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Abstract— We are interested in equipping an indoor mobile
robot with a robust localization algorithm. We assume that the
robot is performing some task that requires it to continuously
move, and localization needs to be incidentally achieved. A
few other known efforts, e.g., a museum-guide robot, a service
robot, or a soccer robot, have addressed similar indoor inci-
dental localization and navigation problems, but have mostly
relied on visual-based landmark perception. Such tasks can
include frequent stoppages that can play an important role
in reducing localization uncertainty. In this work, we assume
that the environment includes static radio nodes, which can be
queried for localization landmark information. We introduce a
representation of the indoor map in terms of both rigid map
constraints, e.g., corridor width and connectedness, and as a
set of sampled location points with signal strengths defining the
a priori map knowledge. The dynamic radio signal strength
from the sensor network nodes, along with the discrete map
points is used to generate a continuous localization probability
distribution. This probability distribution, combined with the
motion data of the robot and the rigid map constraints reults
in a novel indoor localization algorithm. Two novel approaches
in our algorithm compared to other algorithms are the method
of generation of an estimate of the perceptual model that is
continuous in space, and the use of rigid map constraints for
weighting location beliefs. We demonstrate the algorithm in an
autonomously moving robot that interacts with a real sensor
network in our building.

I. INTRODUCTION

An autonomous robot needs to be location aware in order
to meaningfully execute its tasks. Numerous approaches
address the localization problem with varying degrees of
success.

Most robots operating outdoors can tolerate localization
errors on the order of one meter, generally using GPS
readings. Very few devices can consistently receive GPS
signals indoors with appropriate accuracy.

A variety of approaches to indoor localization have been
developed that rely on the detection of features by the robot’s
sensors, and estimation of the range and orientation with
respect to known landmarks. The landmarks chosen can be
artificial, like colour-coded markers, or pre-existing objects
like doorways and light fixtures.

Some indoor localization algorithms use optical sensors
including cameras, laser scanners, and infrared sensors, but
such approaches do not perform as well in crowded indoor

environments, where people, robots and other mobile obsta-
cles may obstruct the view of the sensors.

Algorithms that attempt to perform Simultaneous Lo-
calization and Mapping (SLAM) commonly use particle
filters for representing the location hypotheses of the robot.
However, the hypotheses are permitted to evolve irrespective
of map based constraints.

In this work, we use radio frequency (RF) beacons, as well
as wireless networks to provide indicative range information
using received signal strength. This approach is not affected
by changes in the visual appearance of the environment,
although it is still susceptible to local obstacles like people
and other robots.

Our approach at tackling the localization problem is mo-
tivated by the development of an indoor visitor companion
robot. The environment in which the robot is to operate is
an office building with a series of interconnected hallways,
which can be traversed by the robot. As in any busy office
building, the hallways have people and other robots involved
in their own tasks. There will also be obstructions like carts,
tables, chairs and boxes left in the hallway temporarily. The
robot should be free to move about, performing its own tasks
without having to stop to localize itself. This implies that
any sensory inputs that assist in the localization of the robot
should be incidental, without requiring the robot to stop for
readings just to obtain a localization estimate.

In this paper, we describe an algorithm based on Markov
localization for localizing a robot on a known map using
RF signal strength from the nodes of a sensor network. In
the derivation of the sensor prediction model, we assume
no knowledge of the propagation characteristics of the RF
signals.

Our algorithm for localization of the robot consists of
two stages. In the first stage, theMap Learning Phase, we
introduce a representation of the map using a set of vertices
V , and a set of edgesE connecting them. The vertices are
distributed in space according to a given distribution, e.g.
uniformly at 1m intervals. Fig. 1 shows an example of the
graph representation of a section of a map. In the figure, the
verticesv1, v2, v3 and v4 are shown connected by edges
(dashed lines). Three RF nodes,n1, n2 and n3 are also
shown. To complete theMap Learning Phase, the robot is
manually driven around, and at every vertex, the robot is



Fig. 1. An example of the graph representation of a section of the map

halted and allowed to collect signal strength data from the
accessible nodes of the radio network. The Map Learning
Phase needs to be performed only once in the environment
where the robot is to operate.

The second stage, theRun-time Phase, is performed online
on the robot. The robot is free to perform its various tasks,
while the localization algorithm continuously updates its
location belief, requiring the following data:

1) Data collected and programmed during the Map Learn-
ing Phase. This includes the layout of the map and the
test measurements taken.

2) Odometry data from the robot. This includes the mo-
tion of the robot under its own, or external control.

3) Signal strength measurements from the sensor nodes
that are accessible from the robot’s present location.

Given the above sets of data, our localization algorithm
provides a sample-based probability distribution of the loca-
tion of the robot on the map, as well as the most probable
location of the robot. This is described in detail in Section
IV-A.

Since this approach uses no visual sensors, the presence
of obstacles has no effect on the algorithm. Furthermore, no
RF signal propagation model is necessary as the algorithm is
only dependent on the collected samples in the Map Learning
Phase. In addition, empirical results show that the rigid map
constraints enable the algorithm’s estimate to converge to the
correct location rapidly.

II. RELATED WORK

Robot soccer is an application where researchers have
had to address the problem of mobile robot localization
with concurrent tasks. In the Standard Platform League,
the Sony AIBO four-legged robots perform localization on
a known game field using visual data gathered by a low-
resolution camera. There are several colour-coded markers
around the field that the robots could use as landmarks.
Lenser and Veloso [1] introduced an algorithm calledSensor
Resetting Localizationto maintain an estimate of the robot
on the playing field, as well as the capability to “reset” the
location estimates when sensory data significantly contradict

the current estimates. Of similar nature is the work of Kwok
and Fox [2], which involves the use of Rao-Blackwellised
particle filters to track a moving target (the ball). The use
of map information is shown to provide a decrease in the
occurrences of the ball getting lost. In both these efforts,
however, the robot would have to stop and look around for
visual markers occasionally when lost.

Variations of feature based localization have been devel-
oped and tested on a number of robots, including Robox [7],
[4], which was extensively tested during the Swiss National
Exposition Expo.02. Localization based on landmark detec-
tion involves looking for landmarks using the robot’s sensory
inputs, and comparing with known models of the landmark
to estimate robot location [9], [10]. Significant work has
also been done in the area of autonomous “learning” of
landmarks [11], [12]. In this scheme, the robot is free to
learn features and landmarks in the environment that are best
suited for localization. Markov Localization is yet another
popular localization technique that has been employed by the
interactive museum tour-guide robot, Rhino [5], [6]. Another
implementation of the Markov localization technique using
a metric discretization of the state space [3] was evaluated
using the Rhino [5] and Minerva [8] robots. The Xavier
robot [13], [14], uses partially observable Markov decision
processes to maintain a belief of its position, as required by
its navigation algorithm.

III. MARKOV LOCALIZATION AND THE
PERCEPTUAL MODEL ESTIMATION

A. A Priori Data

Our algorithm requires a set of a priori data, which is gath-
ered during theMap Learning Phase, as described in Section
IV-A. This data consists of a graph-based representation of
the map, and RF test data.

1) Parametric Representation of the Map:The map is
represented as a directed graph, with a set of verticesV
and a set of edgesE to connect them.Nv is the number
of vertices inV , andNe is the number of edges inE. For
every edgeei in E, the direction of the edge is fromvi1to
vi2, wherevi1, vi2 ∈ V . For every edgeei in E, the width
of the corridor in that section is denoted bywidthi.

2) RF Test Data:For each of the verticesvi (vi ∈ V ),
the expected RF signal strengths from the sensor nodes need
to be measured. This comprises the RF test data. The mean
response of the sensor nodes when queried from vertexvi is
represented by a row vectorRi = [ri1 . . . riNn] whererij is
the mean signal strength of sensor nodej when queried from
vertexvi. Nn is the number of sensor nodes. Once the RF
data collection is complete, the matrixR = [RT

1 . . . RT
Nv]T

represents the expected signal strength responses from every
sensor node, for every vertexvi.

B. Markov Localization using recursive Bayesian Update

As derived in [15], the recursive Bayesian update for a
location beliefBel(xt) for locationx at time stept is given



by:

Bel(xt) = ηp(yt|xt)
∫

p(xt|xt−1, ut−1)Bel(xt−1)dxt−1

(1)
Here,η is a normalization constant,yt the sensor reading at
time stept, andut−1 the odometry data measured between
time stepst−1 andt. The termp(xt|xt−1, ut−1) is obtained
from the motion model of the robot. The termp(yt|xt) is
given by the perceptual model - the probability of making
a sensory readingyt as a function of the pose of the robot,
xt. This calculation is central to our algorithm.

C. The Perceptual Model Estimate

During the Run-Time Phase, the matrix R is known,
and the latest RF signal measurement is given byS =
[S1 . . . SNn] whereSi is the signal strength received from
node ni. Not all Si’s need exist, since not all nodes are
neccesarily within RF range of the robot. Leterrori denote
the squared error between the measured signalS and the
mean responseRi at nodevi. This error term is defined
as the sum of the squared errors between the observed
signal strengths and the expected signal strengths. To avoid
penalizing dropped signals, the error term is considered only
with respect to witnessedSi terms.

errori =
Nn∑
j=1

IsObserved(Sj)(rij − Sj)2 (2)

Here, IsObserved(Sj) = 1 if Sj exists, and
IsObserved(Sj) = 0 if Sj does not exist. This ensures that
the absence of an observed signal is not penalized.

Once theerrori term has been computed for everyi, it can
be used to estimateP (S|vi), the probability of the reading
S being made if the robot was located at vertexvi. The
mapping fromerrori → P (S|vi) can be chosen according to
the theoretical model of the RF signal propagation. Assuming
no prior knowledge of RF signal propagation, there are a
number of possible choices for such a mapping. However, all
such mappings must assign higher probabilities to vertices
with lower errori values. Thus, the vertexvi with the
smallest value oferrori would be the nearest to the actual
location of the robot, and should be assigned the highest
value forP (S|vi). The specific mapping that we use is given
by:

P̂ (S|vi) = γ(max(error1 . . . errorNv)
−errori + ε +N (0, σs)) (3)

Here,γ is a normalization constant that ensures that the
probabilities of all sensor measurements sum to 1.∫

S

P (S | vi) = 1 (4)

In the estimate of the perceptual model, the Gaussian noise
term N (0, σs) is added to emulate sensor noise with zero
mean and varianceσs. ε is a small number that is added to
each term to ensure that the probability function does not got
to zero anywhere. This is done to ensure that the weight of

the belief does not go to zero in a single step at any location.
From this mapping (eq. 3) it can be seen that the vertex with
the largesterrori value is assigned the smallest probability
value, while the vertex with the smallest value oferrori is
assigned the highest probability.

The calculated estimate ofP (S|vi), P̂ (S|vi), is limited to
the discrete locations of the verticesvi on the map. In order
to update the probabilities of location beliefs at arbitrary
locations on the map, the complete perceptual modelP̂ (S|x)
is estimated by linear intorpolation between adjacent vertices
on the map.

With this estimate of the perceptual modelP̂ (S|x) and the
motion model of the robotp(xt|xt−1, ut−1), the localization
belief of the robot can be recursively updated.

IV. IMPLEMENTATION

The algorithm for localization consists of two stages. The
first stage is theMap Learning Phase, where the a priori
data required by the algorithm is collected. The second stage,
the Run-Time Phaseis performed online while the robot is
operational.

A. Map Learning Phase

The first step in the Map Learning Phase is to define the
map that is traversable by the robot. After this, the RF signal
strength data for every vertex on the map is collected.

1) Defining the Parameters of the Map:The map is rep-
resented as a directed graph, as described in Section III-A.1.
The verticesv of V are placed along the corridors traversable
by the robot. The vertex spacing can be reduced for a finer
representation or increased for a coarser representation. For
every edgeei in E, the width of the corridor in that section
is denoted bywidthi. The locations of the vertices, lengths
of the edges, and the widths of the corridors are taken from
the architectural plans of the building.

2) Collection of RF data:Once the representation of the
map is defined, the robot collects sensor data at each of the
vertex locationsvi (vi ∈ V ). At each location, the robot is
allowed to continuously send out ping requests to all sensor
nodes in range, and it gathers the signal strengths of all these
nodes. This is used to populate the matrixR as described in
Section III-A.2. Signal strengths are recorded in dBm. If a
nodenj is inaccessible from vertexvi then the corresponding
term rij is set to -46dBm, which is the sensitivity threshold
of the radio receiver that we used.

B. Run-Time : Representation of the Location Hypotheses

The multiple hypotheses of the robot location are sampled
and represented byparticles pi. The number of particles is
denoted byNp. Each particlepi has the following properties:

• epi, the edge that the particle is associated with.
• v1pi, the first vertex of edgeepi.
• v2pi, the second vertex of edgeepi.
• di, the projected location of the particle on the edge.
• oi, the offset of the location of the particle from the

edge.



Fig. 2. Properties of a particle

• xi, yi the Cartesian location of the particle on the map
with respect to a global reference frame.

• θi, the orientation of the particle with respect to the
global reference frame.

• wi, the normalized weight assigned to the particle.
• wci, the map constrained weight assigned to the parti-

cle. This weight is calculated in theConstrainstep of
the Run-Time phase, as described in Section IV-C.3.

The properties of the particle are graphically illustrated in
Fig. 2.

C. Run-Time : Updating the Location Hypotheses

The location hypotheses are updated iteratively when new
data is available. The four steps involved in the update are
the Predict step, theUpdate step, theConstrain step and
the Resamplestep. The Predict step is executed whenever
new odometry data from the robot is available, and updates
the positions and orientations of the particles. The Update
step is executed when new RF signal data is available, and
updates the weights of the particles. The predicted perceptual
model based on the latest signal measurements, as described
in Section III-C, is used for this step. The Constrain step is
executed whenever the Predict step is executed, and updates
the weights and edge associations of the particles based on
map data and constraints. The Resample step is used to
resample the particles when their weightage drops below a
threshold.

1) Predict: Given new odometry data of the motion of
the robot, for each particlepi, its propertiesθi,xi,yi,di,oi are
updated using the motion model of the robot, as described
in [15]. Algorithm 1 demonstrates this implementation. In
the motion model of the robot,N (0, σθ) andN (0, σu) are
the Gaussian error terms for robot orientation and distance
traversed, respectively.

2) Update: To update the weights of the particles based
on the latest RF signal readings, the estimated perceptual
model as described in Section III-C is used. OnceP (vi|S)
has been computed, the probability distribution of being at
any point on the map can be estimated by linear interpolation
between adjacent vertices. Thus, the weight of each particle
is updated by multiplying its previous value with a linear
combination of the probabilities of being at the ends of

Algorithm 1 Predict.
let u = distance traversed by robot
let dθ = rotation of robot
for i = 1 to Np do

θi ← θi + dθ +N (0, σθ)
ui ← u+N (0, σu)
xi ← xi + ui cos(θi)
yi ← yi + ui sin(θi)
recalculatedi andoi

end for

Algorithm 2 Update particle weights.
for i = 1 to Np do

fr ← di/(length of edgeepi)
wi ← wi ∗ (fr ∗ P (v2|S) + (1− fr) ∗ P (v1|S))

end for

the edge that the particle is associated with. Algorithm 2
implements this.

3) Constrain: Following the Update step, the edge associ-
ation of each particle is re-evaluated, and the map constrained
weights computed. For this, particles which are within a
threshold thresh of the ends of the edge are projected
onto the neighboring edges to determine which among them
would be best associated with the particle. This association
is determined based on the offset from the edge, and the
difference between the orientation of the particle and the
orientation of the edge. Furthermore, the weights of the
particles which have an offset from their associated edge
greater than the width of the edge, are attenuated with a
gaussian falloff. Algorithm 3 illustrates the implementation
of this step.

4) Resample:Particles withwci values less than a thresh-
old value are removed, and replaced by a new sampling.

Algorithm 3 Apply map constraints.
for i = 1 to Np do

fr ← di/(length of edgeepi)
if fr > 1− thresh or fr < thresh then

Find edgee best associated withpi

if e! = epi then
epi ← e
Calculate newdi

oi ← 0
end if

end if
widthi ← width of edgeepi

if abs(oi) > widthi then
wci ← wi ∗ exp(−(abs(oi)− widthi/2)2)

else
wci = wi

end if
end for
Renormalize all weightswci



This sampling is drawn from the map at locationx with
probabilityP (S|x) based on the last RF signal measurement
S.

D. Inference of Location

Given the set of particlespi, the best location hypothesis
of the robot is obtained by taking the mean of the location
of the particles within a distance threshold from the particle
with the highestwci value, and projecting this mean onto
the map.

V. EXPERIMENTAL RESULTS

The localization algorithm presented here was tested on
an actual robot in an office building that was equipped with
an RF sensor network. The robot used for the experiments
was a custom built platform for a visitor companion robot,
with an omnidirectional drive mechanism, a LADAR sensor
for obstacle detection, and an onboard notebook computer.
The number of particles was set to 4000. The predict, update,
contrain and resample iteration cycles take less than 0.25s to
compute on the onboard 1.73GHz Pentium M processor. RF
signal strengths are polled by the robot every two seconds.
Fig. 3 shows the layout of the traversable map with the sensor
nodes marked with dots.

To illustrate some features of the algorithm, we present
in Fig. 6 some snapshots of a test run of the robot along
a subsection of the map. The robot was pre-programmed to
follow a pre-specified path (ground truth shown in Fig. 4).
The motion primitives to implement these commands uti-
lized sensory input from an on-board laser range-finder for
obstacle avoidance and aligning with the walls.

The evolution of the location hypotheses, as represented
by the cloud of particles on the map, is shown in Fig. 6.
Initially, the localization algorithm is started with no prior
knowledge of its location, but with a known orientation. The
uniformly distributed particle cloud in Fig. 6a indicates the

Fig. 3. Layout of traversible map, with sensor nodes marked in green.

Fig. 4. Ground truth of path traversed by robot (blue line).

poor localization knowledge. The actual position of the robot
is depicted by the cross. As the robot gathers RF signal
data while still stationary, the particle cloud shrinks to one
corridor, and then one section of the corridor (Fig. 6b and
Fig. 6c, respectively). As the robot is driven forward, the
particle cloud similarly translates on the map, while the
application of the map constraints eliminates the particles
which move out of the corridor boundaries. This results in
the particle cloud growing smaller and denser, as is seen in
Fig. 6d. As the robot starts turning left and moving down
the connecting corridor, particles in those locations of the
map where such a turn is not possible get weighted less and
less until they are completely ruled out (Fig. 6e, Fig. 6f).
The resulting cloud of particles is clustered close around
the actual location of the robot (Fig. 6g), and remains well
localized even after the second left turn (Fig. 6h).

For comparison, the algorithm was simultaneously tested
under the same circumstances, without applying the map
constraints of the Constrain step (Section 3.3). This is
equivalent to assuming that the corridors have infinite width,
so particles never“fall off” the corridors. The same test run
was performed a number of times with and without map
constraints, and the time progression of the weighted location
errors were recorded. The mean response of all these runs,
with and without map constraints, is plotted in Fig. 5. At
the beginning of the runs, both the map constrained and
the unconstrained algorithms have a similar response. As the
robot starts taking the first turn (aroundt = 55s) however,
the map constrained algorithm decreases the weights of the
particles for which such a turn is not possible. This leads
to a sudden reduction in the mean error of the particles for
the map constrained algorithm. The unconstrained algorithm
continues to suffer from large errors until successive RF
signal measurements finally reduce the distribution of its
particles. The second turn aroundt = 90s again causes
an increase in the error for the unconstrained algorithm.
The error in the localization for the map constrained case
remains around 0.5m after convergence. Thus it can be seen
that the algorithm with the map constraints leads to a faster
convergence than for the unconstrained algorithm.

Fig. 5. Time evolution of mean localization errors



Fig. 6. Time snapshots of test run

VI. CONCLUSION

In this paper, we introduced an algorithm for the localiza-
tion of an indoor mobile robot on a map as represented by
a graph. The data collected during the Map Learning Phase
of the algorithm is used to generate a perceptual model for
the robot’s location hypotheses, and entirely encapsulates the
region of the map traversable by the robot. This, along with
the application of rigid map constraints, led to our unique
localization algorithm. By running the algorithm on our
robot, we demonstrated the effectiveness of the algorithm.
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