v Proceedings of the Nisth Technical Symposium on Computer
Science Education, ACM SIGCSE Bulletin, 10(1), 255-259, 1978.

/71/5% /57%

INTRODUCING "THECRY™ IN THE SECOND PROGRAMMING COURSE
Y

Paul N Hilfinger, Mary Shaw, Wm. A, Wulf
Carnegie-Mellon University
Pittsburgh, Pennsyivenis 15213

Lawrence Flon

University of Southern California

Los Angelss, Calitornia 30007

1. Introduction

Traditionally, the first two programming courses have
emphasized basic techniques and skills -- the details of a
programming language, basic problem solving and program
development, “structured programming®, the manipulation cf
simple data structures and files, basic sorting and séarching
slgorithms, etc. They have piacec little or no emphasis on
such “advanced” or Ttheoretical® material as rigorous
specification and verification, fcrmal language definition,

sutomata, or complexity analysis. Their aoproach, in other -

words, is similar to that taken by elementary caiculus courses,
which teach the mechanics of differentiation and integration
without bringing in foundation material and techmicaily
vigorous treatments. The reason for avoiding treory in an
slementary calculus course is auite legitimate: for most
students, rigorous treatment is rot useful enough to justity
spending time on it al the expense of manioulative skills. In
_this paper, we shail argue that this reasoning does not apply
to programming.

Since the mid-1960's, and the advent of the “software
crisis®, there has been a definite trend away from teaching
just the basic skills of programming. Text books and courses
have placed increasing emphasis on the engineering
considerations involved in good programming, on style and
program structure. The new ACM curriculum recommendations
[1] refiect this trend. We have come to realize that these
engineering considerations are as impartant to programmers
as are the details of particular programming languages or
particular algorithms.

At Carnegie-Melion University, we have been
experimenting for four years with a further extensian of this
trend. We have inlroouced basic material from certain

*theoretical® topics as integral parts of our second
programming course. These topics incluce automata, formal
specification of algorithms and data types, complenty

snalysis, and program verification. Naturaily, we introduce
these topics at an elementary level. Nonetheless, they form
the central, organizing core of the course.

Our principle motivation is the conviction that programming
should be an engineering disciphne, and that engineering
disciplines must be grounced in engineering science. Further,
to be effectively taught, trus science must be introduced as
early as possible. In contrast to tha measure-theoretic
underpinnings of lhe calculus, the theory we introcuce is
immediately useful to working prcgrammers. In addition, the
topics we cover are fundamentai to later courses. 8y
introducing the tapics early in the curriculum, we provide a
common vocabulary for these later courses, eliminate
redundant treatment of lopics, and give students greater
sxposyre to the malerial and s belter chance lo absorb it.

33

Wae fesl we have been successful with the course, although
our evidence is necessarily subjective. Because its philosophy
flies in the face of current practice, we shall attempt to
explain that philosophy in this paper. The course itseil,
*Fundamental Structures of Computer Science® (FS hereafter)
is described in somewhat greater detail in (2] and we are
preparing 8 supporting lext (31 We are not so much
interested in pressing our own particular treatment of the
topics, however, as we are the choice of material snd its
place in the curriculum.

2. The Setting

Most of the students taking comouter science courses at
Carnegie-Mellon come from engineering (especiaily electrical
engineering) and applied mathematics. Their tirst programming
course covers most of the materiai outhned in CS i and cs 2
of [1], but piaces fairly light emphasis on the later sections of
CS 2 -- internal sorting and searching, data structures, and
recursion. Students may take either a FCRTRAN or a PAsCAL
version of this first course. We recommend the Pascal version
for those students interested in the iater computer science
courses, especialiy FS, as Pascal is currently the language
used in those courses. However, fdr .varicus reasons, 2
substantial fraction of the stucents in FS come from the
FORTRAN course. - :

In the past, many of our students have had little exposure
to discrete mathematics. The F$ ccurse requires nothing more
than familiarity with standard set iheorehic and lcgical
notation and definitions, rather than a comolete course. Still,
we consider it undesirabie to spend hime teaching these
topics (as we must at present), since various portions of the
material are already famiiar to a fairly large percentage of
the class.

The FS course takes the place of the usual data structures
course (CS 7 of [1]). Subsequent courses’ topics inciude
software engineering (aimed at givirg stuaents experience n
writing large software ang famnianly with the problems),
comparative programming languages, computer archutecture
and hardware, real-time and runicomputer programming,
graphics, artificial intelligence, and compiler and operaling
system design. Thus, FS must provide the necessary
preparation for these courses.

—— iy

3. Theoretical Content of the FS Course

In the following sections, we enumerate the particular
topics we have covered, piving our reasons for including
esch. We are not attempting to outline the actual FS course
here (see [2]), although we shall refer to it often. For one
thing, we have varied its content from year to year and have
not always included each of the topics we shali discuss.

3.1. Models of Computation: Automata

The FS course discusses the notion of an abstract mode! of
computation and introduces several of the standard models:
the finite state machine, the push-cown automaton, and (very
briefly) the Turing machine. The discussion provides a
framework in which to discuss mocels in general and their use
in understanding abstract properties of programs. For
example, we discuss the relstive power of programming
constructs, and show how one can perform such comparisons
having suppressed inessential details. Finite state machines
also provide a setting in which we can introduce
non~deterministic computation early and gently.

In practical programming terms, the finite state machine is
the skeletal prototype of *he table-driven computation. The
FS course, for example, takes students through the
construction of a table-driven lexical analyzer. Traditionally,
lexical analysis is the subject of a compier course, but an
applications prcgrammer who wishes to write sophisticated
input routines may well find the technigue useful. Finite state
machines also appear in certain recent algorithms for string
mstching.

Knowledge of autamata is of obvious use in later courses

‘on compilers and in understanding sequential logic design. In

particular, we find it convenent for students to have seen the
concept of the state of a computation and of state transition
before going on to a compiler course.

3.2. Formal Languages

At an elementary fevel, the study of formal languages
provides two descriptive notations -- reguiar expressions and
BNF. Not only are these useful in defining the syntax of
programming languages (and hence, in reading programming
fanguage definitions), but they are convenient and succinct
nolations for describing many other notations — program
Input formats, for example.

As specification tools, both BNF and regular expressions
have the advantage that there are weil-esiablished
techniques for obtaining implementations (parsers) from the
specifications. Even withaut going into the theory of parsing,
the FS course still lays much of the groundwork for these
constructions by surveying the correspondences between
sutomata and grammars. We first specify the lexical anaiyzer
mentioned in the last section, for example, using regular
expressions. This specification guides the construction of the
tables.

BNF provides many examples of recursive definition. Thus,
it serves as one introduction to the tepic of recursion (and
certainly a better motivated introduction than the recursive
factorial function). The structure of a simple recursive
descent parser follows naturally from the grammar being
parsed, providing a neal transition from recursive delinilion
to recursive impiementastion.

36

3.3. Formal Specification and Verification

One of the most important lessons to be learned in any
intreductory programming seguence is the distinclion between
specification and implementation — between what is to be
done and how it is to be accomplished. Qur own experience as
programmers indicates just how important this distinction is:
we cannot concewe of large programs until we shake off the
details of their consiruction. At the same time, our teaching
experiences also show thatl the idea of rigorously scecifying 3
program apart from ils impiementation and the concomitant
practice of using the specifications of a routine rather than
its code to understand its effect, are amorg the most difficuit
things to teach undergraduates. Hence, we consicer it vital to
stress rigorous specification and the distinction belween
specification and implementation as early and often as
possible.

Therefore, the FS course introduces the wuse of
mathematical entry and exit assertions tor programs and
procedures. Besides their utility as a soecification device,
these have the pedagogical advantage that the student is
forced to abstract and to write 2 general statement of the
effects of his program, since it is extremely awkward to
encode the workings of a program in its entry and exil
assertions, As the FS course now stands, most of the practice
that students get in using formal specitication comes in the
units on data types (see section 3.5).

We cannot expect students to become proficient in ths art
of program specification as a result of the FS course aione. It -
is a difficult art, requiring experience ang, ideaily, a certain
mathematical tastefulness for ils successful practice. This is
true even when the specification language is precise English
(as it often must be) rather than mathematical notation; the
difficulties ot procducing good documentation are well known.
Nonetheless, we find in later courses that our students have
started thinking in terms of the abstract effects of their
programs.

Having introduced program specification, one can slart
thinking about verifying the ccrrectness of an implementation
with respect to a specification. Again, the aim cannot be
proficiency, but rather inclination. We want to show that it is
possible to argue rigorously and systematically about various
properties of a program. Our intent is to encourage students
to understand their programs as rigorously as possible.
Whether or not one believes that detailea formal orogram
verification is feasible in practice, it is still valuable to acquire
the habit of verifying programs informally and of
constructing them to make that task easier. We can show, for
example, that not only does the proper modularization of 2
program into routines make them more readable, but it aiso
simplifies tormal and informal reasoning (verification
conditions become smaller).

Standard treatments of verification tend to stress
mechanical manipulation - thke generation of verification
conditions. It is true, furthermore, that such concrele skiils
are easier o teach (if harcer to motivate) than general
methodological principles. Still, teaching the general
principles, such as °rigorous program construction®, is really
our global aim. The purpose of inlroducing program
verification at all is simply that a program s generally
cleaner, simpler, and more hkely to be correct it 1t is weil
thought out and carefuily constructed. Even if a stucent never
again formaily verifies a program, simply understanding that it
can be done will change the ways he thinks aboul programs
and programming.

3.4. Algorithmic analysis

Cost analysis is a critical activily in any engineering
discipline. Programming is no exceplion. From personal
experience, we know thal careful quantitative analysis of
program cost is ail too rare. Many programmers "optimize®
programs only at the “put as much as possidle into registers®
level, rather than at the aigorithm level, and have no good
idea of where their programs can actually benefit from
optimization.

* Therefore, the FS course inlroduces some simple cost
analysis techniques. [t discusses the notion of the order of
complezity of a computation, and the distinction between the
shape of a cost curve and its actual values. All of this material
is rather obvious, of course, but until it is pointed cut that
cost analysis might be intsresting, programmers tend not to
do it. By introducing students to the subject formally, we get
them in the habit of making implementation decisions on the
basis of expected costs, and to deveiop in them an ability to
do “seal of the pants” performance estimates. We need hardly
mention that these techniques and attitudes are useful in any
later course on the analysis of aigorithms (e.g, CS 14 of [1].

3.5. Data Types

As we mentioned above, the FS course subsumes the usual
data structures course. However, its treatment of data
structures differs from what we observe to be the standard.
Traditionaily, individual data structures are introduced in
close association with their standard representations. In
keeping wilh current methodology, as well as our policy of
separating specilication from implementation, the FS course
first introduces the general concept of a data type. That is,
we define a data type in terms of the legal operations and
the essential observable behavior of those operations. We go
en to show how t{o specify this observable behavior
rigorously, and to use the data types thus described, without
mentioning how the operations are implemented.

Having developed the toois needed to describe data types,
we introduce the standard data structures in terms of their
abstract properties. Later, and separately, we discuss
standard impiementation techniques. This allows us to explain
several alternatives and aiscuss their reiative merits.
Moreover, it emphasizes that many variations are legitimate;
there is no distinguished representation of s linear list, for
example.

The separation of concerns behind this approach has
proved valuable in developing large software. As was the
case with the specification of procedures, however, novice

~ programmers initiaity have difficully understanding that a data

type has an abstract behavior distinct from ils
implementation. This only suggesits to us that they shouid
start getting used to the idea early in their programming
education. N

We have found a fairly simple exercise that illustrates the
distinction between specification and implementation. We first
ssked the students {o provide the impiementation of 3 simple
data type (e.g., stack) using a particular representation (e.g,
the standard vector representation). Next, we asked them to
write a main routine implementing a simpie algorithm which
uses data of this type (e.g., an iteralive routine to convert
Polish notation to infix form). They were (o code this
sigorithm using only the abstract specifications of the data
type. Finally, we asked them to change to a ditferent
implementation of the data type (eg, using a linked hst
representation) without moditying a single character of the
main routine.

37

This exercise, simple as it seems (snd stack is the
archetypical “toy” data type), proved quite useful in
illustrating the point ot data type abstraction. it is
particularly convenient if the course uses a larguage like
PASCAL However, it is possibie in FORTRAN as weill,

3.6. Recursion

At least one recent paper [5] argues that recursion is not
simply an esoteric device, but a programming tool which can
facilitate atgorithm development. Instances crop up quite
rnaturally, such as recursive descent parsing from a BNF
definition, which we mentioned eariier. One important class of
instances is the set of divide-and-conquer algorithms, whose
natural descriptions are recursive. Several sorting algorithms,
for example, have a high-levei divide-and-conquer
description. Finally, of course, recursively defined data
structures (such as irees) are most naturally manipulated
recursively. 21t

In the FS course, we try to present what might be called
“recursive thinking” -- the art of seeing appropriate problems
in terms of smaller instances of itseif. Il is its own formai
-verification method. One simply assumes (inductjively) that 2! .
recursive calls behave according to specification and shows
that the asrguments of recursively nested calis get
progressively “smailer”. This kind of reasoning occurs
throughout a course on algorithm design or compiler design.
Its early presentation therefore serves as important
preparation for these laler courses.

Recursion is another place where the specification and
implementation of a program may differ. We may specify a
program recursively, but implement it as an iterative program
(perhaps with a stack). For example, merge sorting has a
very simple recursive delinition, although its usual
implementations are ilerative and interleave the recursive
calls. This brings up the whole subject of program
deveiopment by successive transformation. The similarity
between simple push-down automata and simple recursive
programs, in particular the fact that one may use either to
recognize context-free languages, provices one starting point
for such a discussion. This topic is one which we will cover in
a future version of the FS course.

4. Experiences

Over the last four years, the bulk of the material above has
appeared, with varying relative weights on the {opics, as part
of the FS ccurse. The course aiso involves most of the usual
data structures material and reguires a considerable amount
of programming practice of the students. Roughly four
hundred students have taken the course under a total of
seven different instructors. Again, we point out that it is a
second course, which mast students take at the beginning of
their sophomore year.

Perhaps the natural reaction, or at least the one we hear
from some colleagues, is that the course 1s too rigorous, too
“formal®, and too voiuminous for its sophomere audience.
Students, however, are genrerally faverable, and show up in
iater courses ready to use the material. One purpose in
writing this paper is simply to announce that our experience
shows that students can handie the material. Indeed, they
perceive the buix of the material to be quite elementary. We
simply take care never lo suggest that, eg, program
verification and recursion are supposed to be diflicult topics.

Our students have had some difficuity with the volume of
material. We expecl to relieva some of this difficuity by
sliminsting our initial leclures on discrete mathemslics, and

reorganizing the course description and requirements to
reflect the change. In any case, we need very liltle discrete
mathematics; sludents who find themselves very weak in that
srea could easily pick up the necessary notations and
definitions from such texts as {41 It also appears that the FS
course functions well as the first in a two-course sequence.
The second course in the sequence is a course in software
engineering in which students can practice apolying the
principles presented in the FS course to reasonably large
problems. This second course can relieve some of the
obligation of the FS course to provide the experience, and
evens out the students’ work joads.

8. Conclusion

The topics we discuss in the FS course contain nothing that
we (the authors) don't use ourseives as programmers, The FS
course provides a common basis for later courses, which in
itself is useful. Yet we intend that, ideaily, all the material we
cover should be part of any programmer’s “bag of tricks”.

We do not view the FS course as a particularly radical
departure from the sub ject matter of [1] or similar curriculum
proposais. We do think it an important re-ordering of the
material. it is an attempt to -present basic princioles tcgether
in one course and to teach these principles before their use in
more advanced courses. Thus, just as in engineering one
teaches mechanics before structural design, we have put the
science and mathemalics of programming before most of the
actual coding.

We have tried to present a set of theoretical topics which
we believe to be valuable in the practice of software
engineering. We have tried to argue that students should
learn these topics as early as possible. In short, we want to
promote the notion of programming as an engineering
discipline employing scientific and mathematical msthods.

6. References .

{1] "Curriculum recommendations for the undergraduate
program in computer science®, SIGCSE Bulietin 9,2
(une 1977). :

{2] Lawrence Flon, Paul N Hilfinger, Mary Shaw, and Wm. A,
Wulf. "A fundamental computer science course that
unifies theory and practice.” Papers of the SIGCSE/CSA
Technical Sympeosium on Computer Science Education,
Detroit. SIGCSE Builetin 10, 1 (February 1978), pp.
255-259.

[3] W. A. Wulf, M. Shaw, L Flon, and P. Hilfinger. Fundamental

Stryctures of Computer Science, Texibook in
preparation (Addison-Wesiey). N

{4] Donaid F. Stanat and David F. McAllister. Discrete
Mathematics in Computer Science. Prentice-Hall, Inc.,
Englewood Clifts, 1977.

[5]) Zohar Manna and Richard Waldinger. “Structured
programming with recursion.” Memo AIM-307
(STAN-CS-77-640), Stanford Artiticial Inteliigence
Laborstory, January, 1378,

