel for
comparison. Although, the light curtain intensity is not as strong in the smoke images, it is
strong enough to be thresholded adequately. The reflectivity target at the end of the tunnel (right
column) shows the difference in return intensity for low and high albedo targets with and without
smoke.

senses the side of the tunnel at all depths and often it doesn’t see the side until it is closer than
2.5 m away. A generated map from the light curtain data is shown in Figure 5.14. This figure
shows that there is little difference between the maps of the tunnel with and without smoke. The
map generated with smoke shows a reduced pointcloud thickness at some regions and along the
walls of the tunnel, but the floor, objects, and vertical beams of the tunnel are detected. One
thing worth noting here is that although the smoke attenuates the strength of the returned light,
the light curtain images show very little effects of scattering (i.e. there is very little noise in the
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Figure 5.13: Comparison of LIDAR to light curtains in smoke. Columns in this figure are the
associated pointclouds for the curtains in the columns of Figure 5.12. In thinner smoke the
LIDAR (white points) can see farther than the set 2.5 m distance of the light curtain, but as the
smoke gets thicker, the 2.5 m planar light curtain senses as far as the LIDAR. The LIDAR detects
the low albedo walls better because of its higher NIR operating wavelength and because it gets
multiple (closer) views of them, whereas the light curtain only has a single view at 2.5 m away.
The tunnel is approximately 1.5 m tall.

(a) 3D Map (No Smoke) (b) 3D Map (Smoke)

Figure 5.14: Comparison of map generated by light curtain in tunnel with and without smoke.
There are only slight differences between the maps generated in smoke and without. There is
slight reduction in pointcloud thickness in some areas where the smoke was very thick, but the
light curtain still detected the floor, objects, and vertical beams in the tunnel.

images). This means that only a small amount of scattered light is being captured and that the
light curtain device could see farther through the smoke with increased projected light power.
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5.9 Discussion

In summary, our rolling shutter triangulation light curtain prototype enables rapid on-demand
depth sensing of a scene. Our system can be used for uniform depth sensing by sweeping well-
defined curtains over the scene, which offers predictable but slow coverage of the scene. For
quicker but non-deterministic coverage, randomly generated curtains can be used. Both of these
methods, like traditional LIDAR and depth cameras, sample the scene without regard for its
structure. Adaptive light curtains can sample the scene more efficiently based on its structure.
We demonstrated a simple method that showed this by first detecting objects in the scene with low
resolution random sampling and then adapting the curtains for high-resolution scanning of the
detected objects while continuing a low resolution scan of the rest of the scene. More advanced
sampling algorithms in the future may use machine learning to determine the best places to scan
a given scene. For example, in self-driving car applications, an algorithm could learn where to
sample based on the eye-movements that human drivers use to safely navigate roads [57, 72].

This work was the first to show real-time adaptive depth-sampling of a scene with triangula-
tion light curtains and offers many benefits to applications that require computationally efficient
depth imaging. Our system can be used in robotics to discover and map scenes; including scenes
in bright ambient light, darkness, and in smoke. This work enables real-time adaptation for ag-
ile depth sensing tasks ranging from human robot interaction [28], to robot manipulation [68],
path planning [30], and navigation [16]. Future work in this area could look at how to fuse
the on-demand depth sensing of light sheet depth imaging devices with learning algorithms for
in the loop sensing for applications in monocular depth reconstruction [34, 103], person track-
ing [49, 100], and obstacle recognition [21].
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Chapter 6

Conclusion

6.1 Summary

Depth imaging systems that sample only at a line have distinct advantages to systems that image
points or entire fields of light. Specifically, these systems offer the resolution and frame-rate
of consumer depth cameras but work outside in bright light. Although, they do not have the
range of LIDAR devices, they offer higher-resolution and more economical depth sensing at
short to moderate ranges. Similar to LIDAR, the sampled line is scanned to cover the scene. But
unlike LIDAR and consumer grade depth cameras our systems are not constrained to capturing
the whole volume uniformly and can adaptively sample the scene. Adaptive sampling of the
scene can be used to only capture the interesting and necessary regions of the scene. Unlike
traditional depth imaging sensors which capture the entire volume to produce dense pointclouds
that require extensive processing to find the interesting regions, adaptive sampling can provide
these regions directly—especially when paired with triangulation light curtains. Triangulation
light curtains offer the advantage that they can detect the presence of objects along a given surface
very efficiently with just simple image thresholding, but can only do so along a single defined
surface in the volume per frame. Epipolar time-of-flight imaging on the other hand captures
the entire volume in a single frame, but requires complex pointcloud processing for obstacle
detection.

This thesis asserts that 1) imaging a sheet of light with an aligned plane of imaging enables
robust, high-rate, and agile depth sensing; 2) when these planes are aligned and scanned in an
epipolar configuration, the depth of the entire scene can be captured out to a maximum working
range; 3) when the rotation axes of these scanned planes are parallel and separated by a baseline
they can triangulate to capture only the depths of objects along a defined surface in the volume;
and 4) that these planes can be steered to select and adaptively change which regions of the scene
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are sampled and at what resolution.

Chapter 2 discussed the development of an epipolar continuous-wave time-of-flight depth
imaging camera using a light sheet projector and a 2D ToF camera. This first prototype demon-
strated robustness to multi-path interference caused by global light transport as well as demon-
strated a working range of 15 m outdoors in bright sunlight.

Chapter 3 considered design parameters for epipolar time-of-flight imaging. A simulation
frame-work was developed that was then used to guide the design of a new prototype which
demonstrated a working range of 50 m outdoors.

Chapter 4 introduced the concept of programmable triangulation light curtains. The key
insight here was that by rotating the light sheet with respect to the imaging plane such that their
rotation axes were parallel and separated by a baseline the device would sense depths only along
the line at the intersection of the planes. This line can then be rapidly swept by steering the
planes. The constructed prototype used a line sensor and line laser both steered by galvomirrors
to generate light curtains along any ruled surface. The prototype could image curtains over 25 m

away outdoors in bright sunlight and had a frame rate of 5.6 fps.

Chapter 5 detailed development of a new programmable light curtain prototype that uses a
rolling shutter camera to steer the imaging plane in sync with the light sheet projector to image
60 different curtains per second rather than one curtain at 5.6 fps. This increased frame rate and
improved prototype enabled curtains to be dynamically adjusted to adaptively sample the scene
based on its current knowledge of the scene structure. This improved frame rate also enabled
applications for robot mapping, path planning, and navigation in smoke.

6.2 Future Work

6.2.1 Motion Estimation

One of the limitations of epipolar imaging and triangulation light curtains is that they capture
measurements at different times for each line sample in the image. When the sensor and scene
are static, this is not an issue, but when either are moving, the time offset between each mea-
surement causes distortion in the resulting image similar to that of rolling shutter cameras. The
problem with regard to rolling shutter cameras has been solved with several methods that es-
sentially all estimate the motion of the camera during the capture and then unwarp the data to
create a corrected image. For large movements during capture, many of these methods fail due to
assumptions about small motion, photometric consistency, and occlusions. When motion is large
between rows, as it can be for these devices at slow frame-rate, the motion estimation problem
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is more similar to a LIDAR SLAM problem, and similar methods can be used. Precise pose
estimation for devices with large motion between measurements requires modelling the pose of
each measurement. This is most efficiently done with a continuous-time, spline-based represen-
tation. Many state-of-the-art LIDAR algorithms model each point as being captured at a different
time, but use linear interpolations for motion during the scan [125]. Adaptive sampling methods
where rows are exposed for different times or another non-uniform sampling method could vi-
olate this linear assumption. In addition, rapidly changing motion faster than the sampling rate,
would violate this assumption. A continuous-time, cubic B-Spline based approach [77] that uses
feature points similar to [125], instead of dense image representations, could be used to model
the motion of the device and generate pose and map estimates from epipolar depth cameras.

6.2.2 Towards Economical, High-Rate, and Precise Range Sensing

The prototype devices developed in this thesis demonstrated reliable depth imaging outdoors out
to 25 m in bright sunlight. At this range however, the noise of the time of flight camera was
high and light curtains were several meters thick. In addition, the frame rate of the time of flight
camera was limited to approximately 5 fps. Since these devices were research prototypes they
were also not economical. Two paths of future work exist to both increase the frame rate and
improve the range precision of these devices, as well as make them more economical.

First, is by improving the hardware. As detailed in Chapter 3 using a CW-ToF image sen-
sor capable of imaging at modulation frequencies in the 100 MHz range combined with phase
unwrapping should enable depth errors of just a few centimeters at extended ranges in bright
sunlight. As shown in Chapter 4, these ToF sensors can then be used in triangulation light cur-
tains to greatly reduce the thickness of even short base-line light curtain devices. Both the range
and speed of the devices can be improved by using more light power. Using more light power
can directly improve range but using shorter exposures with more light power can increase the
frame rate while maintaining range. However, improving the range by increasing laser power has
implications on the eye-safety of the device [1] which must be carefully considered. Although
rolling shutter imagers enable rapid imaging, the region of interest control used to steer the plane
of imaging with time-of-flight imagers is not as fast. Ideally a rolling shutter time-of-flight sen-
sor would be used, but this is usually not desired for ToF cameras and they are exclusively global
shutter. Since most applications do not require rapid region of interest switching, this may be a
limitation that can only be removed with the design of a custom image sensor. If not for eco-
nomic reasons, at some point the galvomirror used to steer the light sheet will limit the speed
of the device. MEMS mirrors offer much higher speeds, are less expensive, and could be used
to steer the light sheet in a faster, more compact, and more economical manner. The hardware
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improvements mentioned here all either currently exist in some form or are straightforward ex-
tensions of current technology. Since there are no complicated electronics or exotic imaging
sensors, these devices can be made inexpensively at scale.

In addition to improving the hardware, several algorithmic methods can improve both the
range and frame rate. A large improvement for the signal to noise ratio of these devices would
be to use a more optimal time-of-flight modulation method. Continuous sine-wave modulation
offers little robustness to noise and can be improved with coding of the modulation and demod-
ulation. One promising method is Hamiltonian coding which improves the depth resolution of
ToF cameras by an order of magnitude without changing the light source power or acquisition
time [44]. Deep learning methods can be used in addition to this to estimate the correct depths
from data with low signal to noise ratio [22, 111]. To improve frame-rate, adaptive sensing can
be used to image only the necessary objects. LIDAR depth completion methods[23, 79] and
fusion with a color camera could then be used to improve the sampling rate and resolution of the
devices by intelligently upsampling the captured points.

Although, these devices will likely never have the range of LIDAR systems, these hardware
changes coupled with advanced algorithms should provide high-rate, precise, and economical
depth sensing outdoors at short to moderate ranges useful for many applications in robotics.

6.3 Outlook

The depth camera prototypes developed in this thesis demonstrated capabilities including robust
outdoor depth imaging, programmable light curtains, and adaptive depth sensing. Each of these
has their own merit and application, but robust outdoor imaging is likely the most applicable
today.

Programmable light curtains have specific applications in industrial manufacturing and for
safety sensors around vehicles, but since there are not any directly similar technologies it will take
time for them to catch on—especially, since their main applications are safety related. Proving
out a new safety sensor will not be easy and will require significant research, development, and
testing. However, in time, their capabilities could revolutionize safety sensing and be enabling
technology for advanced applications in human and machine interactions that require adaptive
sensing.

Adaptive depth sensing, especially when paired with programmable light curtains, offers
significant benefits to computational constrained systems by imaging different parts of the scene
only at the resolution necessary, removing much of the heavy processing. LIDAR hardware
capable of pointing the beam and imaging areas of interest at different resolutions has been
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demonstrated [62, 113] and companies are starting to produce hardware capable of this [3, 52].
Intelligent adaptive depth sensing is an emerging area, with promises to drastically improve
sampling efficiency of scenes and reduce the computational load for many applications. As self-
driving cars and robotics develop, adaptive depth sensing will be an enabling technology.

Robust outdoor depth imaging with epipolar time-of-flight cameras has the most immediate
future as it is similar to sensors currently used for these tasks, but with increased capabilities.
Since consumer depth cameras do not work outdoors, the sensor of choice for many outdoor
applications is scanning LIDAR, simply because it offers precise ranging at long ranges in bright
sunlight. Many short-mid range applications that could use passive stereo do not use it because
of its unreliability in areas of low texture and its high-processing requirement. Slow moving
robots or self-driving cars are both examples of applications for short-mid range depth sens-
ing that customarily use LIDAR to see at these ranges. Many self-driving cars will go so far
as to have multiple small LIDAR units on their roofs angled downward just to sense the area
within a few meters of the car. These are prime examples of where an economical, short to mid
range, outdoor depth camera would be useful. For self-driving cars and robots in general to ever
become common place and successful they must have an economical method for sensing their
environment. Although LIDAR companies are increasing production to meet demand of these
new applications, its not clear if the increased scale will be enough to reduce the price of these
devices to that necessary for their target applications.

6.3.1 Applications

The devices developed in this thesis have a large economical benefit over existing LIDAR sen-
sors. Since epipolar imaging and light curtain devices use CMOS-based imagers, entire high-
resolution 2D arrays are straight-forward and inexpensive to produce. This is in contrast to
avalanche photodiodes that LIDAR utilizes which, although are much more sensitive and robust,
are larger and more expensive. Although avalanche photodiode arrays are produced for flash
LIDAR cameras, these cameras are exorbitantly expensive and inaccessible to most applications.
The commodity that comes from being able to use normal and existing CMOS-based image sen-
sors is important, as it enables our technology to be used in many existing, as well as up and
coming, applications that require inexpensive depth sensing. Beyond economics, many applica-
tions would benefit from the low computational requirements provided by triangulation curtains
and adaptive sampling.

Mobile Robots. As the role of mobile robots in society increases, the need for economical,
short to medium range, and high resolution outdoor depth sensing will grow. Mobile robots are
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one of the best use cases of these sensors, as their speed of travel reduces their required stopping
distance and makes them amenable for using the short to medium range depth sensors proposed
in this thesis as their sole depth sensing technology. The economics is key here as large-scale
applications like delivery robots [58, 105], and robotic shuttles will require it. Companies are
already springing up around these ideas and in their development phase are using a combination
of expensive LIDAR units and consumer grade stereo cameras. Neither of which is optimal, for
reasons discussed previously.

Self-Driving Cars. Although many applications in self-driving cars require long-range depth
sensing, critically important applications in obstacle detection and recognition at close ranges
prefer high-resolution, short-range sensing. Having high-resolution depth sensing at these close
ranges is important because it helps the system to distinguish, for example, between a sack
blowing with the wind and a fast moving person on a bicycle. One of these is safe to hit and the
other is not. LIDAR systems are starting to be developed for these applications [118, 121], but
the economics is likely not there even at large scale compared to CMOS-based sensors. Besides
applications in obstacle recognition, self-driving cars do not move fast all the time (e.g., urban
environments, dense traffic, construction zones, etc.) and many of these low speed circumstances
could benefit from the proposed depth imaging systems.

Outdoor Depth Imaging. There are many applications for these sensors in the more general
category of outdoor depth imaging. Applications include depth imaging for security systems,
agriculture, and infrastructure modeling [50, 80]. Some advanced security systems use LIDAR
for intelligent patrol robots [65] and imaging [99]. Applications in agriculture include plant
imaging for yield estimation [120], plant phenotyping [75], and livestock monitoring [116, 123].
For many of these applications the range of LIDAR is not necessary and stereo-imaging is not
reliable enough. A short to medium range depth camera would be ideal.

Underwater Imaging. A large majority of Earth’s surface is covered by water, but detailed 3D
maps of these environments are few and limited in resolution. Acoustic methods have previously
been used for large-scale underwater mapping, but the maps are noisy and the resolution is
low [15]. Inspection and mapping of ships [94], pipes [101], bridges [29], and other underwater
infrastructure [124] requires more accurate and higher-resolution 3D modeling than acoustic
methods can offer. The highest performing underwater depth imaging technology is range gated
imaging [54, 82], but the requirement on highly precise timing makes these devices too costly
for widespread use. More commonly laser line scanning systems are are used as first proposed
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by [55]. These line scanning systems are very similar to epipolar imaging and triangulation light
curtain devices in that they only image a single emitted line at a time and reduce scattering, but
they do so with by capturing a full 2D image of the line and are slow to scan the full scene. The
rapid scanning ability of our developed devices would increase the speed of these devices and
offer improved robustness in many cases by optically blocking the scattered light.

Industrial Manufacturing. Applications for depth sensing in industrial manufacturing are
vast. Many depth sensing technologies originated for sensing in these applications. Tasks in
metrology [47], human safety [17], and automated material handling [13, 114] all heavily rely
on different types of depth sensors. Laser line imaging systems are used for robotic part handling
and inspection [14]. 2D scanning LIDAR sensors are used for robotic cart navigation [39]. Each
of these specialized sensors are based on the same core technology of emitting and capturing
lines of light with an imaging system, but each are configured differently for their specific appli-
cation and require different hardware. The technology developed in this thesis could be adapted
to perform many of these tasks with a single depth sensor.

6.4 Conclusions

Conclusions of this research are:
• Rather than sampling the scene with points, like scanning LIDAR, or all at once, like

consumer depth cameras, robust depth imaging can be enabled by sampling lines.

• Concentrating the light and imaging into a single line reduces required exposure time and
improves signal to noise ratio of received light.

• Depth sampling along lines can be implemented by imaging sheets of projected light with
precisely aligned cameras.

• Rapid sampling of the scene is enabled by sweeping this line through the scene.

• When the sheet of light is imaged with an epipolar-aligned row of a time-of-flight camera,
the resulting device can see at least 15 m outdoors in bright sunlight, and is robust to
multi-path interference, and camera motion.

• Simulation-guided design and development of epipolar time-of-flight cameras results in a
device that demonstrates depth imaging up to 50 m outdoors.

• When the rotation axis of a light sheet projector is separated by a baseline but parallel to
the rotation axis of the sheet of imaging, sampled lines can be triangulated and swept to
form a programmable triangulation light curtain.
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• Programmable triangulation light curtains only see what is directly touching the curtain
and in this way form a surface of obstacle detection requiring very low computation.

• The shape of light curtains can be programmed to form any ruled surface.

• When triangulation light curtains are implemented with a light sheet projector and a line
imager steered by a galvomirror, the resulting device can image static curtains at 5.6 frames
per second and can see up to 25 m outdoors in bright sunlight as well as through smoke.

• When the imaging plane of a triangulation light curtain is steered by the rolling shutter
motion of a intensity imager, the resulting device can image curtains up to 60 frames per
second.

• Rapid imaging of programmable light curtains can be used for agile depth sensing to adap-
tively sample scenes or only image specified areas of interest.

• Adaptive sampling of the scene with triangulation light curtains can selectively and adap-
tively image different parts of the scene at the required resolutions which can reduce un-
necessary processing.

• Rolling shutter light curtain devices can be used to see through smoke and map the envi-
ronment when navigated with a robot.

• Light sheet depth imaging devices like epipolar time-of-flight cameras and programmable
light curtains provide most of the robustness of LIDAR with the speed and sampling den-
sity of consumer depth cameras and can be used for short to moderate range depth sensing
outdoors.

• Since light sheet depth imaging devices use commodity image sensors and components,
they can be produced economically for use in wide-spread applications and offer an alter-
native to scanning LIDAR for applications that prefer short to medium range sensing.

In summary, the work developed within this thesis contributed methods and hardware for high-
resolution depth imaging that works in challenging conditions, provides methods for computa-
tionally inexpensive agile depth sensing, and has the economics that will enable next generation
and wide-scale applications in robotics, agriculture, and industrial manufacturing.
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