
Position paper for EDSER-4, Economics-Driven Software Engineering Research, May 2002

Software Selection and Configuration in Mobile
Environments: A Utility-Based Approach

Vahe Poladian
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213 USA

+ 1 412 362 9015

Vahe.Poladian@cs.cmu.edu

David Garlan
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213 USA

+ 1 412 268 5056

Garlan@cs.cmu.edu

Mary Shaw
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213 USA

+ 1 412 268 2589

Mary.Shaw@cs.cmu.edu

ABSTRACT
Users of low-power mobile computing platforms make ad hoc
decisions when choosing software components among
alternatives and configuring those components. We propose
applying utility-theoretic models, which can help determine
optimal allocation of scarce resources to applications given
the user’s utility and application resource usage. We believe
that taking into consideration resource consumption and
applying microeconomic models has the potential of
improving the user’s satisfaction with the system. In this
paper, we formulate the problem, demonstrate the use of a
microeconomics-based model on a simple version of the
problem, and list possible solutions. Further, we identify
issues typical of mobile environments that are not addressed
by existing research, and propose ways of tackling these
issues.

1. MOTIVATION
Mobile computer users are often faced with choosing
among software components that provide similar services at
various levels of quality (e.g., which map rendering program
to use) and configuring those components (e.g., what
portion of the map database to download). When making a
selection among alternatives, users usually consider the
computational features supported by similar applications
and perhaps the dollar cost, but they typically ignore the
differences among the resource requirements of the
applications (e.g., a feature-rich application is likely to use
more memory than a light-weight version). Mobile
computers generally have limited resources (e.g., memory,
disk bandwidth, battery capacity) as compared to desktop
computers, so ignoring these resources can lead to
substantially less useful performance than might be
achieved.

Most users typically do not apply a systematic method to

the configuration decision, and they often ignore, even
informally, the burden that an application places on the
resources of the mobile computer. The resulting ad hoc
decisions might differentiate relatively good solutions from
bad ones, but we believe that only a systematic approach
will consistently yield optimal or even very good solutions.
Thus we explore the potential for utility-theoretic models to
be used in the problem of mobile software selection and
configuration.

2. THE PROBLEM
Let’s formulate the problem. Given:

• A mobile computer system, equipped with scarce
resources such as processing power, memory,
network bandwidth, battery capacity,

• Configurable, fidelity-aware applications, which are
capable of providing varying levels of quality in
several dimensions of service (e.g., the Map
Renderer might have the option to configure the size
of its downloadable database, providing more detail
and larger geographical coverage when more data is
downloaded); and a choice between a unified
application providing several services and several
leaner, more specialized applications,

• Application profiles, which provide information
about the various levels of quality in each service
that an application provides,

• For each configuration of every application, resource
usage information (e.g., the Map Renderer profile
provides information about how much memory is
needed in order to look up a certain number of
locations),

• The preferences (utility) of a user with respect to all
levels of quality for every desired service.1

1 We assume that a mobile computer has only one user. Some of

the related research has considered problems of mediating
preferences of multiples users.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

Fourth International Workshop on Economics-Driven Software
Engineering Research, May 21, 2002, Orlando, Florida.

Position paper for EDSER-4, Economics-Driven Software Engineering Research, May 2002

Determine: a configuration of the applications that
provides the best overall utility to the user.

What we mean by fidelity-awareness is the ability of the
application to provide varying degrees of quality and
resource usage trade-offs. Furthermore, we expect an
application to report the quality levels that it provides, as
well as the resource requirements for each quality level. We
assume that the application will conform to its advertised
resource usage, i.e., it will not consume more resources than
it should for each level of quality.

The space of quality levels, and hence the corresponding
resource usage, can be either fine-grain (e.g., the granularity
of the downloadable map database can be in bytes, and
with each additional one hundred bytes, the number of
locations that can be looked up increases by one), or
coarse-grain (e.g., quality levels of low, medium, high of the
e-mail application features, where low allows no
attachments, medium selectively allows some attachments,
and high allows all attachments to be downloaded).

It is possible that various degrees of quality of essentially
the same service are provided by more than one application.
For example, a map application from one vendor might have
a larger database, thus supporting better detail, as
compared to a similar application from another vendor. In
this case, several quality vs. resource trade-offs are
available by the virtue of having different applications,
hence choosing the best application amounts to selecting
the best quality vs. resource trade-off. We can see that
application configuration and application selection
problems are intimately related.

3. RELATED WORK
The Amaranth project [1], [5], [8] at Carnegie Mellon
University has developed a Quality of Service based
Resource Allocation Model (Q-RAM), which enables a
computer system to optimally allocate its resources to
maximize the system’s utility. Our objective and approach
are similar, but we address the mobile computing
environment. Later we consider issues specific to mobile
computers that we believe are not solved by previous
research.

The mobile systems group [3], [6] at University College
London uses closed-bid Vickrey auctions to solve the
problem of allocating bandwidth and other resources to
multiple competing users in a mobile environment. This
approach aims to mediate the preferences of multiple users.

The Nemesis operating system [7] uses a decentralized
approach in determining the optimal resource allocation.
Processes reveal their preference for resources to the kernel.
Using shadow prices, the system charges the consumer of a
resource a price, which is the cost that other potential
consumers of the resource incur by forgoing that resource.

These charges are viewed as continuous feedback signals
that allow the system to competitively adapt to a state that
is optimal from the point of view of all consumers.

Under the umbrella of Project Aura [1], [9] at Carnegie
Mellon University, various groups investigate issues
related to capturing user intent and providing for a
distraction-free computing environment. In the architecture
of Aura, the Environment Manager is the component that
coordinates applications and configures them for use. We
propose implementing utility theoretic models within Aura’s
Environment Manager.

4. APPROACH
We are exploring the use of a microeconomic model that
leverages knowledge of user’s preferences, application
quality of service vs. resource trade-offs, and resource
constraints, to compute an optimal allocation of scarce
computing resources among competing applications. The
objective is to configure applications so as to maximize the
user’s utility.

Using an example, we show the economic intuition behind
the model. Consider a rather simplified model of
computation, consisting of two simple applications: a map
rendering application and an e-mail client, which can work in
a disconnected mode. Assume, for simplicity, that the only
resources under consideration are the battery of the device
and its memory, e.g., flash memory. The Map Renderer
provides directions and maps using a variable size
downloadable database. The user can download only a
portion of the entire database at a time. The bigger the
database, the larger the region covered, and on average, the
more locations that can be looked up. The e-mail application
uses local memory to store messages for offline processing.
The larger the amount of memory allocated to e-mail, the
more messages that can be downloaded, read, and
composed. The total memory of the mobile computing
device imposes one constraint.

The second constraint is imposed by the battery capacity,
which is roughly proportional to the length of the time that
the device can be used without re-charging. Naturally, the
limited lifetime of the battery has to be allotted between the
two applications.

There are two configuration decisions to make: (1) how
much memory to allocate to each application, and (2) how
much energy (and thus, how much time) to allocate to using
each application. For simplicity, we ignore the different
policies that each application might use internally to
manage memory and battery life.

Treat the Map Renderer and e-mail applications as
producers of map and e-mail services. As the unit of service
provided by the Map Renderer application we consider the
number of physical locations that are looked up using the
application. Looking up one location requires little memory

Position paper for EDSER-4, Economics-Driven Software Engineering Research, May 2002

and perhaps a few minutes of battery life. Looking up
twenty locations requires proportionally more memory and
longer battery usage. Similar analysis applies to the e-mail
application, but with respect to the number e-mails that are
read, responded to, or composed.2

The graph in Figure 1 introduces a visualization of the
problem and the solution. The vertical axis shows the units
of map service, and the horizontal axis, the units of e-mail
service. Ignoring for a moment the battery constraint, we
identify all the possible combinations of units of map and e-
mail service that can be achieved given the memory
constraint.

Because of the linearity assumption, this constraint is a
straight line, describing all the linear combinations of units
of map and e-mail service that use up at most the total
memory available.

Similarly, we express the battery constraint (independent of
the memory constraint) as another line, which can possibly
have a different slope and intercepts.

Notice that when the maximum number of map lookups is
done, the memory of the device is entirely used up by the
map data, but the battery is not yet drained. Similarly, when
the maximum number of e-mail is processed, the battery is
exhausted, but there is available memory.

2 We assume, for simplicity, that the level of service is linear in

terms of each resource.

Thus that the map application is more memory-intensive,
and the e-mail application is more processor-intensive.

The region that is bounded above by the two bold lines
shows all the possible combinations of map lookups and e-
mails processed under the memory and battery constraints.

But which is the optimal point?

In order to determine that point, and the optimal resource
allocation, we need to consider the utility of the user. As is
common in microeconomics, let us consider the contours of
equal utility, also called the “indifference curves”. Each
indifference curve is made up of points that from the point
of view of the user yield equal utility.

The higher the curve, the better the utility. Typical shapes
of indifference curves are described by equations such as
Mα x E(1-α) = const, where α is a real number between 0
and 1. In the graph we have one set of such curves, which
indicate some utility bias towards the e-mail application.

Although it may seem that the optimal solution should lie at
the intersection of the resource constraint lines – where
both resources are saturated – in fact it does not. In this
case, the optimal solution occurs at a point where one of the
indifference curves is tangent to the energy constraint line.

Indeed, those curves that are higher (further away from the
origin) are outside of the resource boundaries. And curves
that are lower yield lower utility.

Memory Constraint Line

Energy

Constraint

Line

Contours of Equal Utility

(Indifference Curves)

N
um

be
r

of
 M

ap
 L

oo
ku

ps
 D

on
e

Optimal Point

Number of E-mails processed

Figure 1: The Optimal Point Yields the Highest Utility
While Satisfying the Resource Constraints

Position paper for EDSER-4, Economics-Driven Software Engineering Research, May 2002

Economists use the concept of marginal utility to analyze
the properties of an optimal solution. Marginal utility of e-
mail service with respect to a resource is the incremental
utility to the user, when a small amount of that resource is
shifted to the e-mail application. Notice that at the optimal
point, the marginal utility of e-mail service with respect to
energy is equal to that of the map service (indicating that
the indifference curve is tangent to the energy constraint
line). This insight helps in generalizing the solution.

This approach is also applicable in selecting one application
among several alternatives. Simply treat the different
providers of the same service as if they were different
quality of service vs. resource trade-off opportunities
provided by a single application. Apply the same analysis
to determine the optimal point. The application that offers
the latter combination is the best alternative.

5. SOLUTIONS TO THE PROBLEM
The example just discussed makes several assumptions that
may not be realistic in a computing environment, e.g., the
quality space is continuous, that the mapping of quality
space to the resource space is linear, that the utility is of
particular functional form. These assumptions help us in
understanding the economic intuition, but may need to be
dropped in order to be applicable in the computer systems.

The general problem described in section 2 is similar to the
example we discussed, but allows for a larger number of
applications and resources. Also, in the general case we
drop many of the simplifying assumptions of the example.
Classical economics solves the utility maximization problem
using calculus. Assuming that the utility functions with
respect to service level, and service level with respect to
resource are all continuously differentiable and monotonic,
then the optimal point has the property that the partial
derivatives of the utility of each service with respect to a
given resource are either all pair-wise equal, or some of
those derivatives are pair-wise equal, and the rest are all
zero3.

In computer systems, it is not realistic to assume that the
quality space is continuous, and it may not be practical to
make any assumptions about the properties of either quality
or utility functions. For example, more resource may not
consistently yield higher quality, and higher quality may
not yield higher utility. However, we believe that there is
value in studying the forms of utility functions that occur in
mobile applications, as this can offer valuable insight to
understanding the preferences of mobile users, and help in

3 Consider the change in total utility when shifting a slight amount

of a resource from one service to another. If there are corner
cases, then we can assume functions are piece-wise differentiable;
however, the corner points need to be checked separately in case
they are optimal.

solving the optimization problem (e.g., as we showed above
the optimal solution may not be the point where all the
resources are saturated). Continuous models may provide
reasonable approximations of fine-grained quality spaces.

Lee [5] and Khan [4], in their approaches to the quality of
service management, assume that the space of quality levels
is a finite (discrete) set. Such an assumption is realistic, as
applications typically offer only a finite set of quality vs.
resource trade-offs. Given this assumption, the utility
maximization problem can be formulated as a variation of a
multi-dimensional knapsack problem (another common name
for this set of problems is integer programming). It is known
that these problems are NP-hard. The optimal solutions are
exponential in the size of the input, but there are polynomial
approximation algorithms that can find solutions within a
threshold of the optimal. These models may provide
reasonable approximations of coarse-grained quality
spaces.

6. ISSUES SPECIFIC TO MOBILE
COMPUTING ENVIRONMENTS
We believe that mobile computing presents interesting
problems that have not yet been addressed by previous
research: (1) solving implementation issues specifically
related to mobile systems, (2) describing the forms of utility
functions that occur in mobile computing, and (3)
dynamically reconfiguring the system after a change in the
environment, resources, or utility.

Let us discuss the latter group of issues in more detail, as it
exposes several interesting research problems. Mobile
computing environments change often. Such changes can
be in resource availability (e.g., network bandwidth
dropped, so perhaps a web image download should be
deferred), in the environment (e.g., it is darker in one room
than another, so the display needs to be brightened), in the
utility of the user (e.g., after an urgent message regarding a
shift in deadline, the utility of finishing the demo goes up,
thus necessitating more resources for the demo).

In response to all these changes, either the constraint or the
utility or both changes, so the optimal point moves and the
system needs to be reconfigured. We believe that current
literature does not directly address this problem. The
computation of a new optimal value may not be the best
action in response to a change. To see this, imagine an
increase in some resource that enables a better version of
some application (e.g., that offers higher quality in some
service) to run. Shutting down the currently running
version and starting the better version incurs overhead cost
– hence that configuration may not yield higher utility than
the current one. As another example, imagine a decrease in
some resource, which necessitates that an application
switch to a lower quality level. However, this might cause
unnecessary user distraction, and may not be optimal from

Position paper for EDSER-4, Economics-Driven Software Engineering Research, May 2002

the user’s point of view. Accounting for hidden costs such
as user distraction becomes an important problem in the
reconfiguration, which was not an issue for the static
version of the problem. Likewise, the cost of an incremental
change to an existing configuration is not addressed by the
simple model.

Both the economic model described here and the solutions
that we have found in the computing literature solve the
static version of the problem. The aforementioned issues
comprise only a small sub-set of all those that we have
considered.

We believe that it is possible to recast the problem of
reconfiguration into utility models (i.e., to an integer
programming problem) with the introduction of additional
variables to account for overhead resource usage, costs of
incremental change, hidden costs accounting for user
distraction, etc. Such a reformulation might allow us to
solve the problem of reconfiguration using existing
solutions. However, existing solutions may not be
computationally efficient enough for mobile computers.
Ideally, we would like to reuse the computation of an
optimal solution for an existing configuration in the process
of computing the new optimum. This will make such
solutions attractive for use in mobile environments, since
computation is relatively expensive on mobile devices, and
the changes are frequent. For some variations of integer
programming there are solutions that are incremental. For
example, in case of only one resource, there is a dynamic
programming solution. We would like to explore the integer
programming, linear programming, and other optimizations
research literature for such solutions and algorithms that are
well suited for incremental change.

7. CONCLUSION
We have proposed using utility-theoretic models to
determine user-optimal software configurations in mobile
computing environments. Using an example, we have
demonstrated how utility models can be applied to
determine optimal solutions. We then formulated the
generalized problem of mobile component selection and
configuration, and mentioned approaches that promise to
solve the problem. We also enumerated various issues that
are characteristic of mobile environments that we believe are
not addressed in current research. We propose approaches
for tackling these issues, while reusing existing models.

8. ACKNOWLEDGMENTS
This research is supported by the National Science
Foundation under Grant CCR-0086003, by the Department of

Defense under DARPA grants F30602-00-2-0616 and
N66001-99-2-8, by the High Dependability Computing
Program from NASA Ames cooperative agreement NCC-2-
1298, and by the Software Industry Center at Carnegie
Mellon University. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of the NSF, DOD, or the U.S.
government.

The authors would like to thank Joao Pedro Sousa, Orna
Raz, and Dushyanth Narayanan of Carnegie Mellon School
of Computer Science for critical feedback on this paper.

9. REFERENCES
[1] The Amaranth Project at Carnegie Mellon University.

http://www.cs.cmu.edu/afs/cs/project/ices-
amaranth/www/.

[2] The Aura Project at Carnegie Mellon University.
http://www.cs.cmu.edu/~aura.

[3] L. Capra, W. Emmerich, and C. Mascolo. A Micro-
Economic Approach to Conflict Resolution in Mobile
Computing. UCL-CS Research Note RN/01/38.

[4] S. Khan. Quality Adaptation in a Multisession
Multimedia System: Model, Algorithms and
Architecture. PhD Dissertation, Department of
Electrical and Computer Engineering, University of
Victoria, 1998.

[5] C. Lee. On Quality of Service Management. PhD
Dissertation, Department of Electrical and Computer
Engineering, Carnegie Mellon University, 1999.

[6] The Mobile Systems Group at the University College
London. http://www.cs.ucl.ac.uk/research/mobile/.

[7] R. Neugebauer and D. McAuley. Congestion Prices as
Feedback Signals: An Approach to QoS Management.
Proceedings of the 9th ACM SIGOPS European
Workshop, September 2000.

[8] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A
Resource Allocation Model for QoS Management.
Proceedings of the IEEE Real-Time Systems
Symposium, December 1997.

[9] J.P. Sousa and D. Garlan. Aura: an Architectural
Framework for User Mobility in Ubiquitous Computing
Environments. Proceedings of the 3rd Working
IEEE/IFIP Conference on Software Architecture,
Montreal, August 2002. To appear.

