MLS

Transactional Memory:
The Surprising Complexity of a
Simple Idea

Michael L. Scott
B RO TSR

at Carnegie Mellon University
6 November 2008

11/10/08

Moore's Law:
The Free Ride Is Over

e Smaller feature size allowed higher clock rates
» better performance BUT ALSO more energy

- Wattage o« mm? x clock rate
» and we ran out of cooling
® Smaller feature size also allowed more tricks on
the die at a given clock rate
» superpipelining, superscalar and OOQ issue, speculation

» better performance without more energy
» but we ran out of tricks

MLS 11/10/08

1995 v. 2005

e | {
»: !,!.“.

http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu_charts_2005/page2.html
MLS 11/10/08

Density « performance only if year <2004

5\ CPU-Frequency 1993 - 2005
Wardk

ar vaaﬁe AMD and Intel
4000
3500
3000
2500
2000
1500
1000
500

0

2
2
:
=]
g

http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu_charts_2005/
MLS 11/10/08

MLS

Enter Multicore

® Multiple processors (cores) on each chip

» maybe ratchet back the clock and (esp.) the tricks
(forgo diminishing returns)

e But this is no longer invisible to the user of
traditional programming languages
» programs have to be mul/tithreaded

11/10/08

The Coming Crisis

e Parallelism common in high-end scientific computing
» done by experts, at great expense

® Also common in Internet servers
» “embarrassingly parallel”

® Has to migrate into the
mainstream

» programmers not up
to the task

slurmed.com

MLS 11/10/08

The Traditional Model

e Explicit threads, with /ocks for mutual exclusion

® In use since the mid 1960s

e Well understood, but hard to
use correctly
» acquire wrong lock; forget to release
» deadlock due to ordering
» priority inversion
» 1nopportune preemption
» convoying
» lack of composability

® Performance/complexity tradeoff

MLS 11/10/08

The “"Transactional Religion”

® Butler Lampson: every good idea in
operating systems came from the
database community

= Lightweight transactions
(atomic, consistent, isolated)
Herlihy & Moss [1993], Shavit & Touitou [1995], ...,

MLS 11/10/08

MLS

A Simple Idea

User labels atomic sections

atomic {

}

Underlying system ensures atomicity, isolation,
and consistency; executes in parallel when possible

Implementation expected to be speculative;
back out and re-try on conflict
requires HW or SW checkpointing / logging
doing both at Rochester; focus here on SW

11/10/08

MLS

STM, abstractly

Object

7,

Metadata

Owner Status ACTIVE

11/10/08

® Only owner can
change the object

® Only one
transaction can
own the object at
a fime

e Until the owner
commits, everyone
sees Valid Version

10

MLS

Atomic Commit

e Multiple objects Poin’r'ro\<

same transaction descriptor

® Single CAS updates all
objects to the new version

11/10/08

CAS

11

Big Conceptual Benefits

e Avoid deadlock, priority inversion — composability

® Tolerate thread failures (w/ nonblocking
implementation)

* Eliminate the tradeoff between concurrency and
clarity:
» system's job, not the programmer’s, to figure out what
can run in parallel

= the complexity of coarse-grain locks with (most of) the
performance of fine-grain locks

MLS 11/10/08 12

MLS

Major Implementation Issues

® Conflict detection / consistency preservation
» eager V. lazy

» visible readers v. incremental validation v. fimestamps v.
Bloom filters

e Buffering: cloning v. redo v. undo
® Lock-based v. nonblocking (OF? LF?)

® Conflict resolution
» Who wins? Who loses?
» What progress guarantees can we make (if any)?

e Explosion of papers over the past 5 years

11/10/08 13

MLS

Semantic Complications

Nesting

Condition synch. (retry)

Exceptions (need language supportl)
Irreversible ops / inevitable txns
Interaction w/ locks, NB data structures
Ability to “leak” info from aborted txns
Privatization and publication

11/10/08

14

A Privatization Puzzle

shared node* p —»| 2 —+——| 3

shared int n = 0;

A: atomic { B: atomic {
my_nhode = p->next if (p->next)
p->hext = nil p->hext->val = 4
1 =n n=1
¥ ¥

print 1, my_node->val
delete my_node

® What might this code print?
» @ 3 (A first) » 1 4 (B first)
» 1 3 2? » @ 4 ??
» bus error ??

MLS 11/10/08 15

The Publication/Privatization
Problem

® SW txns serialize by reading & writing metadata

e Want to avoid that OH when poss. —> private use
» Delaunay mesh creation app: 95+% private

® But Bad Things can happen at the public/private
boundaries

» delayed cleanup @ privatization
» doomed txns @ privatization
» early reads @ publication

MLS 11/10/08 16

MLS

What Semantics Do We Want?

Memory models suggests: appearance of sequential
consistency for properly synchronized programs

But what is "properly synchronized” for TM?
static data partition
global phase consensus
privatizing / publishing transactions (explicit?)
private / transactional races ("strong isolation")?

Is the language implementation required to catch
bad programs? Statically?

If not, are there constraints on what bad
programs can do?
Cf Java and C++ MMs

11/10/08 17

MLS

My Personal Take

Static partition is too restrictive

Transactional / nontransactional races are bugs
Cf DRF

if rand T conflict, a transaction in r's thread must
intervene

As in Java, consequences of bugs are limited —
program can't “catch fire"
in particular, no out-of-thin-air reads

11/10/08

18

MLS

Database Semantics

Serializability (S)
Observed history must be equivalent to (same ops, same

results) some serial history (no overlapping txns) with
the same thread subhistories

Strict Serializability (SS)

Additionally, if 2 txns (of different threads) do not
overlap in the observed history, they must appear in the
same order in the serial history

Motivation: prevent threads from using outside events to
observe txns in the "wrong" order — plane ticket example

11/10/08 19

MLS

Single Lock Atomicity

(SLA) Transactions behave "as if" they acquired a
single global lock
Equivalent to SS:

- serial txn order = lock acquisition order
- locks force order wrt nontxnal accesses w/in threads

Widely considered too expensive to implement

- At begin_txn, must ensure no peer has prefetched
published data

- At end_txn, must ensure all previous txns have
cleaned up, and all doomed txns aborted

11/10/08 20

MLS

Relaxing Order

Multi-lock semantics [Menon et al.'07]
separate reader-writer lock for every datum

several alternative locking protocols; relax requirement for
serializability

But

Explains behavior in terms of (multiple) locks — which txns
were supposed to replace!

Abandons serial order for txns — arguably the key to
success in the DB world

Alternative proposal [OPODIS '07]
Define semantics in terms of ordering (Cf: Java, C++)

Keep transactions serial; make txnal-nontxnal ordering
optional

11/10/08

21

MLS

The Bigger Picture:
Keep the Simple Case Simple

e Partition shared and private data

® Atomic is simply atomic; data is just data

("no asterisks")
® Compiler has to figure out a lot

» Inevitability for irreversible operations

» Static inference of always-private data

» Automatic cloning for transactional and private contexts
e If you need more, turn the page

» condition sync » leaking

» privatization » interoperation w/locks

e But if you don't, don't

11/10/08

22

TM Work at Rochester

RSTM suite of TM implementations
all major options from the literature
dozens of back-end variants
uniform API based on C++ smart pointers and templates
- good for experimentation; not for naive users

Exploration of

implementation basics: conflict detection and resolution, buffering
[CSTP'04,LCR'04, PODC'05 (2), DISC'06, SPAA'08]

inevitability and retry mechanisms [TRANSACT'08, ICPP'08, PODC'08]
privatization [PODC'07, ICPP'08]

hardware acceleration [TRANSACT'06, PPoPP'07, ISCA'07, SPAA'07,
ASPLOS'08, ISCA'08]

nonblocking implementations [PODC'05, DISC'05, TRANSACT'06,
PPoPP'08]

application studies [NGS'07, PODC'07, IISWC'07, TRANSACT'07]
semantics [SCOOL'05, TRANSACT'06, DISC'07, OPODIS'08]

MLS 11/10/08 23

MLS

Status of the Field

HW support in Azul and Sun processors

SW projects underway at Intel, Sun, Microsoft,
and IBM (at least)

SW performance results are mixed — a win in
some cases, a loss in others — real benefits are in
ease of use

Will (in my opinion) succeed at simplifying the
creation of parallel data structure libraries
Not yet clear how much more will succeed

Is not a panaceal

11/10/08 24

MLS

Ongoing Work

Runtime implementation issues: private use,
irreversibility, conflict detection and contention
management [Mike Spear]

Formal semantics, with privatization
Language integration

Compiler implementation [Luke Dalessandro]
Hardware acceleration [Arrvindh Shriraman]
Application development

Longer term >

11/10/08

25

MLS

Where Will all the
Threads Come From

® Programming idioms / design patterns -

» e.g., futures, p-o iterators, dataflow, ...

e Higher-level abstractions
» map/reduce/scan, ...

® Speculative parallelization
» manual or automatic

» transactions for automatic detection and recovery from
uncommon data races

® (Your silver bullet here)

11/10/08

26

1@ I
N4
ROCHEST

www.cs.rochester.edu/research/synchronization/

