
MLS 11/10/08 1

Transactional Memory:
The Surprising Complexity of a

Simple Idea

Michael L. Scott

at Carnegie Mellon University
6 November 2008

MLS 11/10/08 2

Moore’s Law:
The Free Ride Is Over

 Smaller feature size allowed higher clock rates
» better performance BUT ALSO more energy

– Wattage ∝ mm2 × clock rate
» and we ran out of cooling

 Smaller feature size also allowed more tricks on
the die at a given clock rate
» superpipelining, superscalar and OOO issue, speculation
» better performance without more energy
» but we ran out of tricks

MLS 11/10/08 3

1995 v. 2005

http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu_charts_2005/page2.html

MLS 11/10/08 4

Density ∝ performance only if year ≤ 2004

http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu_charts_2005/

MLS 11/10/08 5

Enter Multicore

 Multiple processors (cores) on each chip
» maybe ratchet back the clock and (esp.) the tricks

(forgo diminishing returns)
 But this is no longer invisible to the user of

traditional programming languages
» programs have to be multithreaded

MLS 11/10/08 6

The Coming Crisis

 Parallelism common in high-end scientific computing
» done by experts, at great expense

 Also common in Internet servers
» “embarrassingly parallel”

 Has to migrate into the
mainstream
» programmers not up

to the task

slurmed.com

MLS 11/10/08 7

The Traditional Model
 Explicit threads, with locks for mutual exclusion
 In use since the mid 1960s
 Well understood, but hard to

use correctly
» acquire wrong lock; forget to release
» deadlock due to ordering
» priority inversion
» inopportune preemption
» convoying
» lack of composability

 Performance/complexity tradeoff

MLS 11/10/08 8

The “Transactional Religion”

 Butler Lampson: every good idea in
operating systems came from the
database community

 Lightweight transactions
(atomic, consistent, isolated)
Herlihy & Moss [1993], Shavit & Touitou [1995], ...,

MLS 11/10/08 9

A Simple Idea
 User labels atomic sections

 Underlying system ensures atomicity, isolation,
and consistency; executes in parallel when possible

 Implementation expected to be speculative;
back out and re-try on conflict
» requires HW or SW checkpointing / logging
» doing both at Rochester; focus here on SW

atomic {

...
}

MLS 11/10/08 10

STM, abstractly
Object

 Only owner can
change the object

 Only one
transaction can
own the object at
a time

 Until the owner
commits, everyone
sees Valid Version

Valid
Version

Owner
Version

Owner Status ACTIVE

Metadata

MLS 11/10/08 11

ACTIVECOMMITTED

Atomic Commit

 Single CAS updates all
objects to the new version CAS

 Multiple objects point to
same transaction descriptor

MLS 11/10/08 12

Big Conceptual Benefits

 Avoid deadlock, priority inversion — composability
 Tolerate thread failures (w/ nonblocking

implementation)
 Eliminate the tradeoff between concurrency and

clarity:
» system’s job, not the programmer’s, to figure out what

can run in parallel

 the complexity of coarse-grain locks with (most of) the
 performance of fine-grain locks

MLS 11/10/08 13

Major Implementation Issues

 Conflict detection / consistency preservation
» eager v. lazy
» visible readers v. incremental validation v. timestamps v.

Bloom filters
 Buffering: cloning v. redo v. undo
 Lock-based v. nonblocking (OF? LF?)
 Conflict resolution

» Who wins? Who loses?
» What progress guarantees can we make (if any)?

 Explosion of papers over the past 5 years

MLS 11/10/08 14

Semantic Complications

 Nesting
 Condition synch. (retry)
 Exceptions (need language support!)
 Irreversible ops / inevitable txns
 Interaction w/ locks, NB data structures
 Ability to “leak” info from aborted txns
 Privatization and publication

MLS 11/10/08 15

 What might this code print?
» 0 3 (A first)
» 1 3 ??
» bus error ??

A Privatization Puzzle
﻿shared node* p
shared int n = 0;
A: atomic { B: atomic {
 my_node = p->next if (p->next)
 p->next = nil p->next->val = 4
 i = n n = 1
 } }
 print i, my_node->val
 delete my_node

2 3

» 1 4 (B first)
» 0 4 ??

MLS 11/10/08 16

The Publication / Privatization
Problem

 SW txns serialize by reading & writing metadata
 Want to avoid that OH when poss. —> private use

» Delaunay mesh creation app: 95+% private
 But Bad Things can happen at the public/private

boundaries
» delayed cleanup @ privatization
» doomed txns @ privatization
» early reads @ publication

MLS 11/10/08 17

What Semantics Do We Want?
 Memory models suggests: appearance of sequential

consistency for properly synchronized programs
 But what is “properly synchronized” for TM?

» static data partition
» global phase consensus
» privatizing / publishing transactions (explicit?)
» private / transactional races (“strong isolation”) ?

 Is the language implementation required to catch
bad programs? Statically?

 If not, are there constraints on what bad
programs can do?
» Cf Java and C++ MMs

MLS 11/10/08 18

My Personal Take

 Static partition is too restrictive
 Transactional / nontransactional races are bugs

» Cf DRF
» if r and T conflict, a transaction in r ’s thread must

intervene
 As in Java, consequences of bugs are limited —

program can’t “catch fire”
» in particular, no out-of-thin-air reads

MLS 11/10/08 19

Database Semantics

 Serializability (S)
» Observed history must be equivalent to (same ops, same

results) some serial history (no overlapping txns) with
the same thread subhistories

 Strict Serializability (SS)
» Additionally, if 2 txns (of different threads) do not

overlap in the observed history, they must appear in the
same order in the serial history

» Motivation: prevent threads from using outside events to
observe txns in the “wrong” order — plane ticket example

MLS 11/10/08 20

Single Lock Atomicity
 (SLA) Transactions behave “as if” they acquired a

single global lock
» Equivalent to SS:

– serial txn order ≡ lock acquisition order
– locks force order wrt nontxnal accesses w/in threads

» Widely considered too expensive to implement
– At begin_txn, must ensure no peer has prefetched

published data
– At end_txn, must ensure all previous txns have

cleaned up, and all doomed txns aborted

MLS 11/10/08 21

Relaxing Order
 Multi-lock semantics [Menon et al.’07]

» separate reader-writer lock for every datum
» several alternative locking protocols; relax requirement for

serializability
 But

» Explains behavior in terms of (multiple) locks — which txns
were supposed to replace!

» Abandons serial order for txns — arguably the key to
success in the DB world

 Alternative proposal [OPODIS ’07]
» Define semantics in terms of ordering (Cf: Java, C++)
» Keep transactions serial; make txnal-nontxnal ordering

optional

MLS 11/10/08 22

The Bigger Picture:
Keep the Simple Case Simple

 Partition shared and private data
 Atomic is simply atomic; data is just data

(“no asterisks”)
 Compiler has to figure out a lot

» Inevitability for irreversible operations
» Static inference of always-private data
» Automatic cloning for transactional and private contexts

 If you need more, turn the page
» condition sync
» privatization

 But if you don’t, don’t

» leaking
» interoperation w/locks

MLS 11/10/08 23

TM Work at Rochester
 ﻿RSTM suite of TM implementations

» all major options from the literature
» dozens of back-end variants
» uniform API based on C++ smart pointers and templates

– good for experimentation; not for naive users
 Exploration of

» implementation basics: conflict detection and resolution, buffering
[CSJP'04, LCR'04, PODC'05 (2), DISC'06, SPAA'08]

» inevitability and retry mechanisms [TRANSACT'08, ICPP'08, PODC'08]
» privatization [PODC'07, ICPP'08]
» hardware acceleration [TRANSACT'06, PPoPP'07, ISCA'07, SPAA'07,

ASPLOS'08, ISCA'08]
» nonblocking implementations [PODC'05, DISC'05, TRANSACT'06,

PPoPP'08]
» application studies [NGS'07, PODC'07, IISWC'07, TRANSACT'07]
» semantics [SCOOL'05, TRANSACT'06, DISC'07, OPODIS'08]

MLS 11/10/08 24

Status of the Field

 HW support in Azul and Sun processors
 SW projects underway at Intel, Sun, Microsoft,

and IBM (at least)
 SW performance results are mixed — a win in

some cases, a loss in others — real benefits are in
ease of use

 Will (in my opinion) succeed at simplifying the
creation of parallel data structure libraries

 Not yet clear how much more will succeed
 Is not a panacea !

MLS 11/10/08 25

Ongoing Work
 Runtime implementation issues: private use,

irreversibility, conflict detection and contention
management [Mike Spear]

 Formal semantics, with privatization
 Language integration
 Compiler implementation [Luke Dalessandro]
 Hardware acceleration [Arrvindh Shriraman]
 Application development

 Longer term

MLS 11/10/08 26

 Programming idioms / design patterns
» e.g., futures, p-o iterators, dataflow, . . .

 Higher-level abstractions
» map/reduce/scan, . . .

 Speculative parallelization
» manual or automatic
» transactions for automatic detection and recovery from

uncommon data races
 (Your silver bullet here)

Where Will all the
Threads Come From

www.cs.rochester.edu/research/synchronization/

