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Abstract—Diffuse optical tomography (DOT) is an approach to recover subsurface structures beneath the skin by measuring light

propagation beneath the surface. The method is based on optimizing the difference between the images collected and a forward model

that accurately represents diffuse photon propagation within a heterogeneous scattering medium. However, to date, most works have

used a few source-detector pairs and recover the medium at only a very low resolution. And increasing the resolution requires

prohibitive computations/storage. In this work, we present a fast imaging and algorithm for high resolution diffuse optical tomography

with a line imaging and illumination system. Key to our approach is a convolution approximation of the forward heterogeneous

scattering model that can be inverted to produce deeper than ever before structured beneath the surface.We show that our proposed

method can detect reasonably accurate boundaries and relative depth of heterogeneous structures up to a depth of 8 mm below highly

scattering medium such as milk. This work can extend the potential of DOT to recover more intricate structures (vessels,tissue, tumors,

etc.) beneath the skin for diagnosing many dermatological and cardio-vascular conditions.

Index Terms—Computational Photography; Radiative Transfer Equation; Light scattering; Diffuse Optical Tomography.
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1 INTRODUCTION

Imaging below the skin and through tissue is important for

diagnosis of several dermatological and cardiovascular conditions.

MRI remains the best current approach to obtain a 3D dimensional

visualization below the skin. But MRI is expensive, requires

visits to a hospital or imaging center, and the patients are highly

inconvenienced. Non-invasive imaging using visible or near-infra-

red light has the potential to make devices portable, safe, and

convenient to use at home or at point-of-care centers.

While light penetrates deep through tissue, it scatters continu-

ously resulting in poor image contrast. This makes it challenging

to recover useful properties about the anatomical structures below

the skin. Further, the anatomical structures include a complex

heterogeneous distribution of tissue, vasculature, tumors (benign

or malignant) that vary in optical properties (density, scattering,

absorption) and depths below the skin. This makes the modeling

of light propagation below skin challenging.

Fortunately, under the highly scattering regime, the photons

can be assumed to be traveling diffusely in the medium and

can be described as a random walk. This has enabled accurate

forward models under diffuse photon propagation. In order to

improve contrast, imaging detectors and sources are placed at

different locations on the skin. This arrangement captures only

indirectly scattered light while eliminating the dominant direct

reflection and backscatter 1. The approaches that attempt to invert

the diffusion model with such indirect light imaging systems are
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1. Analogously, in vision and graphics, works measure the Bi-directional
Sub-surface Scattering Reflectance Distribution Function (BSSRDF) [12],
[13], [16], [22], [34]

Fig. 1. Diffuse optical tomography (DOT) with line-scanned camera and
line scanning MEMS projector (left) compared with traditional DOT [1]
with 25 source-detector pairs (right). Both arrangements capture short
range indirect subsurface scattered light but our approach is more effi-
cient and recovers the medium (bottom row) at much higher resolution.
The results shown here are from simulated data. Please refer to Section
6 for more details and real results.

commonly classified as ”Diffuse Optical Tomography” (DOT).

Due to their portability and ease of use, DOT is becoming an

attractive choice over traditional modalities like MRI for cerebral

as well as hemodynamic imaging [26], [35]. More recently, DOT

has been shown to be a promising tool in detecting strokes [9],



breast cancer [19], and thyroid imaging [17].

But there are two important drawbacks to existing DOT

approaches. First, the number of source-detector pairs limits the

form-factor of devices built so far. Even with multiple source-

detector pairs, applying traditional inverse methods for DOT

results in poor resolution, as shown in the second column of

Figure 1. Second, as the number of source-detector pairs increases,

the computational complexity of the algorithms that recover the

volumetric medium increases prohibitively [7]. In this work, we

present an imaging and algorithmic approach to resolve these fun-

damental drawbacks in DOT systems. Instead of separate detector-

source pairs, we use a high resolution 2D camera and a MEMS

projector to obtain a large number of effective source-detector

pairs, as is commonly done in vision and graphics. This makes the

DOT system much more compact and programmable. Second, to

increase the speed of acquisition, we illuminate a line on the skin

and capture a different line in the sensor, as described in [24]. This

arrangement captures short-range indirect light transport much

faster than point-to-point illumination and sensing. But [24] uses

a rectified configuration where the projector and camera planes

are parallel [28], leading to a low spatial resolution over a large

overlapping stereo volume. We develop a new design with a verged

configuration that enables high spatial resolution imaging within a

small region on the skin (approximately 8 cm x 8 cm).

Using this verged design, we develop an efficient algorithm

that is based on the convolution approximation to the for-

ward model for light propagation in a heterogeneous subsurface

medium. We show that the convolution kernel is independent of

the heterogeneous structure and only depends on the imaging

configuration and the scattering properties of the homogeneous

scattering medium. This allows us to recover the heterogeneous

structures at much higher spatial resolution compared with the

traditional DOT, as shown in the last row of Figure 1.

We evaluate our imaging and algorithmic approaches on

simulated data by borrowing optical parameters of skin, tissue,

blood and vasculature from bio-optical literature [25]. We then

demonstrate our approach with an imaging setup that consists of

a high resolution 2D camera and a custom-built MEMS based

laser projector that are verged to capture near-microscopic spatial

resolution beneath a small area of the surface. This imaging system

is used to recover heterogeneous structures immersed within a

highly scattering medium, such as milk. We show that with

the proposed hardware and algorithm, we can detect reasonably

accurate boundaries of structures up to a depth of 8mm below the

surface of milk. We believe this work represents strong progress

in achieving high-spatial resolution diffuse optical tomography for

the first time at subsurface depths of several millimeters in highly

scattering media.

2 RELATED WORKS

Over the past few years, there have been developments mainly

on two aspects of DOT - improving the instrument system design

[32], [33], [39], and secondly, on theoretical aspects that involves

accurate forward modeling and rendering [2], [4]. The traditional

DOT setup consists of illumination sources and detectors which

are placed on the tissue or skin surface. To improve the recon-

struction of optical parameters of the tissue volume, multiple

configurations of DOT have been explored. In general, it is not

possible to obtain depth information from a single source-detector

system and therefore multiple source-detector configurations are

needed [31].

More recent systems utilize the time-domain (TD) information

of photon propagation. TD-DOT systems consist of a source

emitting a pulse of light and fast-gated detectors that capture the

time-profile of photon arrival. The detectors and the sources are

located on a probe with fixed strategic distances between them,

so that the photons have traversed a certain depth and rejecting

early arriving photons [29]. The most important drawback in these

systems is that the limited number of detectors constrains the

spatial resolution of the reconstructed optical parameters. More

recent DOT systems use structured illumination, which involves

projection of patterns instead of discrete sources [3], [18], [23],

[30]. The light after interaction with the tissue is captured by either

a single-pixel detector or a 2D CCD camera. The use of structured

illumination addresses the issues of low speed and sparse spatial

sampling, which are associated with traditional DOT systems [30].

The reconstruction of optical parameters involves fitting a for-

ward model to the acquired measurements. The forward model can

be obtained either from mesh-based Monte-Carlo simulations [15],

[37] or from a diffusion approximation [5], [6], [14] derived from

radiative-transfer equations (RTE). While the Monte-Carlo based

forward model is more accurate, it requires hours of computing

time. Under Born or Rytov approximations, the forward model

relates the optical parameters and the measurements by a linear set

of equations [27]. Generally, the number of optical parameters to

be reconstructed per voxel is very large compared to the number

of measurements, and therefore the inverse problem is severely

ill-posed. Tikhonov regularizer or sparsity-inducing regularizers

are commonly applied for solving the inverse problem [10], [20].

However, with dense sampling the computational load increases

as the reconstruction process involves inversion of a large-scale

Jacobian matrix [36].

A notable alternative approach [38] is to use the Monte Carlo

estimator to differentiate the RTE with respect to any arbitrary

differentiable changes of a scene, such as volumetric scattering

property, anisotropic phase function or location of heterogeneity.

This approach shares the same generality as RTE. However,

the performance of the differentiation-based method is highly

dependent on the initial estimation of the variables and tend to be

trapped in local minimal. Our conventional formulation simplifies

the RTE such that the inverse problem is convex. As a result, the

result of our method can be used as a good initial guess for the

full RTE method [38].

3 FORWARD MODEL

In this section, we will review the derivation of the basic theory

in DOT for dense scattering tissues. First, we will derive the

Diffusion Equation for the surrounding homogeneous medium

from the Radiative Transfer Equation [8], [21], assuming that the

homogeneous scattering medium surrounding the heterogeneities

is dense enough such that the light propagation in the medium is

dominated by the high-order light scattering events and the angular

distribution of light propagation direction is isotropic. Then we

will derive the Diffusion Equation for the heterogeneities, assum-

ing that the light absorption coefficient discrepancy dominates the

scattering property difference between the heterogeneous embed-

ding and the surrounding medium. Although the assumptions do

not always hold perfectly, we find that our proposed method is



Fig. 2. Source-detector configuration in typical DOT system. The fluence
rate at the detector is given by superposition of the real diffuse source
located z0 below the surface, and a negative image source around the
zero flux line denoted by EBC.

robust to the cases where the assumptions fail through evaluations

in Section 6.1.

The Radiative Transfer Equation (RTE) describes the light

radiance, which models light propagation, at a particular position

in the scattering medium at a specific time instant. It is generally

difficult to solve the RTE in closed form. When the medium is

highly scattering, as in the case of biological tissue, the diffu-

sion approximation is commonly applied to obtain the diffusion

equation [14], [22]. The photon diffusion equation models the

fluence rate Φ, that is defined as the total light radiance integrated

over all directions, at a position ~r in the scattering medium for a

continuous intensity light source S, given as,

(−D(~r)∇2 + µa(~r))Φ(~r) = S(~r), (1)

where µa(~r), µ
′

s(~r) are the absorption coefficient and the reduced

scattering coefficient of the medium respectively, and D(~r) =
1/(3(µ′

s(~r)+µa(~r))) is known as the diffusion coefficient of the

scattering medium. The tissue is commonly modeled as a semi-

infinite scattering homogeneous medium, with the source and the

detector positioned at the air-medium interface. When the light

source is treated as a constant pencil beam source, i.e. S(~r) =
Sδ(~rs), the solution for fluence rate in (1) for the configuration

in Figure 2 can be written in a analytical form using extrapolated

zero boundary conditions (EBC):

Φ0(~rd, ~rs) =
S

4πD0

[

e−βr1

r1
−

e−βr2

r2

]

, (2)

where, Φ0(~rd, ~rs) is the fluence rate at detector kept at a position

~rd with a constant source at ~rs [5]. The diffusion coefficient of

the homogeneous medium is denoted by D0 and the term β =
√

3µ′

sµa depend on the optical properties of the homogeneous

scattering medium. The extrapolated boundary condition (EBC)

accounts for the refractive index mismatch of air and the medium.

Solving for the boundary condition defines a zero fluence rate line

located zb above the air-medium interface. This boundary line is

imposed by placing a negative image of the source around the

zero-crossing line [5]. The terms r1 and r2 are the distances from

the detector to the real and the negative image source respectively,

and they are defined as:

r1 = |~rs + z0 − ~rd|,

r2 = |~rs − z0 − 2zb − ~rd|,
(3)

where, z0 = 3D is the location of diffused source in the medium.

The term zb is the distance of the zero fluence rate boundary from

the air-medium interface.

Often, we are interested in reconstructing objects like veins

or tumors embedded within human tissue. Typically these objects

have different optical parameters than the background medium. In

the presence of heterogeneity, the change in absorption coefficient

of the medium can be defined as,

µa(~r) = µa0
+ δµa(~r) (4)

where δµa(~r) is the difference in absorption coefficient of the

heterogeneous object over the background medium. We assume

that the change in the reduced scattering coefficient µ′

s(~r) is

negligible and can be ignored. The resultant fluence rate at the

detector position ~rd for a source at ~rs is written as a linear addition

of fluence rate from homogeneous component Φ0(~rd, ~rs) and

the change in fluence rate ∆Φ(~rd, ~rs) due to the heterogeneous

object,

Φ(~rd, ~rs) = Φ0(~rd, ~rs) + ∆Φ(~rd, ~rs). (5)

The change in fluence rate is due to the absorption coefficient

change across the volume around the point of interest [5]:

∆Φ(~rd, ~rs) = −

∫

Φ0(~rs, ~rj)
δµa(~rj)

D0

G0(~rj , ~rd)d~rj , (6)

where G0 represents the Green’s function for a homogeneous slab

and is related to Φ0 in (2) as G0 = D0Φ0/S.

We acquire images using a CCD camera, which records the

radiant exitance at the surface. The radiant exitance is proportional

to the diffuse reflectance R, which is the projection of current

density along the surface normal of the detector for a unit-power

source,

R(~rd, ~rs) = D0

[

δΦ

δzd

]

zd=0

, (7)

where zd is the z component of the detector location ~rd.

Applying a derivative to (5) with respect to zd and multiplying

by D0, we obtain,

R(~rd, ~rs) = R0(~rd, ~rs) + ∆R(~rd, ~rs), (8)

where R0 = D0 [δΦ0/δzd]zd=0
is the diffuse reflectance due to

the homogeneous background medium and is obtained by taking

a derivative of Φ0 in (2) with respect to zd, given by [22],

R0=
1

4π

[

z0(1 + βr1)e
−βr1

r3
1

+
(z0 + 2zb)(1 + βr2)e

−βr2

r3
2

]

(9)

Similarly, ∆R represents the change in diffuse reflectance for

the heterogeneous object. The expression for ∆R is obtained by

taking a derivative of (6) with respect to zd and multiplying by

D0, resulting in the following expression,

∆R(~rd, ~rs) = −

∫

Φ0(~rs, ~rj)δµa(~rj)

[

δG0(~rj , ~rd)

δzd

]

zd=0

d~rj ,

= −

∫

Φ0(~rs, ~rj)δµa(~rj)R0(~rj , ~rd)d~rj .

(10)

We discretize the integral above by dividing the medium into

N voxels, and the optical properties are defined for each voxel.

If the medium is discretized into N voxels with volume of each



Fig. 3. Generation of short range indirect images for a small (a) and a
large (b) pixel to illumination distance ∆y. The simulated scene consists
of three cylinders embedded in a scattering medium. The offset ∆y is
kept constant while scanning the entire scene to obtain an image. For a
shorter ∆y as in (a), the rods are distinctly visible, whereas for longer
∆y, the blurring increases with reduction of signal-to-noise ratio.

voxel as h3, then (10) can be written in the discrete summation

form given by

∆R(~rd, ~rs) = −
N
∑

j=1

P (~rs, ~rj , ~rd)δµa(~rj), (11)

with

P (~rd, ~rj , ~rs) = Φ0(~rs, ~rj)R0(~rj , ~rd)h
3. (12)

The term P (~rs, ~rj , ~rd) is commonly known as the phase

function defined at each voxel position ~rj in the medium. The

values of the phase function depend on the optical properties of

the background homogeneous medium as well as the location of

the source ~rs and the detector ~rd. Note that the phase function is

independent from the structure of the heterogeneous object.

4 CONVOLUTION APPROXIMATION OF HETEROGE-

NEOUS MODEL

In this section, we describe how the diffuse forward model can be

adapted to our experimental setup. We project a line illumination

on the scene using a laser projector as in [24]. So the light source is

now considered as a slit source instead of a point source. By using

a slit source we reduce the acquisition time since line scanning

is significantly faster than point scanning. We incorporate a slit

source in the forward model by using the linear superposition

principle. The quantities described in the previous section which

are functions of the source location ~rs are now obtained by adding

up the contributions corresponding to all the point sources on the

illumination line.

On the detector side, we use a rolling shutter camera synchro-

nised with the laser projector. The advantage of using a camera

is that each pixel in the camera sensor can now be considered

as an individual detector, and hence we have a detector array

Fig. 4. Visualization of phase function for different pixel to illumination
line distance in y-z plane (top row), and x-y plane (bottom row). S
and D represents the illumination line and pixel location respectively.
As the pixel to illumination line distance increases, the photons tend to
travel deeper into the scattering medium but leads to reduced number
of photons reaching the pixel, thereby reducing the signal-to-noise ratio.

with millions of detectors. Secondly, since the camera sensor

can be considered as a grid array of detectors, we can derive a

convolution form of the forward model, significantly speeding up

the computation time. We acquire several images by varying the

pixel to illumination line distance shown in Figure 3. These images

are referred to as short-range indirect images. The boundaries

of the heterogeneous structures become more blurry in the short

range indirect image as the pixel to illumination line distance ∆y
increases. The blurring effect is related to ∆y and the depth of the

structures. This is similar to the depth from (de)focus methods,

where the blurring effect is related to the focal setting of the

camera and the scene depth.

The values of phase function at each voxel for the short-range

indirect images can be interpreted as the number of photons that

have traversed through the corresponding voxel for a given pixel

to illumination line distance. Typically, the most probable path

between a pixel and the source illumination line follows a well-

known ”banana shape” [11] and is shown for different pixel to

illumination line distances in the Figure 4.

We note two important properties of the phase function P .

Firstly, in case of simple geometry like the semi-infinite homo-

geneous background medium under consideration, the expression

for the Green’s function G0 as well as Φ0 can be written in terms

of relative voxel location rather than the absolute location, i.e,

P (~rd, ~rj , ~rs) = Φ0(~rs − ~rj)R0(~rj − ~rd),

= P (~rj − ~rd, ~rs − ~rd).
(13)

Secondly, we note that the values of the phase function decays

fast spatially as the distance between a voxel and source or

detector position increases. Hence, we can neglect the contribution

of voxels that are far away from both the illumination line and

the pixel. Since we are using a projected line illumination as our

light source, we approximate the phase function in (13) by the

summation of truncated phase function for each source point along

the illumination line. Additionally, as evident from the figure, the

contribution of light from the illumination line to a center pixel is

dominant only near the center of the illumination line, and hence

we can use a spatially-invariant phase kernel κ. We define the pixel

to illumination line distance ∆y = ys − yd, where ys and yd are

the y component of illumination row ~rs and the pixel location ~rd



respectively. The phase kernel for a line illumination can then be

written as,

κ(~rj − ~rd; ∆y) =
∑

~rs

P (~rj − ~rd, ~rs − ~rd), (14)

where the summation over ~rs is for all the point sources lying

on the illumination line. In the following, we will denote the

phase kernel as κ(∆y) for denotation simplicity unless the spatial

dependency needs to be emphasized.

Similarly, the diffuse reflectance R(~rd, ~rs), the change in

diffuse reflectance ∆R(~rd, ~rs) and the homogeneous diffuse

reflectance R0(~rd, ~rs) in (8) are modified for line illumination

as the sum of contribution from all point sources lying on the

illumination line, and are defined as R(~rd; ∆y), R(~rd; ∆y) and

R0(~rd; ∆y) respectively. We denote (xd, yd) as the surface coor-

dinates of the pixel location ~rd as shown in Figure 3. If the change

in absorption coefficient δµa(~rj) in (11) is represented by a 3D

volume Q, then the change in diffuse reflectance ∆R in (11) can

now be expressed in a convolution notation as

∆R(xd, yd; ∆y) = −
∑

~rs

N
∑

j=1

P (~rj − ~rd, ~rs − ~rd)δµa(~rj)

= −
N
∑

j=1

κ(~rj − ~rd; ∆y)δµa(~rj)

(15)

where ∆R ∈ R
M×N is defined over a sensor array of dimension

M×N and corresponds to each pixel to illumination line distance

∆y as shown in Figure 3. By representing the change of absorption

coefficient δµa by a 3D volume Q, we can rewrite (15) as the sum

of a 3D convolution results:

∆R(xd, yd; ∆y) = −
∑

z

κ(∆y) ∗Q(xd, yd, z) (16)

The change in absorption coefficient in the 3D volume is denoted

by Q ∈ R
M×N×D, where D is the depth resolution. The 3D

truncated kernel κ ∈ R
m×n×D is the defined for each ∆y, and

has the same depth resolution as that of the 3D volume Q. Using

(8), the resultant diffuse reflectance R acquired at each pixel to

illumination line distance ∆y can be written as a linear summation

of the contribution from homogeneous background medium R0

and the perturbation term due to presence of heterogeneity ∆R,

R(xd, yd; ∆y) = R0(xd, yd; ∆y)−
∑

z

κ(∆y) ∗Q(xd, yd, z)

where R ∈ R
M×N is the diffuse reflectance on an M ×N grid.

4.1 Reconstruction of heterogeneous structure

For the set of captured images which correspond to different pixel

to illumination line ∆y, we capture a set of short range indirect

images I(∆y). For the given set of images, we reconstruct the

volume Q of unknown optical parameters by solving the following

optimization problem,

min
Q

.

Tdmax
∑

∆y=Tdmin

||I(∆y)− l(R0(∆y)−κ(∆y)∗Q)||2F +λ||Q||1,

(17)

where ||.||F denotes the Frobenius norm, and l is an unknown

scaling factor which depends on the intensity and width of the

laser profile and the sensitivity of the camera. The procedure for

determining this factor l is highlighted in more detail in Section

6.2. We also assume the reconstructed volume to be sparse, which

essentially implies that the heterogeneous object only occupies a

fraction of the total reconstructed volume.

The optimization is done over a range of ∆y values. For

smaller ∆y values, the diffusion approximation breaks down, as

the photon propagation is largely governed by single or very few

scattering events. For very large ∆y, not enough photons reach the

camera pixels, and therefore the measurement images have a poor

signal-to-noise ratio. Therefore, the range of ∆y values needs to

be chosen appropriately.

If we know the exact optical parameters µ′

s and µa of the

homogeneous background medium, then we can construct the

kernel κ(∆y) as in (14). However in some cases, the background

optical parameters of the material are not known. In those cases,

we select a homogeneous patch inside the field of view, and fit

the pixel intensity measurements with lR0 with respect to the

unknown optical coefficients as in (9). We then use the estimated

values of the coefficients to construct the phase kernel κ(∆y) for

solving the optimization in (17).

We use PyTorch for implementation given it is highly opti-

mized for convolution operations. The running time on a worksta-

tion with TianX GPU is around 5 minutes for 300 iterations for Q
with a depth resolution of 64. The λ value in (17) is heuristically

chosen to be 0.0001. We start the optimization with an initial

value of all zeros for Q, and the reconstruction accuracy can be

further improved if a better initialization is provided based on prior

knowledge of the scene.

5 HARDWARE

In this section, we describe our imaging setup for capturing short-

range indirect images. In [24], a rectified configuration where

the projector and camera are parallel is used for capturing the

short-range images. That setup leads to a low spatial resolution

over a large overlapping stereo volume. To capture high resolution

images for small area of interest, we need a high spatial resolution

over a smaller overlapping stereo volume. One way to achieve

smaller overlapping stereo volume is to verge the projector and

camera. This motivates us to design a verged setup for capturing

high resolution short-range indirect images.

Our setup consists of a pair of synchronized rolling shutter

camera and a laser projector implemented with Micro-Electro-

Mechanical-Systems (MEMS). Our imaging setup is shown in

Figuer 1 and Figure 6 (a). We use IDS-3950CPv2 industrial cam-

era and Mirrorcle MEMS development kit. The central wavelength

for the laser light is 680 nm. The MEMS mirror reflects the laser

beam from the laser diode and the orientation of the MEMS

mirror can be controlled in terms of two rotation axes (vertical

and horizontal). The size of the imaged area on the sample is 8
cm by 8 cm. We model the laser diode and MEMS mirror pair

as a pinhole projector whose center of projection is the center of

rotation of the MEMS.

During the imaging process, the projector is scanned through

the epipolar planes of the projector-camera pair. The camera is

synchronized such that the pixels having a pre-defined offset from

the corresponding epipolar line on the camera image plane are

exposed. Each offset corresponds to one pixel to illumination line

distance ∆y as discussed in Section 4. For the physically rectified

projector-camera pair as in [24], the epipolar lines on the projector

and camera image are horizontal. This simply corresponds to
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Fig. 5. Images of a paper sticker captured using different devices. The
sticker page with letters is occluded by several other pages so no letters
can be seen under regular lighting. (a) Image captured with cellphone
camera under regular lighting. ; (b) Short-range indirect image captured
with the device in [24]; (c) Enlarged image for the sticker region in (b);
(d) Short-range indirect image captured with our device. Our device has
smaller FOV due to non-zero vergence angle. The images captured with
our device has higher resolution, SNR and contrast as shown in the
insects in (c) and (d). The bright spot in the center and the lines in (d)
is due to the reflection and inter-reflections from the protective glass in
front of the MEMS mirror.

illuminating and exposing the corresponding rows of projector

and camera. In contrast, in our setup, the epipolar lines in the

projector and camera are not horizontal due to the verged setup. So

we cannot capture the short range indirect images by illuminating

and exposing corresponding rows. Instead, on the projector side,

we control the angle of the MEMS mirror to scan the light laser

beam across a pencil of epipolar lines with different 2D slopes in

the projector image plane. On the camera side, we interpolate over

offset epipolar lines to get the short range indirect images. As a

special case, for ∆y = 0, the interpolated line overlaps with the

epipolar. The resultant image is the direct light image.

Our image setup has smaller FOV than the rectified system

in [24] due to the non-zero vergence angle between the project

and camera. As a result, we can place the sample closer to the

camera while the sample can still be illuminated by the projector.

This enables higher image resolution for smaller area of interest

so that more fine-grained (sub)surface details can be captured.

In Figure 5, we show the images of a paper sticker captured

with different devices. The sticker page with letters is occluded

by several other pages so no letters can be seen under regular

lighting. The occluded letters are visible in the short range indirect

images from both [24] and our setup. Our device has smaller FOV

and higher spatial resolution over the region of interest due to

the verged configuration. In addition, we have better contrast and

higher SNR because the laser light source used in our setup is of

higher intensity compared to the pico-projector in [24]. The bright

spot in the center and the lines in(d) is due to the reflection and

inter-reflections from the protective glass in front of the MEMS.
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Fig. 6. Experiment setup and calibration to compensate the laser-mirror
misalignment and non-linearity of MEMS. (a) The device is mounted
vertically above the sample container, with no cover above the scattering
medium. (b) During MEMS calibration, we consider the misalignment
between the laser and mirror (above) and non-linearity of MEMS me-
chanics. Due to misalignment, the incident laser beam onto the MEMS
mirror will not be perpendicular to the mirror surface and align with the
MEMS rotation center; Due to non-linearity of MEMS mechanics, the
input control signal and degrees of rotation are not linearly related.

5.1 Calibration

The device is mounted vertically above the liquid container as

shown in Figure 6 (a), with no cover above the scattering medium.

We model the laser-MEMS as a pinhole projector whose center

of projection is the rotation center of the MEMS mirror. During

the calibration process, we estimate the relative pose between the

MEMS mirror and the camera. For MEMS, we compensate for

the non-linear mapping between the input voltage for the MEMS

and the mirror tilt angle, and account for the mis-alignment of the

MEMS mirror and the laser, as shown in Figure 6 (b).

More specifically, we illuminate planes with given poses

relative to the camera with a set of dot patterns. As shown in

Figure 7, given the laser dot images for different plane positions,

we can fit the laser rays in 3D and triangulate the rays to get the

origin of the rays, i.e. the rotation center of the MEMS mirror.

Due to the laser-MEMS misalignment and fitting error for the

rays, the rays will not intersect at one 3D point. We solve a least

square problem for the intersection point where the point to ray

distances are minimized. The fitted rays are also used to account

for the non-linear relation between the MEMS input voltage and

the rotation angle. In calibration, we build a lookup table relating

the input voltage for the MEMS and the rotation angle for the

mirror to account for their non-linear relation. During imaging,

given the target laser ray direction, we can estimate the required

input voltage by interpolating over lookup table.

6 EXPERIMENT RESULTS

6.1 Simulation

We test the proposed algorithm using Monte Carlo rendered

images. For the homogeneous medium, we use the scattering

coefficients of human skin measured in [22]. The heterogeneous

inclusions are located up to 4 mm below the surface. For the

imaging setup, the width of the laser illumination line is 1mm.

The distance between the illumination line and the camera pixel

ranges from 0 to 15 mm. To make the diffusion approximation

valid for the algorithm, we only use the images with the illumina-

tion to pixel distance ∆y larger than 2 mm.
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Fig. 7. The MEMS-camera pose calibration. We illuminate a plane with
known pose with 2D array of beams as shown in (a) and (b). Given
the plane orientations, we can get the 3D parameters for the rays from
multiple such images. Then we triangulate all the fitted rays to determine
the center of projection for the projector, in our case, the rotation center
for the MEMS mirror.

The simulated direct and global light images are shown in

the first two rows in Figure 8. The global light image is the sum

of the images captured with differnt ∆y’s except for ∆y = 0.

The inclusions can not be seen in the direct only image. For the

global light image, because highly scattering property of skin, the

contrast is low for some of the deeper inclusions, such as the

solid circle in the right column. This makes the detection and

localization for such objects (e.g. tumor beneath the skin surface)

difficult. For each short-range indirect image, the image intensity

is contributed in part by the indirect light that travels from the

illumination line with a preset distance to the imaged scene point.

As a result, compared with the global light image, the contrast of

the inclusions are much higher for the short-range indirect images

shown in the third and fourth rows of Figure 8. On the other

hand, for larger pixel to illumination line distance, the SNR is low

because there are less photons reaching the imaged scene point due

to multiple scattering of light. In addition, because the non-zero

support of the diffuse scattering kernel increases with the pixel to

line illumination distance, the boundaries of the inclusions in the

image becomes more blurry for larger distance. Despite low SNR

and blurring in the short-range indirect images, using the proposed

method, we are able to localize the 2D boundaries and estimate

the relative depth for the inclusions.

For the input short range indirect images, the contrast of the

image decreases with the inclusion depth, as shown in Figure

9 (a). This is because as the inclusions become deeper, most light

reaching the pixel is contributed by the scattered light from the

homogeneous medium without traveling through the inclusions.

Another intuition is that the diffuse scattering phase function

diminishes with the depth increase, as shown in Figure 4.

One key factor for the proposed method is the size of the

diffuse scattering kernel. Smaller kernel enables faster optimiza-

tion process, but it will lead to more errors in the convolutional

approximation, hence less accurate results; while larger kernel

leads to better performance, it induces more processing time. The

choice for the size of diffuse scattering kernel is also related

to the pixel to illumination line distance. In addition, as shown

in Figure 4, the non-zero support region for the kernel varies

with the pixel to illumination line distance. For large pixel to

illumination line distance, the magnitude of the kernel would be

small due to multiple scatterings, so the performance will saturate

at certain distance. In Figure 9 (b), we show how the performance

changes with the kernel size when the medium is human skin.

The performance is evaluated using the IoU score of segmentation

results for the inclusions. As we can see, for highly scattering

medium like human skin, the performance saturates when the

kernel size approaches 20 mm in diameter.

6.1.1 Performance for different scene settings

The derivation of the forward model in Section. 3 is based on

two assumptions about the scattering mediums: (1) the scattering

coefficient of the surrounding homogeneous medium is large such

that the light propagation direction distribution is isotropic; (2)

the absorption coefficient discrepancy dominates the scattering

property difference between the heterogeneous embedding and the

surrounding medium. We evaluate the robustness of our method

against the failure of those assumptions.

To this end, we perform four simulation experiments and

evaluate the performance with different scattering property and

scene settings. For all experiments, the measured images are

rendered using Monte Carlo simulations. The performance is

evaluated in terms of the IoU scores. We use the same denotation

as in Section 3: µs0 , µa0
are the scattering and absorption

coefficients for the surrounding homogeneous medium; µs1 , µa1

are the scattering and absorption coefficients for the embedded

heterogeneous material. The performance is shown in Figure 10.

Performance vs. heterogeneity depth As seen, the perfor-

mance of our method decreases with the depth of the inclusion

since the image contrast reduces with depth. For small depth,

although single-scattering events can dominate, the large image

contrast of the heterogeneous medium makes the reconstruction

task easier for the proposed method.

Performance vs. scattering coefficients of the homogeneous

background An interesting observation is the parabolic-type per-

formance curve. For lower scattering coefficient µs0 , the diffusion

approximation starts to become less valid, resulting in modeling

error. If the scattering coefficient µs0 is larger, multiple scattering

events govern the photon propagation inside tissue, increasing the

accuracy of our forward model. However, it becomes progressively

difficult to recover the position of the heterogeneous object since

now few photons actually sample the heterogeneity embedded at

a particular depth and get detected by the detector.

Performance vs. scattering coefficients of the heterogene-

ity This set of experiments addresses the robustness with differ-

ent scattering properties of the heterogeneous medium µs1 . The

scattering coefficient of the homogeneous medium µs0 was kept

constant. We noted that even though we vary µs1 , the performance

of our method does not change much. The invariance of the

performance is due to the sparse nature of the heterogeneous

object inside the medium.

Performance vs. absorption coefficients of the heterogene-

ity For smaller µa1
values, the performance is lower due to the

fact that the contrast of the heterogeneous object compared to the

background medium is lower in the short-range indirect images.

Though we assume that the change in absorption coefficient of the

object is small compared to the background medium, the increase

in contrast helps our algorithm to recover the location of the object.

6.1.2 Comparison with traditional DOT method

We compared our method with the traditional DOT method [5]

quantitatively in terms of computational time and performance

through simulation. The scene setup is a homogeneous medium

with 3 rods embedded at certain depth with different absorption

coefficient than the background medium.

For traditional DOT, We considered a fixed number of source-

detectors (80 sources and 80 detectors) to reconstruct a volume

of 64 × 64 × 8 resolution. The reconstruction process took 15
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Fig. 8. Simulated direct/global light image, the short range images with different ∆y settings, and the DOT results. The homogeneous medium is
skin in (a) and (c), skim milk in (b), with the scattering coefficients measured in [22]. Photon and read-out noise are added to the input images. The
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deep, The inclusion boundaries in the global and short-range indirect images are either blurred or shifted due to light scattering. The signal-to-noise
ration decreases as the pixel to illumination line distance increases since less photons are received by the detectors. Our methods recovered the
inclusion boundaries and their relative depths despite the blurring and noises.
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Fig. 9. (a) The average contrast of the short range indirect image varies
with the inclusion depth. The inclusion depth is the distance between
the inclusion and the embedding medium surface. (b) IoU vs. kernel
sizes. For human skin, the performance saturates when the kernel size
approaches 20 mm in diameter For all simulations, the images are
synthesized using Monte Carlo method with scattering properties for
human skin measured in [22].

minutes. The reconstructed volume was upsampled to the scene

resolution and the IoU was computed to be only 0.18. For our

method, we reconstructed the same scene using our setup with a

resolution of 256×256×64. The IoU from our method was 0.71
and it took 4 minutes. The results show that we are able to perform

reconstruction of much higher resolution and accuracy using our

method compared to traditional DOT.

6.2 Real Data

We test the proposed method on images captured using the

calibrated imaging setup shown in Figure 6 (a). We choose the

embedding medium to be milk with little or no water dilution

because its scattering property is close to human skin and it can

be well described using the diffusion approximation. Because the

small FOV and high camera resolution, the laser line illumination

spans multiple pixels in the image. We calibrate the laser light

source for the its intensity and the width of laser beam. More

specifically, we use a ideal white diffuser with albedo close to

one, and illuminate the diffuser with the laser line illumination.

Then we extract the 1D profile for the laser line illumination,

by averaging the intensity along the reflected illumination line.

During the optimization in Equation 17, the rendered image is
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convolved with the measured 1D laser profile to account for the

width of the line illumination.

During imaging, we use the short range indirect images with

pixel to illumination distance ∆y ranges from 20mm to 40mm,

such that the light source to sensor distance is large enough for

the diffusion approximation. This configuration is different from

simulation because the laser beam spans more pixels in the real

data. We capture the HDR images to include the large range of

image intensity under laser illumination. During optimization,

for efficiency, we set the size of the diffuse scattering kernel

to be 30mm. The initialization of the reconstructed volume for

all experiments is set to zeros. The measured 1D laser profile

is convolved with the rendered images to account for the laser

span of multiple pixels. For each scene, we manually select a

homogeneous region and fit the scattering properties using the

dipole model in Equation 2. For all the results, we use 300
iterations and it takes around 5 minutes for optimization on a

workstation with TitanV GPU.

We test on scenes with single and multiple inclusions within

the scattering medium. In Figure 11, we show the captured images

and reconstructions for single inclusion. Note that in Figure 11

(a) and (c), the inclusion boundaries in the global and short-

range indirect images are blurred due to multiple light scattering.

Compared with the short range indirect images, the contrast of the

inclusions is lower in the global image. In addition, as shown

in Figure 11 (b), the inclusion is barely visible if it is deep

below the surface. Our method is able to localize the boundary

and reconstruct the 3D structures (e.g. the wire structure) despite

low visibility and lack of contrast in the input images. Similarly,

as shown in Figure 12, for multiple inclusions, the boundary of

the inclusions and their relative depths can be recovered although

the contrast and visibility of the inclusions in the input short-

range indirect images are low due to highly light scattering. The

inclusions are up to 8 mm beneath the whole milk surface and no

water dilution is added. The dark dots in the images are mask of

the light reflection from the protection glass surface for the MEMS

mirror, which cannot be controlled and can only be removed in the

clean room to prevent the mirror from being contaminated.

7 CONCLUSION AND FUTURE WORK

Our work addresses two fundamental limitations of existing dif-

fuse optical tomography methods: low resolution reconstruction

and high computational complexity. We overcome these limita-

tions by (1) extending the design for short-range indirect sub-

surface imaging to a verged scanning projector and camera con-

figuration and (2) a novel convolution based model and efficient

computational algorithm for estimating the subsurface medium

with heterogeneous structures. This allowed us to recover detailed

heterogeneous structures immersed up to 8mm deep in a highly

scattering medium, such as milk, for the first time. Avenues of

future work include using other source spectra (near-infra red) to

recover structures deeper within tissue, and using resonant MEMS

scanning for capturing subsurface videos of dynamic structures,

such as blood flow in microscopic capillary veins.
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