Shaw,

M. (1985). What can we specify?

Questions in the domains of software

specifications.

Proceedings of the

Third International Workshop on
Software Specification and Design,
IEEE Computer Society, pp. 214-215.

What Can We Specify?
Issues in the Domains of Software Specifications

Mary Shaw

Software Engin%ering Institute
an
Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract: Formal specifications customarily
deal exclusively with the domain of functional
properties of software. However, other domains
are of interest to software designers and
developers. Two particular areas of concern for
practical software development are not yet well-
served by formal specifications. This note raises
issues about how those areas might be better
served.

Current techniques for formal specification are primarily
concerned with functional correctness -- that is, with the
computational properties of programs. Considerable
attention has been devoted to this issue, and the results
have been of practical as well as theoretical
significance.

Functional correctness is clearly important. programs
must certainly perform their intended functions. To be
useful in practice, however, programs must satisty other
requirements. Such requirements include execution
within time and space bounds that can be supported by
available hardware and consistent treatment of families
of related software components. These requirements
are often described in informal or imprecise requirement
documents. Although these properties are not a part of
the functionality of a program, | believe that they can and
should be subjected to formal specification and proof.

My interest is in the use of formal specifications for
practical software development. In this setting, some
issues arise that are not handied well by classical formal
specification techniques. These issues include the
specification of properties of programs other than
computational functionality and the definition of tamilies
of related, but not identical, software components. | will
consider each of these in turn.

CH2138-6/85/0000/0214$01.00 © 1985 IEEE

214

Properties Beyond Computational
Functionality

Many properties other than functional correctness are of
concern to practical software designers. Additional
properties of interest include performance (e.g., time and
space costs), mathematical accuracy, reliability,
synchronization, and execution patterns (e.g., working
set size).

The extension of formal specification technigques 1o
include these additional properties should be done in
such a way as to preserve the desirable characteristics
of functional specifications. In particular:

+ The generalized specifications should mesh with
the abstract modular structure of the program; in
this way they can be developed and studied along
with the functional specifications.

The specification methods should allow as much
or as little precision as may be appropriate;
excessively precise specifications can be
expensive to process and can constrain future
evolution of the software.

The specifications should be both precise and
mathematically tractable; formal analysis is not
always feasible, but it is more reliable than
informal, especially prose, arguments.

It should not be necessary to develop a new
specification methodology for each additional
property of interest; it is extremely desirable to
extend existing methods to new properties instead
of developing new methods whenever possible.

A certain amount of work on formal specifications of
these "extra-functional” properties has already been
done. Areas that have received attention include
execution time requirements[9] and the ways time
specifications interact with functional specifications(1];
security properties of software[6,7,10]; reliability(4,11];
and communication protocols{5].

Families of Software Components

For many years, abstraction techniques have been used
to cope with the complexity of programs. Generally,
abstraction techniques emphasize selected detail and
suppress irrelevant detail, thereby directing attention to
the problem at hand. As a side effect, abstract
definitions describe collections of possible code
sequences rather than single code sequences.

As time has passed, the size of the program units that
can be described in this way and the kinds of variability
that can be accomodated has increased. At present, the
most general abstract specification tools are generic
definitions [3] and certain systems for type inheritance
("subclassing”).

However, our informal understanding of groups of
related software components still outstrips our ability to
specify such components formally. For example, we can
specify and implement abstract data types for tree and
linked list, but we have no good way to combine these to
obtain a threaded tree in which each node participates
in both an instantiation of tree and an instantiation of
linked list. For another example, we can specify and
implement a record type for which we construct tables,
search the tables, insert elements, etc -- but we cannot
write one definition that specifies tables of records that
differ in the number and types of fields, the position and
name of the key field, etc. and can be instantiated for a
variety of record types.

There is a serious need for systems that allow
generation of a family of related software components
from a single definition that captures the family
characteristics and is tailored to specific applications
with the addition of information that binds the variable
aspects of the definition.

This issue is related to the question of maintaining
intellectual controi over the development of large
software systems that exist in many versions (through
time) and many configurations (concurrently) [2,8}. In
many cases, different versions of a module are related
as described above, and better control might be
exercised by generating different instances from a single
definition.

The Question

The question | would like to pose to this workshop is,
How can we best extend the domain of formal
specification to include a variety of properties of interest
to practical software developers?

215

e

References

[1] Jon Louis Bentley and Mary Shaw.
Abstraction and Efficiency: The Interaction of Languages
and Analysis.
Computer Science Research Review, Carnegie-Mellon
University , 1979
{2]- P.M. Cashin, M.L. Joliat, R.F. Kamel, D.M.Lasker.
Experience with a Modular Typed Language: PROTEL.
In Proceedings of the 5th International Conference on
Software Engineering, 1981.

The Programming Language Ada Reference Manual.
United States Department of Defense, 1983.
MIL-STD-1815A-1983.

{4] Ivor Durham and Mary Shaw.

Specifying Reliability as a Software Attribute.
Technical Report CMU-CS-82-148, Department of
Computer Science, Carnegie-Mellon University,
December, 1982. .

Donald I. Good.

Constructing Verified and Reliable Communications
Processing Systems.

ACM Software Engineering Notes 2(5), October, 1977.

(5]

[6] Jonathan K. Millen.
Security Kernel Validation in Practice.
Communications of the ACM 19(5), May, 1976.

[7] Peter G. Neumann, Robert S. Boyer, Richard J. Feiertag,
Karl N. Levitt and Lawrence Robinson.
A Provably Secure Operatiing System: The System, its
Applications, and Proofs.
Technical Report 4332 Final Report, SRI
International Project, February, 1977.

[8] Eric Emerson Schmidt.
Controlling Large Software Development in a Distributed
Environment.
PhD thesis, University of California, Berkeley, 1982.

{9] Mary Shaw.
A Formal System for Specifying and Verifying Program
Performance.
Technical Report CMU-CS-79-129, Camegie-Mellon
University, June, 1979.

[10] B.J. Walker, R.A. Kemmerer, and G.J. Popek.
Specification and Verification of the UCLA Unix Security
Kernel.

Communications of the ACM 23(2), February, 1980.

[11] John H. Wensley, Leslie Lamport, Milton W. Green, Karl
N. Levitt, P.M. Melliar-Smith, Robert E. Shostak, and
Charles B. Weinstock.

SIFT: Design and Analysis of a Fault-tolerant Computer
for Aircraft Control.

Proceedings of the IEEE 66(10): 1240-1255, October,
1978.

The Fine Print

The opinions expressed here are those of the author and not
necessarily those of Carnegie-Mellon University, the Software
Engineering Institute, or the Department of Defense.

