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Circularly placed light sources are common
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Motivation

Circularly placed light sources are common and could be useful
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Challenges

Near-light Photometric Stereo using circularly placed light sources:

Near-field Lighting: Distant light assumption fails
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Challenges

Near-light Photometric Stereo using circularly placed light sources:

Near-field Lighting: Distant light assumption fails
®:

Spatially variant light directions and intensities

Surface



Challenges

Near-light Photometric Stereo using circularly placed light sources:

Small light source baseline: subtle intensity changes

LED ring radius: 30mm; Object distance: 400mm




Challenges

Difficult to estimate the shape with near lights in small baselines

Reconstruction

Profile of object Distant Light Near Light Near Light
[Queau et.al 17] [Queau et.al 17]
Depth initialized  Depth initialized

at 200 mm at 400 mm



Challenges

Difficult to estimate the shape with near lights in small baselines

Reconstruction

Profile of object Distant Light Near Light Near Light Proposed
[Queau et.al 17] [Queau et.al 17] Method
Depth initialized  Depth initialized
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Photometric Stereo with Distant Light
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Photometric Stereo with Distant Light
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Photometric Stereo with Distant Light
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Photometric Stereo with Distant Light
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Photometric Stereo with Near Light
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Photometric Stereo with Near Light
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Photometric Stereo with Near Light
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Photometric Stereo with Near Light
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Photometric Stereo with Near Light
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Photometric Stereo with Near Light
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Photometric Stereo with Near Light
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Photometric Stereo with Near Light
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Photometric Stereo with Near Light
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Related Works on Near Light PS

Solve for n and z separately Solve for z directly
Local shaping Global blending ™S -
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Related Works on Near Light PS

Solve for n and z separately Solve for z directly

Local shaping Global blending
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Represent Normal in terms of Depth

Image domain
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Represent Normal in terms of Depth

Image domain

Surface normal as function of depths
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Vertex position as back-projecting
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Problem Formation

Given the captured images I, estimate depth and albedo:

min|l(w) — I(w; n, z, p)‘2 + R (2)
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Sensitive to Initial Guess

Reconstructed object is place at depth about 200 mm. LED ring radius is 30 mm

Two of 24 captured images Object Profile
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Modelling Differential Image
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Initialize using Differential Image

Using Differential Images to initialize

min|l,n” (2)(I — p(2)) — In” @)L|" + Ry(2)
VA
By using Differential Images to initialize depths

1. Free from albedo estimation

2. Free from inverse square attenuation term
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Two Stage Near-light Photometric Stereo

Differential Images Initial Depth Map
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Error in Surface Normal

Simulation: Different Initials
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Experiment Setup
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Light Source Position Calibration

Accurate light source positions are needed.

Chrome Sphere
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Light Source Position Calibration

Accurate light source positions are needed.

Chrome Sphere

S Reflection of light sources

35



Light Source Position Calibration

Accurate light source positions are needed.

Specular Display Displayed Checkerboard

The light positions are estimated by triangulate the reflected rays
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Simulation Results on Light Calibration

Comparison with method using chrome sphere
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Real Experiment

Input images Initial Depth using
Differential Images

Results

Refined using
Original Images
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Real Experiment Results

Input images Initial Depth using Refined using
Differential Images Original Images
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Real Experiment Results

Initial Depth using Refined using
Differential Images Original Images
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Input images
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Real Experiment Results

Input images Initial Depth using Refined using
Differential Images Original Images
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Real Experiment Results

Reconstruction

Input images

W

42



Conclusion

* Near-Light Photometric Stereo algorithm for circularly
placed light sources with small baselines:

— Use mesh representation to relate surface normal and depth
*More trackable than the variational definition for surface normal

— Two-stage photometric stereo algorithm
» Use differential image for depth initialization
« Refine the depths using the original images
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Future Work

« Photometric Stereo for materials with subsurface
scattering effects (e.g. human skin under NIR light)

 Take into account surface BRDF

 BRDF invariant shape analysis using differential image
with near-field light and small light source baseline
limitationf
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