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Real-time Micro-vascular Video Analysis
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Abstract—Microcirculatory monitoring has been increasingly
recognized as a valuable tool in the assessment of perfusion status
of critically ill patients. Currently, Sidestream Dark Field (SDF)
and Incident Dark Field (IDF) imaging represent the most recent
advances in microcirculatory imaging, allowing for the real-time
visualization of the capillary bed and its physiologic character-
istics at the bedside. The potential to impact care of critically
ill patients is evident, as this technology has opened an entire
new dimension for the study and interpretation of peripheral
perfusion, which is the guide and goal of every resuscitation
effort in clinical medicine. However, despite that off line data
extracted from these videos is clinically useful, the advantage of
real-time imaging acquisition is currently faulted by the fact
that analysis cannot be performed in such an instantaneous
fashion. Several obstacles such as subsurface scattering within
the tissue that surrounds the capillaries, transparency of plasma,
imaging noise and lack of features amongst many others, have
rendered current analysis of this information time-consuming and
relatively subjective as it is dependent on manual operation and
training in the interpretation of blood flow velocity. Accordingly,
in this paper, we present a framework that automates the analysis
process. Our method includes stages of video stabilization,
enhancement, and micro-vessel extraction, and automatically
yields estimate statistics of the microvascular blood flow. We
have validated this method in animal experiments conducted
carefully to record microcirculatory blood flow in animals before,
during and after controlled hemorrhage, as well as after fluid
resuscitation. We have been able to extract clinically-relevant data
like blood flow velocity distribution, in real time, thus providing
a novel methodology for real-time assessment of microcirculatory
physiology that may serve to diagnose pathologic alterations and
perhaps, to drive therapeutic interventions.

Index Terms—Micro-circulatory analysis, video processing,
imaging, real-time, critical care

I. INTRODUCTION

Microcirculation takes place in part of the circulatory sys-
tem embedded in tissue that involves the smallest vessels
and where diffusion of nutrients and oxygen into the cells
and removal of CO2 and waste from the cells take place.
Monitoring of microcirculation is useful for diagnosing of
vascular conditions and in monitoring patients for cardio-
respiratory insufficiency.

Sidestream Dark Field (SDF) [7] video imaging was devel-
oped as a non-invasive imaging approach for real-time visu-
alization of superficial microvascular flow. However, analysis
of these videos is currently limited by manual or semi-manual
operation and coarse sampling techniques, which makes quan-
titative analysis of microcirculatory status and response to
disease and treatment difficult and subjective [8]. We aim
to remedy that. One of the portable SDF imaging devices is
shown in Fig. 1(a). As depicted in Fig. 1(c), illumination is
provided by the green light-emitting diodes (LEDs) arranged
in a ring formation. The wavelength (λ=530 nm) of the
illumination is chosen to maximize light absorption by the
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Fig. 1: Sidestream Dark Field Imaging[7]. (a) Portable SDF
imaging device used for microcirculatory monitoring. (b) One
frame of the microcirculatory video. (c) The LEDs, arranged
and optically isolated around the lens system, emit light
optimized for red blood cell absorption. Due to defocus,
subsurface scattering of light, sensor noise, sensor drifting
and limited texture of the tissue, it is not easy to extract
physiological features from the SDF video.

red blood cells (RBCs). The tissue embedding the capillaries
scatters and reflects the illumination back to the camera,
making the capillaries imaged as dark curvilinear structures
against the brighter background. The LEDs and the lens system
are optically isolated to prevent the illumination generated by
the LEDs from contaminating the images.

Despite that the design is optimized for microcirculatory
imaging, as shown in Fig. 1(b), it is not easy to extract
physiological features from SDF videos, such as the blood
flow velocity, for several reasons: (1) Subsurface scattering:
scattering of light on the path from the capillaries to the
camera increase observed intensity of the vessels, reducing
contrast of the images; (2) Defocus: capillaries are embedded
at varied depths within the tissue while the depth of field of
the camera is fixed to obtain desired magnification. So some
capillaries in the field of view appear blurred, making their
features more difficult to estimate; (3) Sensor noise that further
reduces quality of images; (4) Limited texture: low diameter
capillaries of interest comprise only a small part of the image,
most of it is occupied by tissue without substantial texture and
in addition, plasma in the capillaries is transparent, reducing
texture in the frames even further, so traditional texture-based
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image feature extraction methods will likely fail; (5) Sensor
drift during video capture: field of view changes due to the
motions induced by heart beat and respiration of the subject
and movement of the device itself, relative to the observed
tissue.

In this paper, we present an end-to-end, automated frame-
work for real-time analysis of micro-circulation including
vessel detection, heart rate, breathing rate, blood flow velocity
estimation as well as variations of flow distributions over time
during bleeding and resuscitation stages. Our work can enable
new research in critical care, helping correlate heart rate and
breathing cycle with flow distributions and studying effects of
interventions and protocols in real-time for bed-side patient
care. In comparison, most previous works either included
significant manual interactions and were not real-time, or are
tailored to high quality 2D images or 3D volumes that do not
work for SDF videos.

The underlying principle of our approach is that diagnos-
tically useful information must be extracted quickly, enabling
the user to make determinations about microcircluatory flow
in real time, rather than off line as is done currently, and
ultimately enable making clinical decisions instantly at the
bedside. To this end, we present a framework consisting of
multiple stages including video stabilization, enhancement,
micro-vessel extraction and automatic estimation of the micro
blood flow statistics from SDF videos.

Our method has been used in a critical care experiment
conducted carefully to analyze the microcirculatory blood flow
of subjects in different health conditions. In the experiment,
healthy pigs have been anesthetized and subjected to induced
slow bleeding (20 ml/min) for about 2 hours. Then the
subjects were fluid resuscitated to expand the plasma volume.
Microcirculatory videos were captured at different stages of
the experiment to monitor changes in the micro blood flow.
96 videos of 18 pigs were collected using a SDF imaging
device for each bleeding/resuscitation stage. Our method was
then applied to extract physiological information from the
videos. As a result, the extracted informative microcirculatory
features form distributions that are consistent with the intuition
of expert clinicians.

II. RELATED WORK

Image based microcirculatory blood flow assessment have
been studied using Laser speckles [2], [3]. More recently, skin
perfusion measurement based on laser speckle was proposed
in [13]. Instead of images or videos of the microcirculatory
blood flow, these methods leverage complex speckle patterns.
In Sidestream Dark Field imaging system [7], microcirculatory
blood flow is analyzed based on the vessel detection from
video while the detections of vessels is refined with expert
interface [6]. In [5], the vessel segmentation using the micro-
circulation is present. Then the blood flow characteristics are
extracted by using the intensity changes of individual pixels on
the vessels. To get the blood flow status from micro-circulation
video, template-matching method [?] and mode tracking in the
spatial temporal space [17] have been used to deal with the
highly variant changes of the shape and brightness of RBCs.

A complete review of different techniques for bedside micro-
circulation analysis can be found in [1].

The vessels in the image are often detected as centreline
structures [15], [19], [14], [10], [12] either by using filters
[19], [10], intensity profiles [15], [12], or trained regressors
[14]. Then, level-set methods are used to locate the centreline
more precisely [9], [20].

In [16], various optical flow approaches are studied. It was
shown that by using an objective with a non-local term, the
classical optical flow formulations can achieve competitive
results. For motions of deformable objects, the motion esti-
mation problem is often formulated as optimization solved
by inverse compositional image alignment [11], supervised-
learning of descent direction [18], and data-driven descent
[18]. In our case, with high level of noise, highly deformable
blood flow patterns, and small dimensions of capillaries, it is
very difficult to track the flow on a frame-by-frame basis.

To get motions that are more obvious and easier to detect,
video motion magnification method has been proposed in [22].
Extensions have been put forward to either reduce the noise in
the motion magnified video [22] or achieve real-time running
speed [21]. Because of the high level noise in the SDF videos,
applying any of those methods directly would likely amplify
the noise as well.

III. CRITICAL CARE CASE STUDIES

To study the effect of the fluid resuscitation process on the
living subjects with hemorrhage, critical care experiment on
living pigs is conducted carefully. The critical care experiment
procedure is shown in Fig. 2. All experiments were performed
in accordance with NIH guidelines under protocol approved
by the Institutional Animal Care and Use Committee of
the University of Pittsburgh. Three Yorkshire Durock pigs
(average weight of 30.6 kg) were fasted overnight prior to
the study. Anesthesia and the surgical preparation have been
performed following procedures described in [8]. Briefly,
following induction of general anesthesia and endotracheal
intubation, arterial and central venous catheters were inserted
and the animals allowed to stabilize for 30 minutes. During this
time the SDF probe attached to a vise clamp was positioned
in the pigs mouth under the lounge to visualize the sublingual
microcirculation. Care was taken to obtain a long-term stable
image with minimal pressure artifact and good visualization
of the microcirculation as defined by the optimal focal length
and illumination to visualize the largest number of capillaries
within the viewing frame as previously recommended in [4].
At the end of the baseline period the initial video was collected
(Baseline). All videos were 20 seconds in length at 10 frames
per second. Then the pigs were bled form the arterial catheter
at a fixed rate of 20 ml/min until the mean arterial pressure
decreased to 30 mmHg. Once at this pressure, bleeding was
stopped and a second video was captured (EndBleed). The
subject was kept in this hypotensive state for 90 minutes with
video images captured at 60 minutes into the hypotensive state
(AfterBleed) and again at 90 minutes (BeforeResusc). Then
the pigs were fluid resuscitated with Hextend (equal volume to
shed blood) at 60 ml/min. At the end of this fluid resuscitation
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Fig. 2: Setup of the experimental procedure. 18 pigs are ob-
served carefully at various stages of bleeding and resuscitation.

period another video was captured (EndHextend). Then the
animal was further resuscitated in a protocolized fashion as
previously described with more fluid if the cardiac output
was less than baseline and norepinephrine if mean arterial
pressure was less than baseline for an additional 120 minutes
and a final video image was taken (AfterHextend). Since many
animals became unstable before 90 minutes of hypotension or
did not survive 120 minutes after the start of resuscitation,
some animals did not have BeforeResusc and AfterHextend
time point videos collected. So, a 20-0second microcirculation
video clip was captured at each of the six stages described
above: (1) Baseline: right before the bleeding; (2) EndBleed: at
the end of bleeding; (3) AfterBleed: 60 minutes after the end of
bleeding; (4) Before resuscitation: 90 minutes after the end of
bleeding; (5) End of resuscitation: the end of the resuscitation
process, in which the Henxtend fluid is infused intravascularly;
(6) After resuscitation: end of observation period.

IV. MICRO-VESSEL EXTRACTION FROM VIDEO

The contrast of the SDF images is greatly reduced by the
presence of the subsurface scattering and sensor noise. This
makes it difficult to detect the capillaries from any single
frame in the video. One option is to detect the capillaries
from the minimal image, where the values of the pixels are set
to the minimal intensity across frames at that pixel location.
However, the input videos are not stable because of motions
introduced by heart beat, respiration, and sensor position drift.
So we need to stabilize the video before extracting vessel
skeletons.

A. Video Stabilization

After motion due to heartbeat, breathing and sensor position
drift is eliminated, the stabilized video will mainly consist of
the blood flow in the capillaries. For efficiency considerations,
we base video stabilization on motions of the patches that are
corresponded between frames using template matching. Since
the microcirculatory videos are captured carefully to avoid
unnecessary motion of sensor relative to subject, frame-to-
frame changes are limited and smooth. Thus the correspon-
dence between patches in different frames can be estimate. In
addition, patch-based stabilization method enables including

variations of the patch motions in a frame introduced by
deformable properties of the tissue.

Because the videos are effectively textureless in most parts
of the frames, we need to select the optimal patches for finding
correspondence in the stabilization process. In our method, we
select the patches in which the variance of intensities is above a
pre-set threshold such that the selected patches include enough
texture for matching.

Heartbeat and respiration rates can be obtained as side prod-
ucts of the video stabilization process. Those physiological
measurements can be used along with the microcirculatory
blood flow parameters, to further aid diagnosis and monitoring
processes. As the observed motion introduced by the heart
beat and breathing also depends on the location where the
microcirculatory videos are taken, the measured motion can
be used as a guidance for the clinician to determine the
location of target tissue considered for diagnosis. In addition,
although in clinical practice the assessment of the heart rate
and the respiratory rate already exist via dedicated, specialized
monitors, it is not known whether and how their variations
impact physiology of tissue blood flow. The measurements of
these signals thus provides an opportunity to study these in-
teractions in a live subject concurrently with flow information,
and generate further knowledge in the field.

We decompose the observed cross-frame motion into heart-
beat and respiration motions based on their frequencies. More
specifically, the respiratory is the motion component in the
[.1 , .5] Hz frequency range in the Fourier transform of the
averaged observed motions of patches in the un-stabilized
video; and the heartbeat is the motion component in the
[.5 , 5] Hz frequency range. In the corresponding frequency
ranges, the frequencies of the heartbeat and respiration motions
are determined as the frequencies where the local maxima
of magnitude in the Fourier domain occur. The magnitudes
depend on the status of the subject and the location where the
video is taken. For Pig 42, as shown in Fig. 3(a), most of the
observed motion is due to the heartbeats. For Pig 44 at the
end of bleeding, both the respiration and heartbeat motions
are more significant. For Pig 44 before bleeding, the sensor
drifting dominates the observed motion, while the other two
components can still be reliably identified. This last observa-
tion has important practical implication, since apparently the
perfect stabilization of the sensor probe against the subject
tissue is not necessary for extracting reliable physiological
information from SDF imaging videos.

B. Vessel skeleton extraction

After stabilization, we have registered frames from which
the skeletons of vessels can be extracted. However, as shown
in the first column of Fig. 4, due to subsurface scattering and
imaging noise, the contrast in individual frames is too low for
extracting vessel segments. Even worse, the transparent plasma
travelling through the capillaries may make vessels invisible
in some segments of a frame. So we first need to produce a
vessel-enhanced image. Based on the fact that the capillaries
with red blood cells are usually darker in the frames, we can
take the minimal value of each pixel across all the frames to
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(a) Pig 42, before bleeding

(b) Pig 44, end bleeding
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Fig. 3: The heartbeat and breathing rates are evaluated by
decomposing the averaged observed motion (blue) across
frames into heartbeat and breathing motions, shown in red
and green respectively. For measurements with sensor drifting,
we also get the motion component due to sensor drifting
(shown in brown). (a) Pig 42 at the end of baseline (before
bleeding). Most of the observed motion is due to the heart beat.
(b) Pig 44, end of bleeding. Both heartbeat induced motion
and breathing motion are obvious. (c) Pig 44, baseline. The
sensor position drift (shown in brown) dominates the averaged
observed motion, but the physiologic components can still be
clearly identified.

achieve that goal. This method works under assumption that
for every pixel of the vessel there is at least one frame in
which a red blood cell passes through it. This assumption is
true for most cases since the duration of the microcirculatory
videos (20 seconds) is long enough for the red blood cells to
pass through all the active vessels in the frame.

Then the vessel enhanced image is denoised by applying
anisotropic diffusion filtering. It not only reduces the imaging
noise while leaving the edges in the vessel enhanced image
unharmed, but it also smoothes the parts of the image along the
structures between the edges. This results in vessel segments
with a smooth appearance so they can be detected more easily.
The filtered vessel enhanced images are shown in the second
column of Fig. 4.

To detect the vessel skeletons, we first estimate the Hessian
matrix for each pixel in the vessel enhanced image. Then the
profile for each pixel is extracted along the direction of the
eigenvector of Hessian corresponding to the largest absolute
eigenvalue. The pixel will be selected as a vessel skeleton
pixel if the profile has a groove in the middle and increases
towards both sides of the groove. To find the vessel skeletons
with such profile, we use the method proposed in [15] that
was designed to find the centreline of curvilinear structures.

Let n = (nx, ny) with unit length be the direction in the
eigenvector of the Hessian Matrix H corresponding the largest
eigenvalue. The second-order Taylor expansion of pixel at x
along n is given by:

p(t) = r + rnt+
1

2
rnnt

2 (1)

where p(t) is the pixel intensity at the position x + tn; r, rn
and rnn are the pixel intensity at x, the first-order derivative of
the intensity in the direction n and the second-order derivative
of the intensity in the direction n respectively. For a profile
across the vessel, The center of the groove is located at the
zero crossing of the first derivative of the profile:

t = − rn
rnn

= − ∇r
Tn

nTHn
(2)

where ∇r is the gradient of the image at x. In the image
coordinate, the offset of the zero-cross from x is (px, py) =
(tnx, tny), with t estimated in Equation.2. The pixel x is on
the vessel skeleton if |px| ≤ 1

2 and |py| ≤ 1
2 . To eliminate the

falsely detected vessels introduced by imaging noise, we use
the maximum eigenvalue of the Hessian matrix to select the
detected vessel skeletons.

The example results of the skeleton extraction are shown
in Fig. 4. By comparing with the vessels manually labeled by
human experts , we find that the vessel skeleton extraction
method is able to locate most of the vessels in the frame.
Although there is a potential for a few missing and false de-
tections, the main objective of our work to extract informative
statistics of the physiological importance, and not the analysis
of the individual vessels - should not suffer much. Hence,
the obtained skeletons can be used as reliable inputs to the
subsequent processing steps.

Frist frame of stablilized video

Detected vessel skeletons Manually labeled vessels

Denoised minimal image

Fig. 4: The vessel skeletons are extracted from the minimal
image across the frames. Upper left: the first frames of the
video for Pig 53. Due to subsurface scattering and transparency
of plasma, it is hard to detect capillaries from a single frame.
Upper right: denoised minimal imagefacross all the N frames.
In our case N = 200. Lower left: extracted vessel skeletons.
Lower right: manually painted vessels.

V. DETERMINE FLOW SPEED DISTRIBUTIONS AND LOCAL
FLOW TYPES

The analysis of local blood flow motion pattern serves as an
important aspect to assess the response of the micro-circulation
system to the hemorrhage and resuscitation processes. For
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example, the cardiorespiratitory insuffciency caused by blood
pressure loss is usually spatially variant. Such spatial variance
demonstrates how the local micro-circulation system reacts to
the blood pressure reduction. To visualize the spatial variance
in the change of blood flow, we have designed the motion
features to represent the local flows motions based on 3D
convolution with pre-defined spatial-temporal filters. On top of
that, a cascade of classifiers are trained to distinguish between
different flow types, enabling us to localize the abnormal flows
due to loss of blood pressure.

A. Motion Features

The presence of high-level noise and lack of texture inside
the capillaries make the optical flow method fail in testing
video for estimating the local flow motion. Two consecutive
frames of a local region in one of the testing videos are shown
in Fig (5) (a) (b). The optical flow estimation from those two
frames is shown in Fig. (5)(c). To deal with the noise and lack
of texture, we propose to use the pre-defined spatial-temporal
filters to extract the local motions.

To reveal the spatial-temporal structure of the blood
flow, we used the second order derivative of a Gaus-
sian function Gθ(x, y, t) = ∂2G

∂θ2 where G(x, y, t) =

e−(x2/σ2
x+y

2/σ2
y+t

2/σ2
t ), θ is the direction of the gradient in

the spatial-temporal domain. In addition to Gθ(x, y, t), the
Hilbert Transforms of the second-order derivatives Hθ(x, y, t)
are included in the filter bank. In our experiment, the filter
bank spans 16 spatial orientations corresponding to vessel
segments of different directions and 11 temporal orientations
corresponding to different blood flow speed levels. Please
refer to the supplementary material for more details about the
spatial-temporal filters we used in our experiments.

The noise in the video is assumed to be i.i.d random
and uncorrelated among different pixels, the spatial-temporal
filtering will suppress the noise. On the other hand, high
response will be generated if the local flow motion is close to
the motion pattern of the applied filter, as shown in Fig. (5)(d).
Another benefit of using the spatial-temporal filter is that by
adjusting the size of the spatial-temporal filters, we are able
to get localized filter responses both spatially and temporally.
The prior knowledge about the vessel structures leads us to
design the filters of appropriate elongated anisotropic shapes,
rather than using isotropic filters.

With the location denoted as x, the speed level s and
time t the filter response m(x, s, t) for two points marked in
Fig. (5)(d) are shown in Fig. (5)(e)(f), revealing the approxi-
mate speed of the flow as a function of the video frame and
the key video frames in which there is observable blood flow
passing by that point. The flow motion direction is parallel to
the vessel direction estimated from the minimal image.

Given the filter response m (x, s, t), the weighted kernel
density of the speed across all the frames is calculated. For
simplicity of denotation, the dependence on the location x
is ignored in the followings. For each frame, the weighted
average speed level s̄ (t) is first estimated by:

s̄ (t) =

∑
im (si, t) si∑
im (si, t)

(3)

(b) frame 4

(c) optical flow using frame 3 and 4 (d) moition energy at frame 3

(e) Frame-Speed energy distribution 
at Point 1
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Fig. 5: Local motion estimations on a zoomed-in region of
the motion magnified video showing the micro-vascular blood
flow. (a) The zoomed-in region in frame 3 of the motion
magnified video; (b) The same local region as in (a) in frame 4
; (c) The estimated optical flow using the two frames in (a) and
(b); (d) The overall motion energy calculated from the filter
response. The flow motion induces high motion energy while
the motion energy for the noise is low since the artifact motion
patterns introduced by noise are not aligned with any of the
applied 3D filters. (e)(f) The filter responses at the marked
points in (a), revealing the approximate speed of the flow and
the key frames in which there is observable blood flow passing
by those locations.

with si = {0, 1, . . . 10}, i.e., 11 blood flow speed levels. The
weight for the average speed level is determined as the motion
energy m (ŝ, t), where ŝ is the closest speed level to s̄. The
weighted kernel density of the speed f̂(s) is:

f(s) =

∑
tm(ŝ, t)ϕh (s− s̄(t))∑

tm(ŝ, t)
(4)

where ϕh(x) is the kernel function with bandwidth h. In
our case we use the Gaussian kernel functions. The weighted
kernel density of the speed f(s) is used as the per-pixel motion
feature. The motion feature at three locations where different
flow types passing by is shown in Fig. (6). Point 3 is located
on a capillary with normal flow while point 1 and point 2 are
located on capillaries with abnormal intermittent flows due to
loss of the blood pressure. The intermittency of the flow at
point 2 is greater than that for point 1. This has been reflected
in the motion feature in Fig. (6) (b): the kernel density for
point 2 spans a wider support than point 1, while almost all
density for point 1 is concentrated at a narrow range of speed
level.
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Fig. 6: The speed level distributions at three points. The
corresponded points and speed level distributions are plotted
in the same color. Point 3 is located on a capillary with
normal flow. Point 1 and Point 2 are located on capillaries
with stopped and intermittent flows respectively.

B. Blood Flow Types

We have presented the method to measure the overall flow
speed distribution in the video. In addition that, in the next
sections, we present the method of estimating the local flow
speed for every single position in the video. This has enables
us to determine the spatially variant flow type across the field
of view, as shown in Fig. 10.

The flow inside the capillaries will decrease in dynamics
due to the blood pressure reduction in the hemorrhage process.
As a result, the health status of the subjects can be inferred
from the changes in the motion pattern of the blood flow. To
better quantify and visualize the flow motion pattern changes,
based on the clinical experience we define three types of
flows: stopped flow, intermittent flow and normal flow. For
the stopped flow, the blood within the capillaries has little or
no motion either because the blood pressure is insufficient or
due to the external pressure introduced by the contact with
the measurement device. The intermittent flow includes the
flows with unstable flow speed. Usually the flow speed varies
within the low speed range. The normal flow are the flows
with fast and consistent motion patterns. Therefore, the speed
level distribution of stopped and normal flows are uni-modal
while the intermittent flow is bi-modal or multi-modal and
spans a wider speed range than the stopped flow, as shown in
Fig. 6(b).

To visualize the spatial distribution of flow types, we have
defined the score functions for the stopped and intermittent
flows. The normal flow is complementary to the stopped and
intermittent flows. In other words, we will consider the flow
with low stopped flow and intermittent flow scores as normal.

The score function for the stopped flow is defined as:

vstop = −
(
I2min + λ1σ

2
t + λ2s̄

2
)
, (5)

where Imin is the minimal frame value, σt is the intensity
variance across all frames; s̄ is the mean speed level defined
in Eq. 3. The first two terms simply reflect the fact that the
flow is static. In the third term, we take into consideration of
the tiny motions in the static flow.

The score function of the intermittent flow is defined as:

vint =

∑2
i=1 f(si)∑11
i=1 f(si)

(6)

,where f(si) is defined in Eq. 4. Although the definition
simply consider the ratio of low speed level in the overall
motion pattern, the intermittency of the blood flow can be
fairly measured indirectly, as can be seen by comparing the
intermittent flow score map for Pig. 55 in Fig. 7 and the
flow type classification results shown in Fig. 10 using the
learning-based method introduced in the next section. More
comparisons between the intermittent flow map score and the
classification results can be found in the supplementary mate-
rial. The reason why this simple definition for the intermittent
flow performs well is that the flow speed variations usually
happen within the low speed range. In other words, the blood
flows in high speed levels are stable at the same time.

C. Supervised Method

Although we are able to quantify the degree to which
type the flow belongs based on the scoring functions defined
above, it is not guaranteed that the three types flows are
mutually exclusive since the scoring functions are defined
separately and in a heuristic manner. So in addition to using
the manually defined scoring functions for different types of
flow, we also propose a learning-based method with cascade
classifiers. To this end, we have labeled all the 97 micro-
circulatory videos of the 18 pigs in the experiment. For each
video, a subset of vessels/background area are labeled as
one of stopped, intermittent, normal flows and background
classes. Examples of the labeled video are included in the
supplementary material.

In the first stage, vessels are separated from the background
based on the local structure information encoded in the spatial
structural feature:

l1 = [Imin, σt, fOOF (ki; Imin) , . . . , fOOF (ki;σt) . . . ] (7)

, where Imin is the minimal image, σt is the intensity variance
map across all frames fOOF(ki; Imin) is the Optimal Oriented
Flux filter [10] response at scale ki operated on Imin.

In the optional second stage, wide vessels are removed and
the flow patterns in those wide vessels are not considered as
capillaries in the following stage. During the measurement
process, the wide vessels are used to locate the region where
the video is being captured by clinicians. Also, since the
wider vessels are located deeper below the surface than the
capillaries, they are usually out-of-focus given the small depth
of focus of a micro-scale lens. Thus the evaluated motion
patterns in the wide vessels are not reliable due to the blurring
effect. In the second stage, we use the same feature as in the
first stage to represent local structure information.

In the third stage, the blood flow within the detected vessels
are categorized into stopped, intermittent and normal flows.
The features of flow type determination is the concatenation
of speed level distribution evaluated using Eq. 4 along with
the local structural features:

l3 = [f(s), fOOF (ki; Imin) , . . . , fOOF (ki;σt) . . . ] (8)

,where f is the speed distribution defined in Eq. 4. We use the
Random Forest Classifiers in all three stages.
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Fig. 7: The score function map for intermittent flows for Pig
55 and Pig 57 in different stages. For both pigs, the vitality
and blood pressure loss during bleeding is reflected by the
increasing in the intermittent flow from EndBaseline to Be-
foreResusc. The difference in the response to the resuscitation
process for two pigs is reflected in the score function map
at the EndHextend stage: For Pig 57 the intermittent flows
reduces dramatically while for Pig 55 the resuscitation did
not help to recover the capillary blood pressure hence the
intermittent flow becomes even more prevalent.

Compared with a one-stage classifier which directly cate-
gorize the pixels into background and three types of flows,
the cascade classifier emphasizes different types of features
in stages. For the task of separating the vessels from the
background, the statistics of the video such as the minimal
image provides more structural information than the raw
frames from the video, given the poor imaging quality and
lack of texture to detect the curvilinear structures in the raw
video. Therefore, the structural features extracted from the
minimal image is more appropriate than the motion features
extracted from the video for the task of extracting the vessel-
like structures. On the other hand, the motion features are
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(a) Vessel detection (b) Flow type classification

Fig. 8: The performance comparison between the supervised
method (Section. V) and unsupervised method (Section. IV on
the task of extracting the vessels and classifying the flow into
stopped, intermittent and normal flow. The performances are
evaluated by training the cascade classifier on labeled samples
from on set of pigs and test on the samples from another set
of pigs. (a) The performances on the first stage of the cascade
classifier where the vessels are detected. (b) The performances
on the second stage of the cascade classifier where the blood
flow within the detected vessels are categorized into three
types of flows (stopped, intermittent and normal).

necessary for the task of categorizing the motions of blood
flow into different types.

The performance of the cascade classifier is tested on
the labeled data. For the first stage where the vessels and
segmented from the background, we compare the performance
of the supervised method introduced in this section with the
vessel skeleton extraction method described in Section. IV.
For the third stage, we compare the performance of the
method based on the score functions for different types and
the supervised method. The performances are evaluated by
training the cascade classifier on labeled samples from on set
of pigs and test on the samples from another set of pigs. The
comparison in terms of the ROCs are shown in Figure. 8. For
both detecting the vessel and categorization of the flow type,
the learning-based method performs better than the method
based on manually defined score functions.

To evaluate the robustness of the features and the learned
classifiers, we train and test the cascade classifiers in three
cases with different rules of selecting the training and testing
set: (1) The training and testing samples are selected randomly
from the labeled data without any constraints; (2) The samples
are selected such that the training and testing samples are on
different vessels; (3) Training and testing samples are selected
from videos of different pigs. In the second and third cases, we
consider the influence of the variance in locations and subjects.
The performance is evaluated in terms of the third stage in the
cascade classifier and shown in Figure. 9.

VI. PHYSIOLOGICAL ANALYSIS FROM VIDEO

In this section we will relate the estimated blood flow
velocity distribution and flow types of all vessel segments
detected in the field of view, to the status of the test subjects
in the bleed and resuscitation phases of the experiments in
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Fig. 9: The ROCs evaluating the flow type classification on the
testing sets for three cases of train/test sample selection: No
block - The training and testing samples are selected randomly
from the labeled data without any constraints; Vessel block
- the samples are selected such that the training and testing
samples are from different vessels; Pig block - the samples
are selected such that the training and testing samples are
from videos of different pigs. (a) The performance on the stop
flow; (b) The performance on the intermittent flow; (c) The
performance on the normal flow.

order to evaluate consistency of our method with knowledge
and intuition of expert clinicians.

From the point of view of current knowledge of physiology
of the observed processes, as the blood pressure decreases
due to bleeding, a general reduction in blood flow velocity is
expected. It should be manifest in the flow velocity distribu-
tions by a shift of the distribution of velocities across vessels
towards lower values of velocity, as well as the reduction in
the population of the normal flow type and increase in the
abnormal flow types (intermittent and stopped flows).

Although resuscitation should intuitively led to an in-
crease of microcirculatory flow, the temporal relation between
restoration of arterial pressure and cardiac output to microcir-
culatory flow is complex and not yet fully understood. Still,
one would expect that if resuscitation efforts were successful,
that microcirculatory blood flow would return to baseline
values. Other sources of variations in the blood flow velocity
and types come from the artifacts introduced during capturing
such as the contact pressure of the device and the change
of locations being measured. The distributions of the blood
flow velocity and the ratios of different flow types estimated
from the corresponding videos are consistent with the above
intuition. The analysis visualization for five pigs are shown in
Fig. 11.

Pig 54, Pig 44 Pig 60: The blood flow in the capillaries
diminishes after bleeding as the blood pressure and the vitality
of the pig deteriorate. This change has been reflected in
the figure as the flow velocity distribution, shown in the
green curve, squeezes towards a lower values. In addition, the
number of capillaries with slow flow velocity decreased after
resuscitation as compared to the after bleed phase. In terms
of the flow types evaluated using the cascade classifier, it can
be observed that the ratio of the normal flow decreases while
the ratios of the intermittent and stopped flow grow during the
bleed phase. On the other hand, during the resuscitation phase,
the normal flow ratio comes back and recovers to the level
close to the baseline stage. This is consistent with physiologic
expectations, and represents the opening of capillary beds
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Fig. 10: The blood flow type map estimated by the cascade
classifier for Pig 54 at different different stages. The color
encoding for flow types: red - stopped flow; green - inter-
mittent flow; blue - normal flow; light yellow - background.
The dynamics of the blood flow in the capillaries decreases,
manifested as the increasing population of stopped and inter-
mittent flows, during the hemorrhage process. Then it recovers
to normal after the resuscitation process. Those changes for
the same subject are also observed from the estimations of the
blood flow velocity distributions and flow type ratios, shown
in the fourth row of Fig. 11.

that were previously closed probably due to insufficient input
pressure during shock. Given that this protocol was intended to
study the individual responses of each animal to hemorrhage,
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blood volume shed was different between animals. Pig 44 and
60 had 534 ml and 760 ml blood hemorrhaged, respectively,
which represented 23% and 36.7% of their calculated total
blood volume. This analysis also demonstrated how for ex-
ample pig 44 had a lower relative increase in capillaries with
slow flow, than pig 60, which is consistent with having had
a less intense response, to a less intense injury.(less volume
bled).

Pig 47: it is observed in both the flow velocity distributions
and flow type ratios that the flow dynamics before bleeding
is within a low range. This artifact is introduced by the
contact pressure of the measurement device on the tissue
during capturing the micro-circulatory video for Pig 47 in the
baseline stage, making the blood flow suppressed at that stage.
Our method has reflected such measuring artifacts during
capturing.

Pig 55: the blood flow velocity remains within a low level
even after the resuscitation process, showing the difference
among individual subjects in response of the resuscitation
process after hemorrhage. There are only 5 stages in total for
Pig 55 since that subject died before the last stage. Please
refer to the supplementary material for the estimations of flow
velocity distributions and flow type ratios of other subjects in
the experiment.

VII. CONCLUSION

We presented a multi-stage framework for processing mi-
crocirculatory videos automatically and in real time. The pro-
cessing stages include video stabilization, image enhancement,
and micro-vessel extraction, in order to automatically estimate
statistics of the micro blood flow captured in SDF videos. We
applied our method to analyze changes in microcirculation in
test animals at different stages of induced bleeding experiment,
including before, during and after bleeding as well as after
resuscitation. The results include both the blood flow speed
and flow type distributions over the field of view and local
per-pixel flow type classification based on motion features.
The results show that by using image augmentation and con-
tinuous video sampling techniques, reliable microcirculatory
imaging processing can be automated and accomplished in
real time despite the inherent challenges to microcirculatory
flow quantization. The parameters described in this anal-
ysis represent novel metrics of SDF imaging that should
substantially improve the utility of SDF imaging to assess
microcirculatory changes with disease and its treatment. In
the future, we are going to improve the SDF imaging device
such that more reliable and noisy-free data can be obtained. In
addition, physiological correlations such as the flow velocity
variations during different phases of heartbeat and respiration
will be studied to further enhance the clinical relevance of the
framework.
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