

Near-Light Photometric Stereo using Circularly Placed Point Light Sources

Chao Liu, Srinivasa Narasimhan and Artur Dubrawski

Robotics Institute, Carnegie Mellon University

ICCP 2018

Motivation

Circularly placed light sources are common

Surveillance Cameras

Medical Imaging

Photography

Motivation

Circularly placed light sources are common and could be useful

Near-light Photometric Stereo

[Xie et.a 14 15]

BRDF-invariant Shape Analysis

[Chandraker 11]

Depth Edge Detection

[Raskar et.al 04]

Motivation

Circularly placed light sources are common and could be useful

Near-light Photometric

[Xie et.a 14 15]

[Chandraker 11]

[Raskar et.al 04

Near-light Photometric Stereo using circularly placed light sources:

Near-field Lighting: Distant light assumption fails

Near-light Photometric Stereo using circularly placed light sources:

Near-field Lighting: Distant light assumption fails

Spatially variant light directions and intensities

Near-light Photometric Stereo using circularly placed light sources:

Small light source baseline: subtle intensity changes

LED ring radius: 30mm; Object distance: 400mm

Difficult to estimate the shape with near lights in small baselines

Reconstruction

Profile of object

Distant Light

Near Light
[Queau et.al 17]
Depth initialized
at 200 mm

Near Light [Queau et.al 17] Depth initialized at 400 mm

Difficult to estimate the shape with near lights in small baselines

Reconstruction

Profile of object

Distant Light

Near Light
[Queau et.al 17]
Depth initialized
at 200 mm

Near Light [Queau et.al 17] Depth initialized at 400 mm

Proposed Method

Image intensity Light direction
$$I =
ho(oldsymbol{p}) oldsymbol{l}^T oldsymbol{n}(oldsymbol{p})$$

$$I = \rho(\mathbf{p}) \mathbf{l}^T \mathbf{n}(\mathbf{p})$$
Surface normal

$$I = \rho(\mathbf{p}) \mathbf{l}^T \mathbf{n}(\mathbf{p})$$
Albedo

$$I = \rho(\boldsymbol{p}) \frac{1}{|\boldsymbol{l} - \boldsymbol{p}|^2} \frac{(\boldsymbol{l} - \boldsymbol{p})^T}{|\boldsymbol{l} - \boldsymbol{p}|} \boldsymbol{n}(\boldsymbol{p})$$

$$I =
ho(m{p}) rac{1}{|m{l} - m{p}|^2} rac{(m{l} - m{p})^T}{|m{l} - m{p}|} m{n}(m{p})$$
 Intensity fall off

$$I = \rho(\mathbf{p}) \frac{1}{|\mathbf{l} - \mathbf{p}|^2} \frac{(\mathbf{l} - \mathbf{p})^T}{|\mathbf{l} - \mathbf{p}|} n(\mathbf{p})$$

Light direction

Projective camera model

$$I = \rho(\boldsymbol{p}) \frac{1}{|\boldsymbol{l} - \boldsymbol{p}|^2} \frac{(\boldsymbol{l} - \boldsymbol{p})^T}{|\boldsymbol{l} - \boldsymbol{p}|} \boldsymbol{n}(\boldsymbol{p})$$

Projective camera model

Image plane

$$I = \rho(\boldsymbol{p}) \frac{1}{|\boldsymbol{l} - \boldsymbol{p}|^2} \frac{(\boldsymbol{l} - \boldsymbol{p})^T}{|\boldsymbol{l} - \boldsymbol{p}|} \boldsymbol{n}(\boldsymbol{p})$$

Image intensity

$$I = \rho(\boldsymbol{p}) \frac{1}{|\boldsymbol{l} - \boldsymbol{p}|^2} \frac{(\boldsymbol{l} - \boldsymbol{p})^T}{|\boldsymbol{l} - \boldsymbol{p}|} \boldsymbol{n}(\boldsymbol{p})$$

Back-projection:

$$\boldsymbol{p}(z) = K^{-1}\boldsymbol{u}z$$

Image formation model

$$I(\boldsymbol{u}) = \rho(\boldsymbol{u}) \; \frac{(\boldsymbol{l} - K^{-1}\boldsymbol{u}\boldsymbol{z})^T}{|\boldsymbol{l} - K^{-1}\boldsymbol{u}\boldsymbol{z}|^3} \boldsymbol{n}(\boldsymbol{u})$$

Image formation model

Camera Intrinsics

$$I(\boldsymbol{u}) = \rho(\boldsymbol{u}) \; \frac{(\boldsymbol{l} - K^{-1}\boldsymbol{u}\boldsymbol{z})^T}{|\boldsymbol{l} - K^{-1}\boldsymbol{u}\boldsymbol{z}|^3} \underset{\boldsymbol{n}}{\text{Normal}}$$

Albedo Light Position Depth

Image formation model

$$I(u) = \rho(u) \frac{(l - K^{-1}uz)^T \text{ Normal}}{|l - K^{-1}uz|^3} n(u)$$
Albedo Depth

Related Works on Near Light PS

Solve for *n* and *z* separately

Local shaping Global blending

[Xie et.al 15]

[Queau et.al 16, 17]

$$\boldsymbol{n} = \frac{\left[\frac{\partial z}{\partial x(z)}, \frac{\partial z}{\partial y(z)}, -1\right]^{T}}{\left\|\left[\frac{\partial z}{\partial x(z)}, \frac{\partial z}{\partial y(z)}, -1\right]\right\|_{2}}$$

[Wu et.al 11] [Fotios et.al 17]

Related Works on Near Light PS

Solve for *n* and *z* separately

Local shaping Global blending

[Xie et.al 15]

[Queau et.al 16, 17]

$$n = \frac{\left[\frac{\partial z}{\partial x(z)}, \frac{\partial z}{\partial y(z)}, -1\right]^{T}}{\left\|\left[\frac{\partial z}{\partial x(z)}, \frac{\partial z}{\partial y(z)}, -1\right]\right\|_{2}}$$

[Wu et.al 11] [Fotios et.al 17]

Represent Normal in terms of Depth

Image domain

Represent Normal in terms of Depth

Surface normal as function of depths

$$n(u) = n_v(u, z) = \sum_{p_k, p_i \in N_1(p)} w_f n_f(p, p_k, p_j)$$

Vertex position as back-projecting

$$\boldsymbol{p} = K^{-1} \boldsymbol{u} \mathbf{z}$$

Problem Formation

Given the captured images \hat{I} , estimate depth and albedo:

$$\min_{\boldsymbol{z},\boldsymbol{\rho}} \left| \hat{I}(\boldsymbol{u}) - I(\boldsymbol{u};\boldsymbol{n},\boldsymbol{z},\boldsymbol{\rho}) \right|^2 + \boldsymbol{R}_{\boldsymbol{s}}(\boldsymbol{z})$$
 Photometric difference Regulization for depth

with

$$I(\boldsymbol{u};\boldsymbol{n},\boldsymbol{z},\rho) = \rho(\boldsymbol{u}) \frac{(\boldsymbol{l} - K^{-1}\boldsymbol{u}\boldsymbol{z})^T}{|\boldsymbol{l} - K^{-1}\boldsymbol{u}\boldsymbol{z}|^3} \boldsymbol{n}_{\boldsymbol{v}}(\boldsymbol{u},\boldsymbol{z})$$

Sensitive to Initial Guess

Reconstructed object is place at depth about 200 mm. LED ring radius is 30 mm

Modelling Differential Image

Direction Change Distance Change

$$I_t = \frac{\partial I}{\partial t} = \frac{\partial I}{\partial l} l_t = I \frac{n^T l_t}{n^T (l-p)} - 3I \frac{(l-p)^T l_t}{|l-p|^2}$$

$$l^T l_t \approx 0$$
 for light on a circle $\approx I \frac{n^T l_t}{n^T (l-p)} + 3I \frac{p^T l_t}{|l-p|^2}$

 $p^T l_t$ is small and attenuated by $\approx I \frac{n^T l_t}{n^T (l-n)}$ inverse squared distance

$$pprox I rac{n^T l_t}{n^T (l-p)}$$

Initialize using Differential Image

Using Differential Images to initialize

$$\min_{\mathbf{z}} \left| \hat{l}_t \mathbf{n}^T(\mathbf{z}) (\mathbf{l} - \mathbf{p}(\mathbf{z})) - \hat{l} \mathbf{n}^T(\mathbf{z}) \mathbf{l}_t \right|^2 + R_s(\mathbf{z})$$

By using Differential Images to initialize depths

- 1. Free from albedo estimation
- 2. Free from inverse square attenuation term

Two Stage Near-light Photometric Stereo

Differential Images

Use Differential Images to initialize $\min_{z} \left| \hat{l}_t \boldsymbol{n}^T(\boldsymbol{z}) (\boldsymbol{l} - \boldsymbol{p}(\boldsymbol{z})) - \hat{l} \boldsymbol{n}^T(\boldsymbol{z}) \boldsymbol{l}_t \right|^2 + \boldsymbol{R}_s(z)$

Original Images

Initial Depth Map

Use Original Images directly to refine

$$\min_{\mathbf{z},\rho} \left| \hat{l}_m - \rho(\mathbf{u}) \frac{(\mathbf{l}_m - \mathbf{p}(\mathbf{z}))^T}{|\mathbf{l}_m - \mathbf{p}(\mathbf{z})|^3} \mathbf{n}(\mathbf{z}) \right|^2 + \mathbf{R}_s(z)$$

Simulation: Different Initials

Performance vs. Initial Depth

Experiment Setup

Light Source Position Calibration

Accurate light source positions are needed.

Chrome Sphere

Light Source Position Calibration

Accurate light source positions are needed.

Chrome Sphere

Reflection of light sources

Light Source Position Calibration

Accurate light source positions are needed.

The light positions are estimated by triangulate the reflected rays

Simulation Results on Light Calibration

- Ours
- Using Chrome Sphere
- Ground Truth

Input images

Initial Depth using Differential Images

Refined using Original Images

Input images

Initial Depth using Differential Images

Refined using Original Images

Input images

Initial Depth using Differential Images

Refined using Original Images

Input images

Initial Depth using Differential Images

Refined using Original Images

Input images

Reconstruction

Conclusion

- Near-Light Photometric Stereo algorithm for circularly placed light sources with small baselines:
 - Use mesh representation to relate surface normal and depth
 - More trackable than the variational definition for surface normal
 - Two-stage photometric stereo algorithm
 - Use differential image for depth initialization
 - Refine the depths using the original images

Future Work

- Photometric Stereo for materials with subsurface scattering effects (e.g. human skin under NIR light)
- Take into account surface BRDF
- BRDF invariant shape analysis using differential image with near-field light and small light source baseline limitationf