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Abstract—We are interested in equipping an indoor mobile environments, where people, robots and other mobile obsta-
robot with a robust localization algorithm. We assume that the ¢les may obstruct the view of the sensors.
robot is performing some task that requires it to continuously Algorithms that attempt to perform Simultaneous Lo-
move, and localization needs to be incidentally achieved. A L . .
few other known efforts, e.g., a museum-guide robot, a service gallzat|on and MaPp'”g (SLAM) commonly use particle
robot, or a soccer robot, have addressed similar indoor inci- filters for representing the location hypotheses of the robot.
dental localization and navigation problems, but have mostly However, the hypotheses are permitted to evolve irrespective
relied on visual-based landmark perception. Such tasks can of map based constraints.
include frequent stoppages that can play an important role In this work, we use radio frequency (RF) beacons, as well

in reducing localization uncertainty. In this work, we assume . L, . .
that the environment includes static radio nodes, which can be S wireless networks to provide indicative range information

queried for localization landmark information. We introduce a  USing received signal strength. This approach is not affected
representation of the indoor map in terms of both rigid map by changes in the visual appearance of the environment,
constraints, e.g., corridor width and connectedness, and as a although it is still susceptible to local obstacles like people

set of sampled location points with signal strengths defining the and other robots.

a priori map knowledge. The dynamic radio signal strength . N .
from the sensor network nodes, along with the discrete map . Our approach at tackling the Ioc-al|zat|on. Pmb'em IS mo—
points is used to generate a continuous localization probability tivated by the development of an indoor visitor companion
distribution. This probability distribution, combined with the robot. The environment in which the robot is to operate is
motion data of the robot and the rigid map constraints reults  an office building with a series of interconnected hallways,
in a novel indoor localization algorithm. Two novel approaches \vnich can be traversed by the robot. As in any busy office
in our algorithm compared to other algorithms are the method . .
of generation of an estimate of the perceptual model that is _bU|Id|r_19, the hallways have_people and other robot§ involved
continuous in space, and the use of r|g|d map constraints for in their own tasks. There will also be obstructions like CartS,
weighting location beliefs. We demonstrate the algorithm in an tables, chairs and boxes left in the hallway temporarily. The
autonomously moving robot that interacts with a real sensor robot should be free to move about, performing its own tasks
network in our building. without having to stop to localize itself. This implies that
any sensory inputs that assist in the localization of the robot
I. INTRODUCTION should be incidental, without requiring the robot to stop for

) ) readings just to obtain a localization estimate.
An autonomous robot needs to be location aware in order | this paper, we describe an algorithm based on Markov

to meaningfully execute its tasks. Numerous approach@scalization for localizing a robot on a known map using
address the localization problem with varying degrees Q}r signal strength from the nodes of a sensor network. In
success. the derivation of the sensor prediction model, we assume

Most robots operating outdoors can tolerate localizatioRo knowledge of the propagation characteristics of the RF
errors on the order of one meter, generally using GP§gnals.
readings. Very few devices can consistently receive GPS Qur algorithm for localization of the robot consists of
signals indoors with appropriate accuracy. two stages. In the first stage, thdap Learning Phasewe

A variety of approaches to indoor localization have beeitroduce a representation of the map using a set of vertices
developed that rely on the detection of features by the robotig, and a set of edgeE connecting them. The vertices are
sensors, and estimation of the range and orientation witlistributed in space according to a given distribution, e.g.
respect to known landmarks. The landmarks chosen can bgiformly at 1m intervals. Fig. 1 shows an example of the
artificial, like colour-coded markers, or pre-existing objectgraph representation of a section of a map. In the figure, the
like doorways and light fixtures. verticesvy, ve, v3 and vy are shown connected by edges

Some indoor localization algorithms use optical sensofrglashed lines). Three RF nodes,, n, and ng are also
including cameras, laser scanners, and infrared sensors, babwn. To complete th&lap Learning Phasethe robot is
such approaches do not perform as well in crowded indoonanually driven around, and at every vertex, the robot is



the current estimates. Of similar nature is the work of Kwok
and Fox [2], which involves the use of Rao-Blackwellised
particle filters to track a moving target (the ball). The use
of map information is shown to provide a decrease in the
occurrences of the ball getting lost. In both these efforts,
however, the robot would have to stop and look around for
visual markers occasionally when lost.

Variations of feature based localization have been devel-
oped and tested on a number of robots, including Robox [7],
[4], which was extensively tested during the Swiss National
Exposition Expo.02. Localization based on landmark detec-
tion involves looking for landmarks using the robot’s sensory
inputs, and comparing with known models of the landmark
. _ , to estimate robot location [9], [10]. Significant work has
Fig. 1. An example of the graph representation of a section of the map . w .

also been done in the area of autonomous “learning” of
landmarks [11], [12]. In this scheme, the robot is free to
Igarn features and landmarks in the environment that are best
ited for localization. Markov Localization is yet another
pular localization technique that has been employed by the

halted and allowed to collect signal strength data from th
accessible nodes of the radio network. The Map Learnin
Phase needs to be performed only once in the environm . ) ,
where the robot is to operate. !nteractlve museum tour-guide robot., Rhlno [5], [§]. Another
The second stage, tiRun-time Phasés performed online |mplementgt|on _of t_he Markov localization technique using
on the robot. The robot is free to perform its various tasks' metric discretization of the state space [3] was evaluated

; o ; ; ; the Rhino [5] and Minerva [8] robots. The Xavier
while the localization algorithm continuously updates itg!SINY : -
location belief, requiring the following data: robot [13], [14], uses partially observable Markov decision

I ina th rit)rocesses to maintain a belief of its position, as required by
1) Data collected and programmed during the Map Lear fs navigation algorithm.

ing Phase. This includes the layout of the map and the
test measurements taken.

2) Odometry data from the robot. This includes the mo-
tion of the robot under its own, or external control.

3) Signal strength measurements from the sensor noda&s A Priori Data

that are accessible from the robot’s present location. . . . S
Our algorithm requires a set of a priori data, which is gath-

Given the above sets of data, our localization algorithma e 4 ring theviap Learning Phaseas described in Section
provides a sample-based probability distribution of the locgy, 5 This data consists of a graph-based representation of
tion of the robot on the map, as well as the most probablig . map, and RF test data
location of the robot. This is described in detail in Section 1) Par'ametric Represeniation of the Mahe map is

IV-A. resented as a directed graph, with a set of vertices

. . . re
Since this approach uses no visual sensors, the prese%%| a set of edgef to connect themNv is the number

of obstacles has no effect on the algorithm. Furthermore, NQ vertices inl’. and Ne is the number of edges if. For

RF signal propagation model is necessary as the algorithmé\s;ery edger; in E, the direction of the edge is fromy, to

only depender}t.on the cpl_lected samples in the Map.L(_aarnlniz, wherew;,, vz € V. For every edge; in E, the width
Phase. In addition, empirical results show that the rigid mapc,, "0 dor in that section is denoted bydth;
constraints enable the algorithm’s estimate to converge to thez) RE Test Data:For each of the vertices. (; c )

t locati idly. .
correct location rapidly. the expected RF signal strengths from the sensor nodes need
Il. RELATED WORK to be measured. This comprises the RF test data. The mean
. L response of the sensor nodes when queried from veytex
Robot soccer is an application where researchers ha

Yepresented by a row vectdt; = [ri; ... r; wherer;; is
had to address the problem of mobile robot Iocalizatio%g mean sign)elll strength of ;enggzrlngdrléhj\gﬂ querie:ﬁ‘rom

with concurrent tasks. In the Standard Platform Leagu%rtexv_ Nn is the number of sensor nodes. Once the RE
the Sony AIBO four-legged robots perform localization OMYata coZII‘ection is complete, the matfi — [Rir'_ .RT T

a knOV\.m game field using visual data gathered by a |0V\f'e resents the expected signal strength responses from every
resolution camera. There are several colour-coded markesr nsor node, for every vertex

around the field that the robots could use as landmarks. ' '

Lenser and Veloso [1] introduced an algorithm cal&szhsor
Resetting Localizatiomo maintain an estimate of the robot
on the playing field, as well as the capability to “reset” the As derived in [15], the recursive Bayesian update for a

location estimates when sensory data significantly contradilctcation beliefBel(z;) for locationa at time step is given

1. MARKOV LOCALIZATION AND THE
PERCEPTUAL MODEL ESTIMATION

B. Markov Localization using recursive Bayesian Update



by: the belief does not go to zero in a single step at any location.
From this mapping (eq. 3) it can be seen that the vertex with
Bel(xt) = np(y:|z+) /p(mt\ﬂctq,utq)Bel(wtﬂ)dmtq the largesierror; value is assigned the smallest probability
(1) value, while the vertex with the smallest value efror; is
Here, is a normalization constang; the sensor reading at assigned the highest probability.
time stept, andu,_; the odometry data measured between The calculated estimate &f(S|v;), P(S|v;), is limited to
time steps — 1 andt. The termp(xz;|z¢_1,u;_,) is obtained the discrete locations of the verticeson the map. In order
from the motion model of the robot. The terpiy,|z,) is tO update the probabilities of location beliefs at arbitrary
given by the perceptual model - the probability of makindocations on the map, the complete perceptual motél|x)
a sensory reading, as a function of the pose of the robot,is estimated by linear intorpolation between adjacent vertices

x;. This calculation is central to our algorithm. on the map. .
) With this estimate of the perceptual mod&(S|z) and the
C. The Perceptual Model Estimate motion model of the robap(x;|z:_1, u,_1), the localization

During the Run-Time Phasethe matrix R is known, belief of the robot can be recursively updated.
and the latest RF signal measurement is given Soy=
[Si...Snn] whereS; is the signal strength received from IV. IMPLEMENTATION

node n;. Not all S;'s need exist, since not all nodes are The algorithm for localization consists of two stages. The
neccesarily within RF range of the robot. Lfetyjori denote first stage is theMap Learning Phasewhere the a priori
the squared error between the measured sighahd the gata required by the algorithm is collected. The second stage,

mean responsé; at nodev;. This error term is defined the Run-Time Phasés performed online while the robot is
as the sum of the squared errors between the observggerational.

signal strengths and the expected signal strengths. To avoid
penalizing dropped signals, the error term is considered only. Map Learning Phase

with respect to witnesse; terms. The first step in the Map Learning Phase is to define the

Nn map that is traversable by the robot. After this, the RF signal
error; = Y IsObserved(S;)(rij — S;)° (2) strength data for every vertex on the map is collected.
j=1 1) Defining the Parameters of the Mahe map is rep-
Here, IsObserved(S;) = 1 if S, exists, and resented as a directed graph, as described in Section Ill-A.1.
IsObserved(S;) = 0 if S; does not exist. This ensures thatThe vertices) of V' are placed along the corridors traversable
the absence of an observed signal is not penalized. by the robot. The vertex spacing can be reduced for a finer

Once theerror; term has been computed for everjt can  fepresentation or increased for a coarser representation. For
be used to estimat®(S|v;), the probability of the reading €very edges; in E, the width of the corridor in that section
S being made if the robot was located at vertex The is denoted bywidth;. The locations of the vertices, lengths
mapping fromerror; — P(S|v;) can be chosen according to of the edges, and the widths of the corridors are taken from
the theoretical model of the RF signal propagation. Assumirf§j€ architectural plans of the building. _
no prior knowledge of RF signal propagation, there are a 2) Collection of RF data:Once the representation of the
number of possible choices for such a mapping. However, dnap is defined, the robot collects sensor data at each of the
such mappings must assign higher probabilities to verticégrtex locationsy; (v; € V). At each location, the robot is
with lower error; values. Thus, the vertex; with the allowed to continuously send out ping requests to all sensor
smallest value ofrror; would be the nearest to the actualnodes in range, and it gathers the signal strengths of all these
location of the robot, and should be assigned the higheBpdes. This is used to populate the mafias described in
value for P(S|v;). The specific mapping that we use is givenSection 111-A.2. Signal strengths are recorded in dBm. If a

by: noden; is inaccessible from vertex, then the corresponding
R termr;; is set to -46dBm, which is the sensitivity threshold
P(S|v;) = ~(max(errory...errorny) of the radio receiver that we used.
—error; + €+ N(0,05)) 3)

_ o B. Run-Time : Representation of the Location Hypotheses
Here,~ is a normalization constant that ensures that the

probabilities of all sensor measurements sum to 1. The multiple hypotheses of the robot location are sampled

and represented byarticles p;. The number of particles is
/ P(S|v) =1 (4) denoted byVp. Each particley; has the following properties:
s

o ¢p;, the edge that the particle is associated with.
In the estimate of the perceptual model, the Gaussian noise. v1p;, the first vertex of edgep;.
term N(0,0,) is added to emulate sensor noise with zero « v2p;, the second vertex of edg®;.
mean and variance;,. ¢ is a small number that is added to « d;, the projected location of the particle on the edge.
each term to ensure that the probability function does not gote o;, the offset of the location of the particle from the
to zero anywhere. This is done to ensure that the weight of edge.



Algorithm 1 Predict.

0, let u = distance traversed by robot
v2p; let df = rotation of robot
e = P$-----=- for i =1 to Np do

7)) vy (x,¥:) 0, — 6, + db +N(0’00)
w; — utN(0,04)

x; — x; + u;cos(6;)

yi < yi + u;sin(6;)
recalculated; ando;
vip; end for

Fig. 2. Properties of a particle Algorithm 2 Update particle weights.

for i =1 to Np do

fr « d;l(length of edgeep;)

w; «— w; * (fr* P(ve|S) 4+ (1 — fr) « P(v1]9))
end for

o x;,y; the Cartesian location of the particle on the map
with respect to a global reference frame.

« 6;, the orientation of the particle with respect to the
global reference frame.

« w;, the normalized weight assigned to the particle. . ) ) )

« we;, the map constrained weight assigned to the part}he edge that_the particle is associated with. Algorithm 2
cle. This weight is calculated in théonstrainstep of Implements th's' ) )
the Run-Time phase, as described in Section IV-C.3. 3) Constrain: Following the Update step, the edge associ-

) , ) ) _ation of each particle is re-evaluated, and the map constrained
The properties of the particle are graphically illustrated 'Qveights computed. For this, particles which are within a
Fig. 2. threshold thresh of the ends of the edge are projected
onto the neighboring edges to determine which among them
C. Run-Time : Updating the Location Hypotheses would be best associated with the particle. This association

The location hypotheses are updated iteratively when neiy détermined based on the offset from the edge, and the
data is available. The four steps involved in the update affifference between the orientation of the particle and the
the Predict step, theUpdate step, theConstrainstep and orientation of the edge. Furthermore, the weights of the
the Resamplestep. The Predict step is executed whenevdiarticles which hav_e an offset from their associated e_dge
new odometry data from the robot is available, and updatégeater than the width of the edge, are attenuated with a
the positions and orientations of the particles. The Upda@aussian falloff. Algorithm 3 illustrates the implementation
step is executed when new RF signal data is available, aR# this step.
updates the weights of the particles. The predicted perceptuat?) ResampleParticles withwe; values less than a thresh-
model based on the latest signal measurements, as descrigil value are removed, and replaced by a new sampling.
in Section 11I-C, is used for this step. The Constrain step is
executed whenever the Predict step is executed, and updaﬁs hm 3 ApD] A
the weights and edge associations of the particles based mgorl' m pply map constraints.
map data and constraints. The Resample step is used td°" ¢ =1t Np do
resample the particles when their weightage drops below a /7 < di/(length of edgep;)

threshold. if fr >1—thresh or fr < thresh then
1) Predict: Given new odometry data of the motion of _Fm('j edgee best associated with;

the robot, for each particlg;, its properties);, z;,y;,d;,0; are if el = ep; then

updated using the motion model of the robot, as described epi ¢

in [15]. Algorithm 1 demonstrates this implementation. In Calculate new;

the motion model of the robot\'(0,04) and N(0, ) are 0i = 0

the Gaussian error terms for robot orientation and distance en?jnicfj i

traversed, respectively.

2) Update: To update the weights of the particles based
on the latest RF signal readings, the estimated perceptual
model as described in Section IlI-C is used. Ot |S)

width; < width of edgeep;
if abs(o;) > width; then
we; +— w; * exp(—(abs(o;) — width; /2)?)

ae : else
has been computed, the probability distribution of being at S;UC' —w
any point on the map can be estimated by linear interpolation end i:‘ !
between adjacent vertices. Thus, the weight of each particleend for

is updated by multiplying its previous value with a linear

L ) R li Il weightsuc;
combination of the probabilities of being at the ends of ehormalize all weightsve;




This sampling is drawn from the map at locatienwith  poor localization knowledge. The actual position of the robot
probability P(S|z) based on the last RF signal measuremens depicted by the cross. As the robot gathers RF signal
S. data while still stationary, the particle cloud shrinks to one
corridor, and then one section of the corridor (Fig. 6b and
Fig. 6c, respectively). As the robot is driven forward, the
Given the set of particleg;, the best location hypothesis particle cloud similarly translates on the map, while the
of the robot is obtained by taking the mean of the locatioapplication of the map constraints eliminates the particles
of the particles within a distance threshold from the particleshich move out of the corridor boundaries. This results in
with the highestwc; value, and projecting this mean ontothe particle cloud growing smaller and denser, as is seen in
the map. Fig. 6d. As the robot starts turning left and moving down
the connecting corridor, particles in those locations of the
V. EXPERIMENTAL RESULTS map where such a turn is not possible get weighted less and
The localization algorithm presented here was tested dess until they are completely ruled out (Fig. 6e, Fig. 6f).
an actual robot in an office building that was equipped witlThe resulting cloud of particles is clustered close around
an RF sensor network. The robot used for the experimentise actual location of the robot (Fig. 6g), and remains well
was a custom built platform for a visitor companion robotjocalized even after the second left turn (Fig. 6h).
with an omnidirectional drive mechanism, a LADAR sensor
for obstacle detection, and an onboard notebook computer.For comparison, the algorithm was simultaneously tested
The number of particles was set to 4000. The predict, updaté¢nder the same circumstances, without applying the map
contrain and resample iteration cycles take less than 0.25sa@nstraints of the Constrain step (Section 3.3). This is
compute on the onboard 1.73GHz Pentium M processor. Reguivalent to assuming that the corridors have infinite width,
signal strengths are polled by the robot every two second$Q particles never‘fall off” the corridors. The same test run
Fig. 3 shows the layout of the traversable map with the sens#@s performed a number of times with and without map
nodes marked with dots. constraints, and the time progression of the weighted location
To illustrate some features of the algorithm, we preser@frors were recorded. The mean response of all these runs,
in Fig. 6 some snapshots of a test run of the robot alongith and without map constraints, is plotted in Fig. 5. At
a subsection of the map. The robot was pre-programmed ¢ beginning of the runs, both the map constrained and
follow a pre-specified path (ground truth shown in Fig. 4)the unconstrained algorithms have a similar response. As the
The motion primitives to implement these commands utirobot starts taking the first turn (aroumd= 55s) however,
lized sensory input from an on-board laser range-finder féhe map constrained algorithm decreases the weights of the
obstacle avoidance and aligning with the walls. particles for which such a turn is not possible. This leads
The evolution of the location hypotheses, as representé® @ sudden reduction in the mean error of the particles for
by the cloud of particles on the map, is shown in Fig. 6the map constrained algorithm. The unconstrained algorithm
Initially, the localization algorithm is started with no prior continues to suffer from large errors until successive RF
knowledge of its location, but with a known orientation. TheSignal measurements finally reduce the distribution of its
uniformly distributed particle cloud in Fig. 6a indicates theParticles. The second turn arourtd= 90s again causes
an increase in the error for the unconstrained algorithm.
The error in the localization for the map constrained case
remains around 0.5m after convergence. Thus it can be seen
o o that the algorithm with the map constraints leads to a faster
F - convergence than for the unconstrained algorithm.

D. Inference of Location
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Fig. 6. Time snapshots of test run

VI. CONCLUSION

In this paper, we introduced an algorithm for the localiza-[7]
tion of an indoor mobile robot on a map as represented by
a graph. The data collected during the Map Learning Phase
of the algorithm is used to generate a perceptual model for
the robot’s location hypotheses, and entirely encapsulates the
region of the map traversable by the robot. This, along withyg,
the application of rigid map constraints, led to our unique
localization algorithm. By running the algorithm on our
robot, we demonstrated the effectiveness of the algorithm.
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